PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (48)
 

Clipboard (0)
None

Select a Filter Below

Year of Publication
more »
Document Types
1.  Proximal Tubule Epithelial Cell Specific Ablation of the Spermidine/Spermine N1-Acetyltransferase Gene Reduces the Severity of Renal Ischemia/Reperfusion Injury 
PLoS ONE  2014;9(11):e110161.
Background
Expression and activity of spermidine/spermine N1-acetyltransferase (SSAT) increases in kidneys subjected to ischemia/reperfusion (I/R) injury, while its ablation reduces the severity of such injuries. These results suggest that increased SSAT levels contribute to organ injury; however, the role of SSAT specifically expressed in proximal tubule epithelial cells, which are the primary targets of I/R injury, in the mediation of renal damage remains unresolved.
Methods
Severity of I/R injury in wt and renal proximal tubule specific SSAT-ko mice (PT-SSAT-Cko) subjected to bilateral renal I/R injury was assessed using cellular and molecular biological approaches.
Results
Severity of the loss of kidney function and tubular damage are reduced in PT-SSAT-Cko- compared to wt-mice after I/R injury. In addition, animals treated with MDL72527, an inhibitor of polyamine oxidases, had less severe renal damage than their vehicle treated counter-parts. The renal expression of HMGB 1 and Toll like receptors (TLR) 2 and 4 were also reduced in PT-SSAT-Cko- compared to wt mice after I/R injury. Furthermore, infiltration of neutrophils, as well as expression of tumor necrosis factor-α (TNF-α), monocyte chemoattractant protein-1 (MCP-1) and interleukin-6 (IL-6) transcripts were lower in the kidneys of PT-SSAT-Cko compared to wt mice after I/R injury. Finally, the activation of caspase3 was more pronounced in the wt compared to PT-SSAT-Cko animals.
Conclusions
Enhanced SSAT expression by proximal tubule epithelial cells leads to tubular damage, and its deficiency reduces the severity of renal I/R injury through reduction of cellular damage and modulation of the innate immune response.
doi:10.1371/journal.pone.0110161
PMCID: PMC4229091  PMID: 25390069
2.  Histone deacetylase inhibition overcomes drug resistance through a miRNA-dependent mechanism 
Molecular cancer therapeutics  2013;12(10):10.1158/1535-7163.MCT-13-0418.
The treatment of specific tumor cell lines with poly- and oligoamine analogues results in a super-induction of polyamine catabolism that is associated with cytotoxicity; however, other tumor cells demonstrate resistance to analogue treatment. Recent data indicate that some of these analogues also have direct epigenetic effects. We therefore sought to determine the effects of combining specific analogues with an epigenetic targeting agent in phenotypically resistant human lung cancer cell lines. We demonstrate that the histone deacetylase inhibitor MS-275 when combined with (N1, N11)-bisethylnorspermine (BENSpm) or (N1, N12)-bis(ethyl)-cis-6,7-dehydrospermine tetrahydrochloride (PG-11047) synergistically induces the polyamine catabolic enzyme spermidine/spermine N1-acetyltransferase (SSAT), a major determinant of sensitivity to the antitumor analogues. Evidence indicates that the mechanism of this synergy includes reactivation of miR-200a, which targets and destabilizes kelch-like ECH-associated protein 1 (KEAP1) mRNA, resulting in the translocation and binding of nuclear factor (erythroid-derived 2)-like 2 (NRF2) to the polyamine-responsive element of the SSAT promoter. This transcriptional stimulation combined with positive regulation of SSAT mRNA and protein by the analogues results in decreased intracellular concentrations of natural polyamines and growth inhibition. The finding that an epigenetic targeting agent is capable of inducing a rate-limiting step in polyamine catabolism to overcome resistance to the antitumor analogues represents a completely novel chemotherapeutic approach. This is also the first demonstration of miRNA-mediated regulation of the polyamine catabolic pathway. Furthermore, the individual agents used in this study have been investigated clinically; therefore, translation of these combinations into the clinical setting holds promise.
doi:10.1158/1535-7163.MCT-13-0418
PMCID: PMC3808125  PMID: 23943804
miR-200a; NRF2; spermidine/spermine N1-acetyltransferase SSAT; MS-275; KEAP1
3.  Say what? The activity of the polyamine biosynthesis inhibitor difluoromethylornithine (DFMO) in chemoprevention is a result of reduced thymidine pools? 
Cancer discovery  2013;3(9):975-977.
Summary
In the current issue of Cancer Discovery, Witherspoon, Lipkin and colleagues use an unbiased metabolite profiling approach to study the effects of polyamine depletion by DFMO in colon cancer cells. Their surprising findings indicate that it is a decrease in thymidine pools resulting from altered tetrahydrofolate availability rather than decreases in polyamines that produce cytostasis.
doi:10.1158/2159-8290.CD-13-0427
PMCID: PMC3786367  PMID: 24019331
4.  A Selective Phenelzine Analogue Inhibitor of Histone Demethylase LSD1 
ACS chemical biology  2014;9(6):1284-1293.
Lysine-specific demethylase 1 (LSD1) is an epigenetic enzyme that oxidatively cleaves methyl groups from monomethyl and dimethyl Lys4 of histone H3 (H3K4Me1, H3K4Me2) and can contribute to gene silencing. This study describes the design and synthesis of analogues of a monoamine oxidase antidepressant, phenelzine, and their LSD1 inhibitory properties. A novel phenelzine analogue (bizine) containing a phenyl-butyrylamide appendage was shown to be a potent LSD1 inhibitor in vitro and was selective versus monoamine oxidases A/B and the LSD1 homologue, LSD2. Bizine was found to be effective at modulating bulk histone methylation in cancer cells, and ChIP-seq experiments revealed a statistically significant overlap in the H3K4 methylation pattern of genes affected by bizine and those altered in LSD1−/− cells. Treatment of two cancer cell lines, LNCaP and H460, with bizine conferred a reduction in proliferation rate, and bizine showed additive to synergistic effects on cell growth when used in combination with two out of five HDAC inhibitors tested. Moreover, neurons exposed to oxidative stress were protected by the presence of bizine, suggesting potential applications in neurodegenerative disease.
doi:10.1021/cb500018s
PMCID: PMC4076021  PMID: 24707965
5.  Polyamines and cancer: Implications for chemoprevention and chemotherapy 
Polyamines are small organic cations that are essential for normal cell growth and development in eukaryotes. Under normal physiological conditions, intracellular polyamine concentrations are tightly regulated through a dynamic network of biosynthetic and catabolic enzymes and a poorly characterized transport system. This precise regulation ensures that the intracellular concentration of polyamines is maintained within strictly controlled limits. It has frequently been observed that the metabolism of, and the requirement for, polyamines in tumours is frequently dysregulated. Elevated levels of polyamines have been associated with breast, colon, lung, prostate, and skin cancers, and altered levels of the rate limiting enzymes in both biosynthesis and catabolism have been observed. Based on these observations and the absolute requirement for polyamines in tumour growth, the polyamine pathway is a rational target for chemoprevention and chemotherapeutics. Here we describe the recent advances made in the polyamine field and focus on the roles of polyamines and polyamine metabolism in neoplasia through a discussion of the current animal models for the polyamine pathway, chemotherapeutic strategies that target the polyamine pathway, chemotherapeutic clinical trials for polyamine pathway specific drugs, and ongoing clinical trials targeting polyamine biosynthesis.
doi:10.1017/erm.2013.3
PMCID: PMC4027058  PMID: 23432971
polyamine; cancer; chemoprevention; chemotherapy; ODC; SSAT; SMO
6.  The re-expression of the epigenetically silenced e-cadherin gene by a polyamine analogue lysine-specific demethylase-1 (LSD1) inhibitor in human acute myeloid leukemia cell lines 
Amino acids  2013;46(3):585-594.
Aberrant epigenetic silencing of tumor suppressor genes is a common feature observed during the transformation process of many cancers, including those of hematologic origin. Histone modifications, including acetylation, phosphorylation, and methylation, collaborate with DNA CpG island methylation to regulate gene expression. The dynamic process of histone methylation is the latest of these epigenetic modifications to be described, and the identification and characterization of LSD1 as a demethylase of lysine 4 of histone H3 (H3K4) has confirmed that both the enzyme and the modified histone play important roles as regulators of gene expression. LSD1 activity contributes to the suppression of gene expression by demethylating promoter-region mono- and dimethyl- H3K4 histone marks that are associated with active gene expression. As most posttranslational modifications are reversible, the enzymes involved in the modification of histones have become targets for chemotherapeutic intervention. In this study, we examined the effects of the polyamine analogue LSD1 inhibitor 2d (1,15-bis{N5-[3,3-(diphenyl)propyl]-N1-biguanido}-4,12-diazapentadecane) in human acute myeloid leukemia (AML) cell lines. In each line studied, 2d evoked cytotoxicity and inhibited LSD1 activity, as evidenced by increases in the global levels of mono- and di-methylated H3K4 proteins. Global increases in other chromatin modifications were also observed following exposure to 2d, suggesting a broad response to this compound with respect to chromatin regulation. On a gene-specific level, treatment with 2d resulted in the reexpression of e-cadherin, a tumor suppressor gene frequently silenced by epigenetic modification in AML. Quantitative chromatin immunoprecipitation analysis of the ecadherin promoter further confirmed that this re-expression was concurrent with changes in both active and repressive histone marks that were consistent with LSD1 inhibition. As hematologic malignancies have demonstrated promising clinical responses to agents targeting epigenetic silencing, this polyamine analogue LSD1 inhibitor presents an exciting new avenue for the development of novel therapeutic agents for the treatment of AML.
doi:10.1007/s00726-013-1485-1
PMCID: PMC3692581  PMID: 23508577
histone; methylation; chromatin; epigenetic; CDH-1; polyamine
7.  Spermine oxidase is a regulator of macrophage host response to Helicobacter pylori: enhancement of antimicrobial nitric oxide generation by depletion of spermine 
Amino acids  2013;46(3):531-542.
The gastric pathogen Helicobacter pylori causes peptic ulcer disease and gastric cancer. We have reported that in H. pylori-activated macrophages, nitric oxide (NO) derived from inducible NO synthase (iNOS) can kill the bacterium, iNOS protein expression is dependent on uptake of its substrate L-arginine (L-Arg), the polyamine spermine can inhibit iNOS translation by inhibiting L-Arg uptake, and inhibition of polyamine synthesis enhances NO-mediated bacterial killing. Because spermine oxidase (SMO), which back-converts spermine to spermidine, is induced in macrophages by H. pylori, we determined its role in iNOS-dependent host defense. SMO shRNA knockdown in RAW 264.7 murine macrophages resulted in a marked decrease in H. pylori-stimulated iNOS protein, but not mRNA expression, and a 90% reduction in NO levels; NO production was also inhibited in primary murine peritoneal macrophages with SMO knockdown. There was an increase in spermine levels after H. pylori stimulation that rapidly decreased, while SMO knockdown caused a greater increase in spermine that was sustained. With SMO knockdown, L-Arg uptake and killing of H. pylori by macrophages was prevented. Overexpression of SMO by transfection of an expression plasmid prevented the H. pylori-stimulated increase in spermine levels, and led to increased L-Arg uptake, iNOS protein expression and NO production, and H. pylori killing. In two human monocytic cell lines, U937 and THP-1, overexpression of SMO caused a significant enhancement of NO production with H. pylori stimulation. By depleting spermine, SMO can abrogate the inhibitory effect of polyamines on innate immune responses to H. pylori by enhancing antimicrobial NO production.
doi:10.1007/s00726-013-1531-z
PMCID: PMC3812355  PMID: 23820617
Macrophages; Gastric cancer; Spermine oxidase; Host defense; Innate immune response; Polyamines
8.  Low Molecular Weight Amidoximes that Act as Potent Inhibitors of Lysine-Specific Demethylase 1 
Journal of medicinal chemistry  2012;55(17):7378-7391.
The recently discovered enzyme lysine-specific demethylase 1 (LSD1) plays an important role in the epigenetic control of gene expression, and aberrant gene silencing secondary to LSD1 dysregulation is thought to contribute to the development of cancer. We reported that (bis)guanidines, (bis)biguanides and their urea- and thiourea isosteres are potent inhibitors of LSD1, and induce the re-expression of aberrantly silenced tumor suppressor genes in tumor cells in vitro. We now report a series of small molecule amidoximes that are moderate inhibitors of recombinant LSD1, but that produce dramatic changes in methylation at the histone 3 lysine 4 (H3K4) chromatin mark, a specific target of LSD1, in Calu-6 lung carcinoma cells. In addition, these analogues increase cellular levels of secreted frizzle-related protein (SFRP) 2, H-cadherin (HCAD) and transcription factor GATA4. These compounds represent leads for an important new series of drug-like epigenetic modulators with the potential for use as antitumor agents.
doi:10.1021/jm3002845
PMCID: PMC3482425  PMID: 22876979
Epigenetics; lysine-specific demethylase 1; histones; histone demethylase; amidoxime; gene expression; enzyme inhibitor; secreted frizzle-related protein; H-cadherin; GATA4; Calu-6 human anaplastic non-small cell lung carcinoma
9.  Role of ornithine decarboxylase in regulation of estrogen receptor alpha expression and growth in human breast cancer cells 
Our previous studies demonstrated that specific polyamine analogues, oligoamines, down-regulated the activity of a key polyamine biosynthesis enzyme, ornithine decarboxylase (ODC), and suppressed expression of estrogen receptor alpha (ERα) in human breast cancer cells. However, the mechanism underlying the potential regulation of ERα expression by polyamine metabolism has not been explored. Here, we demonstrated that RNAi-mediated knockdown of ODC (ODC KD) down-regulated the polyamine pool, and hindered growth in ERα-positive MCF7 and T47D and ERα-negative MDA-MB-231 breast cancer cells. ODC KD significantly induced the expression and activity of the key polyamine catabolism enzymes, spermine oxidase (SMO) and spermidine/spermine N1-acetyltransferase (SSAT). However, ODC KD-induced growth inhibition could not be reversed by exogenous spermidine or overexpression of antizyme inhibitor (AZI), suggesting that regulation of ODC on cell proliferation may involve the signaling pathways independent of polyamine metabolism. In MCF7 and T47D cells, ODC KD, but not DFMO treatment, diminished the mRNA and protein expression of ERα. Overexpression of antizyme (AZ), an ODC inhibitory protein, suppressed ERα expression, suggesting that ODC plays an important role in regulation of ERα expression. Decrease of ERα expression by ODC siRNA altered the mRNA expression of a subset of ERα response genes. Our previous analysis showed that oligoamines disrupt the binding of Sp1 family members to an ERα minimal promoter element containing GC/CA-rich boxes. By using DNA affinity precipitation and mass spectrometry analysis, we identified ZBTB7A, MeCP2, PARP-1, AP2, and MAZ as co-factors of Sp1 family members that are associated with the ERα minimal promoter element. Taken together, these data provide insight into a novel antiestrogenic mechanism for polyamine biosynthesis enzymes in breast cancer.
doi:10.1007/s10549-012-2235-x
PMCID: PMC3715085  PMID: 22976807
Polyamines; Ornithine decarboxylase; Estrogen receptor α; Antizyme; Breast cancer
10.  Id1 overexpression is independent of repression and epigenetic silencing of tumor suppressor genes in melanoma 
The full molecular consequences of oncogene activation during tumorigenesis are not well understood, but several studies have recently linked oncogene activation to epigenetic silencing of specific genes.1,2 Transcriptional repressor Id1 is overexpressed in many malignancies including melanoma, and Id1 targets include tumor suppressor genes TSP1, CDKN2A (p16) and CDKN1A (p21), which are frequently epigenetically silenced in cancer. We confirmed that both TSP1 and CDKN2A have abnormal promoter region DNa methylation in primary melanoma, but the mechanism by which this silencing occurs remains unknown. Here we explore the effects of stable lentiviral Id1 overexpression on the expression of these Id1 target genes in human melanoma cell lines. Overexpressed Id1 was functional and bound transcriptional activator E2A, but did not sequester E2A from gene promoters and repress gene expression. Therefore, these Id1 target genes were resistant to Id1-mediated gene silencing. Our results suggest that Id1 activation may need to occur at discrete stages in cooperation with additional gene dysregulation to repress and induce epigenetic silencing of tumor suppressor genes during melanoma progression.
PMCID: PMC3654680  PMID: 20484992
Id1; thrombospondin; melanoma; DNA methylation; oncogene
11.  Current Status of the Polyamine Research Field 
This chapter provides an overview of the polyamine field and introduces the 32 other chapters that make up this volume. These chapters provide a wide range of methods, advice, and background relevant to studies of the function of polyamines, the regulation of their content, their role in disease, and the therapeutic potential of drugs targeting polyamine content and function. The methodology provided in this new volume will enable laboratories already working in this area to expand their experimental techniques and facilitate the entry of additional workers into this rapidly expanding field.
doi:10.1007/978-1-61779-034-8_1
PMCID: PMC3652263  PMID: 21318864
Putrescine; Spermidine; Spermine; Hypusine; Antizyme; Polyamine transport
12.  A Simple Assay for Mammalian Spermine Oxidase: A Polyamine Catabolic Enzyme Implicated in Drug Response and Disease 
Spermine oxidase (SMO), the most recently characterized polyamine metabolic enzyme, catalyzes the direct back-conversion of spermine to spermidine in an FAD-dependent reaction that also yields the byproducts hydrogen peroxide (H2O2) and 3-aminopropanal. These metabolites, particularly H2O2, have been implicated in cytotoxic cellular responses to specific antitumor polyamine analogs, as well as in the inflammation-associated generation of DNA damage. This chapter describes a rapid, sensitive, and inexpensive method for the chemiluminescent measurement of SMO (or alternatively, N1-acetyl polyamine oxidase, APAO) enzyme activity in cultured cell lysates, without the need for radioactive reagents or the use of high performance liquid chromatography (HPLC). Specifically, H2O2 production by SMO is coupled to chemiluminescence generated by the horseradish peroxidase-catalyzed oxidation of luminol. Detailed protocols for preparation of reagents, harvesting cell lysates, generation of a standard curve, assaying of samples, and calculation of SMO enzyme activity are presented.
doi:10.1007/978-1-61779-034-8_10
PMCID: PMC3652264  PMID: 21318873
Spermine oxidase; Polyamine catabolism; Hydrogen peroxide; Chemiluminescence
13.  In vitro and in vivo effects of the conformationally restricted polyamine analogue CGC-11047 on small cell and non-small cell lung cancer cells 
Purpose
Polyamines are essential for normal growth; however, the requirement for, and the metabolism of, polyamines are frequently dysregulated in cancer. Polyamine analogues have demonstrated promising preclinical results in multiple model systems of cancer, but their clinical utility has been limited by apparent toxicity. A representative compound of a new generation of short chain, conformationally restricted polyamine analogues, CGC-11047 has been synthesized and ongoing phase I clinical trials indicate it to be well tolerated at weekly doses of 610 mg (dose escalation is still in progress). Therefore, studies were designed to gain a better understanding of its effects on cellular polyamine biochemistry and efficacy in the treatment of human lung cancer models in vitro and in vivo.
Methods
Human lung cancers cell lines representing non-small cell and small cell lung cancers were investigated for their growth and biochemical response to CGC-11047. Effects of in vitro treatment with CGC-11047 on cell growth, the activity of the polyamine biosynthetic enzyme ornithine decarboxylase (ODC), and the expression and activity of the polyamine catabolic enzymes spermidine/spermine N1-acetyltransferase (SSAT) and spermine oxides (SMO) were measured. Additionally, the overall effects on intracellular polyamine pools were monitored. Finally, the in vivo efficacy of CGC-11047 in the treatment of a nude mouse model of human non-small cell lung cancer was evaluated.
Results
CGC-11047 effectively inhibited the growth of both small cell and non-small cell lung cancer cells in vitro. The greatest biochemical effects were observed in the non-small cell lung cancer cells where in addition to a profound down regulation of ODC activity, there was a significant increase in polyamine catabolism leading to a greater degree of polyamine pool depletion and greater accumulation of CGC-11047 when compared with the changes observed for the small cell lines. Importantly, CGC-11047 was found to be highly significant (P < 0.0001) in delaying the progression of established tumors in an in vivo model of human non-small cell lung cancer.
Conclusion
CGC-11047 represents a promising new polyamine analogue that warrants further preclinical and, potentially, clinical evaluation in lung cancer.
doi:10.1007/s00280-008-0706-x
PMCID: PMC3634589  PMID: 18301893
Polyamines; Analogues; Lung cancer; SSAT; SMO; ODC
14.  Nuclear localization of human spermine oxidase isoforms – possible implications in drug response and disease etiology 
The FEBS journal  2008;275(11):2795-2806.
The recent discovery of the direct oxidation of spermine via spermine oxidase (SMO) as a mechanism through which specific antitumor polyamine analogues exert their cytotoxic effects has fueled interest in the study of the polyamine catabolic pathway. A major byproduct of spermine oxidation is H2O2, a source of toxic reactive oxygen species. Recent targeted small interfering RNA studies have confirmed that SMO-produced reactive oxygen species are directly responsible for oxidative stress capable of inducing apoptosis and potentially mutagenic DNA damage. In the present study, we describe a second catalytically active splice variant protein of the human spermine oxidase gene, designated SMO5, which exhibits substrate specificities and affinities comparable to those of the originally identified human spermine oxidase-1, SMO/PAOh1, and, as such, is an additional source of H2O2. Importantly, overexpression of either of these SMO isoforms in NCI-H157 human non-small cell lung carcinoma cells resulted in significant localization of SMO protein in the nucleus, as determined by confocal microscopy. Furthermore, cell lines overexpressing either SMO/PAOh1 or SMO5 demonstrated increased spermine oxidation in the nucleus, with accompanying alterations in individual nuclear polyamine concentrations. This increased oxidation of spermine in the nucleus therefore increases the production of highly reactive H2O2 in close proximity to DNA, as well as decreases nuclear spermine levels, thus altering the protective roles of spermine in free radical scavenging and DNA shielding, and resulting in an overall increased potential for oxidative DNA damage in these cells. The results of these studies therefore have considerable significance both with respect to targeting polyamine oxidation as an antineoplastic strategy, and in regard to the potential role of spermine oxidase in inflammation-induced carcinogenesis.
doi:10.1111/j.1742-4658.2008.06419.x
PMCID: PMC3631774  PMID: 18422650
carcinogenesis; H2O2; oxidation; polyamine; SMO
15.  A Novel Polyamine Analog Inhibits Growth and Induces Apoptosis in Human Breast Cancer Cells1 
Polyamine analogs have demonstrated considerable activity against many important solid tumor models including breast cancer. However, the precise mechanisms of antitumor activities of polyamine analogs are not entirely understood. The cytotoxicity of a newly developed polyamine analog compound, SL11144, against human breast cancer was assessed. Treatment of human breast cancer cell lines in culture with SL11144 decreased cell proliferation and induced programmed cell death in a time- and dose-dependent manner. SL11144 also profoundly inhibited the growth of MDA-MB-231 xenografts in host nude mice without overt toxic effects. Treatment of MDA-MB-435 cells with SL11144 led to the release of cytochrome c from mitochondria into cytosol, activation of caspase-3, and poly(ADP-ribose) polymerase cleavage. SL11144 decreased Bcl-2 and increased Bax protein levels in MDA-MB-231 cells. Furthermore, activator protein 1 transcriptional factor family member c-Jun was up-regulated by SL11144 in MDA-MB-435 and MDA-MB-231 cells, but not in MCF7 cells. In addition, significant inhibition of ornithine decarboxylase activity and a decrease in polyamine pools were demonstrated. These results demonstrate that the novel polyamine analog SL11144 has effective antineoplastic action against human breast cancer cells in vitro and in vivo and that multiple apoptotic mechanisms are associated with its cytotoxic effect in specific human breast cancer cell lines.
PMCID: PMC3625930  PMID: 12855657
16.  Polyamine Analogues Down-regulate Estrogen Receptor α Expression in Human Breast Cancer Cells* 
The Journal of biological chemistry  2006;281(28):19055-19063.
The critical role of polyamines in cell growth has led to the development of a number of agents that interfere with polyamine metabolism including a novel class of polyamine analogues, oligoamines. Here we demonstrate that oligoamines specifically suppress the mRNA and protein expression of estrogen receptor α (ERα) and ERα target genes in ER-positive human breast cancer cell lines, whereas neither ERβ nor other steroid hormonal receptors are affected by oligoamines. The constitutive expression of a cytomegalovirus promoter-driven exogenous ERα in ER-negative MDA-MB-231 human breast cancer cells was not altered by oligoamines, suggesting that oligoamines specifically suppress ERα transcription rather than affect mRNA or protein stability. Further analysis demonstrated that oligoamines disrupted the DNA binding activity of Sp1 transcription factor family members to an ERα minimal promoter element containing GC/CA-rich boxes. Treatment of MDA-MB-231 cells with the JNK-specific inhibitor SP600125 or expression of the c-Jun dominant negative inhibitor TAM67 blocked the oligoamine-activated JNK/c-Jun pathway and enhanced oligoamine-inhibited ERα expression, suggesting that AP-1 is a positive regulator of ERα expression and that oligoamine-activated JNK/AP-1 activity may antagonize the down-regulation of ERα induced by oligoamines. Taken together, these results suggest a novel antiestrogenic mechanism for specific polyamine analogues in human breast cancer cells.
doi:10.1074/jbc.M600910200
PMCID: PMC3623667  PMID: 16679312
17.  Pentamines as substrate for human spermine oxidase 
Substrate activities of various linear polyamines to human spermine oxidase (hSMO) were investigated. The activities were evaluated by monitoring the amount of H2O2 released from sample polyamines by hSMO. H2O2 was measured by a HPLC method that analyzed fluorescent dimers derived from the oxidation of homovanillic acid in the presence of horseradish peroxidase. Six triamines were tested and were found not to be hSMO substrates. Of sixteen tetramines tested, spermine (Spm) was the most active substrate, followed by homospermine and N-butylated Spm. Pentamines showed a characteristic pattern of substrate activity. Of thirteen pentamines tested, 3343 showed higher substrate activity than Spm, and 4343 showed similar activity to Spm. The activities of the other pentamines were as follows: 3443, 4443, 4344, 3344, 4334, 4444, and 3334 (in decreasing order). Product amines released from these pentamines by hSMO were then analyzed by HPLC. Triamine was the only observed product, and the amount of triamine was nearly equivalent to that of released H2O2. A marked difference in the pH dependency curves between tetramines and pentamines suggested that hSMO favored reactions with a non-protonated secondary nitrogen at the cleavage site. The Km and Vmax values for Spm and 3343 at pH 7.0 and 9.0 were consistent with the higher substrate activity of 3343 compared to Spm, as well as with the concept of a non-protonated secondary nitrogen at the cleavage site being preferred, and 3343 was well degraded at a physiological pH by hSMO.
PMCID: PMC3602902  PMID: 23449327
Spermine oxidase; Polyamine; Pentamine; Hydrogen peroxide; Homovanillic acid
18.  Polyamine analogues targeting epigenetic gene regulation 
Essays in biochemistry  2009;46:95-110.
Over the past three decades the metabolism and functions of the polyamines have been actively pursued as targets for antineoplastic therapy. Interactions between cationic polyamines and negatively charged nucleic acids play a pivotal role in DNA stabilization and RNA processing that may affect gene expression, translation and protein activity. Our growing understanding of the unique roles that the polyamines play in chromatin regulation, and the discovery of novel proteins homologous with specific regulatory enzymes in polyamine metabolism, have led to our interest in exploring chromatin remodelling enzymes as potential therapeutic targets for specific polyamine analogues. One of our initial efforts focused on utilizing the strong affinity that the polyamines have for chromatin to create a backbone structure, which could be combined with active-site-directed inhibitor moieties of HDACs (histone deacetylases). Specific PAHAs (polyaminohydroxamic acids) and PABAs (polyaminobenzamides) polyamine analogues have demonstrated potent inhibition of the HDACs, re-expression of p21 and significant inhibition of tumour growth. A second means of targeting the chromatin-remodelling enzymes with polyamine analogues was facilitated by the recent identification of flavin-dependent LSD1 (lysine-specific demethylase 1). The existence of this enzyme demonstrated that histone lysine methylation is a dynamic process similar to other histone post-translational modifications. LSD1 specifically catalyses demethylation of mono- and di-methyl Lys4 of histone 3, key positive chromatin marks associated with transcriptional activation. Structural and catalytic similarities between LSD1 and polyamine oxidases facilitated the identification of biguanide, bisguanidine and oligoamine polyamine analogues that are potent inhibitors of LSD1. Cellular inhibition of LSD1 by these unique compounds led to the re-activation of multiple epigenetically silenced genes important in tumorigenesis. The use of these novel polyamine-based HDAC or LSD1 inhibitors represents a highly promising and novel approach to cancer prevention and therapy.
doi:10.1042/bse0460007
PMCID: PMC3564236  PMID: 20095972
19.  Design of polyamine-based therapeutic agents: new targets and new directions 
Essays in biochemistry  2009;46:77-94.
Enzymes in the biosynthetic and catabolic polyamine pathway have long been considered targets for drug development, and early drug discovery efforts in the polyamine area focused on the design and development of specific inhibitors of the biosynthetic pathway, or polyamine analogues that specifically bind DNA. More recently, it has become clear that the natural polyamines are involved in numerous known and unknown cellular processes, and disruption of polyamine functions at their effector sites can potentially produce beneficial therapeutic effects. As new targets for polyamine drug discovery continue to evolve, the rational design of polyamine analogues will result in more structurally diverse agents. In addition, the physical linkage of polyamine-like structures to putative drug molecules can have beneficial effects resulting from increases in DNA affinity and selective cellular uptake. The present chapter will summarize recent advances in the development of alkylpolyamine analogues as antitumour agents, and describe subsequent advances that have resulted from incorporating polyamine character into more diverse drug molecules. Specifically, new polyamine analogues, and the role of polyamine fragments in the design of antiparasitic agents, antitumour metal complexes, histone deacetylase inhibitors and lysine-specific demethylase 1 inhibitors, will be described.
doi:10.1042/bse0460006
PMCID: PMC3564240  PMID: 20095971
20.  Polyamine analogues modulate gene expression by inhibiting Lysine-Specific Demethylase 1 (LSD1) and altering chromatin structure in human breast cancer cells 
Amino Acids  2011;42(2-3):887-898.
Aberrant epigenetic repression of gene expression has been implicated in most cancers, including breast cancer. The nuclear amine oxidase, lysine-specific demethylase 1 (LSD1) has the ability to broadly repress gene expression by removing the activating mono- and di-methylation marks at the lysine 4 residue of histone 3 (H3K4me1 & me2). Additionally, LSD1 is highly expressed in estrogen receptor α negative (ER−) breast cancer cells. Since epigenetic marks are reversible, they make attractive therapeutic targets. Here we examine the effects of polyamine analogue inhibitors of LSD1 on gene expression, with the goal of targeting LSD1 as a therapeutic modality in the treatment of breast cancer. Exposure of the ER-negative human breast cancer cells, MDA-MB-231, to the LSD1 inhibitors, 2d or PG11144, significantly increases global H3K4me1 and H3K4me2, and alters gene expression. Array analysis indicated that 98 (75 up and 23 down) and 477 (237 up and 240 down) genes changed expression by at least 1.5-fold or greater after treatment with 2d and PG11144, respectively. The expression of twelve up-regulated genes by 2d and fourteen up-regulated genes by PG11144 was validated by quantitative RT-PCR. Quantitative chromatin immunoprecipitation (ChIP) analysis demonstrated that up-regulated gene expression by polyamine analogues is associated with increase of the active histone marks H3K4me1, H3K4me2 and H3K9ac, and decrease of the repressive histone marks H3K9me2 and H3K27me3, in the promoter regions of the relevant target genes. These data indicate that the pharmacologic inhibition of LSD1 can effectively alter gene expression and that this therapeutic strategy has potential.
doi:10.1007/s00726-011-1004-1
PMCID: PMC3240695  PMID: 21805138
epigenetics; chromatin; histone methylation; acetylation; gene silencing
21.  Knockdown of Ornithine Decarboxylase Antizyme 1 causes loss of uptake regulation leading to increased N1, N11-bis(ethyl)norspermine (BENSpm) accumulation and toxicity in NCI H157 lung cancer cells 
Amino Acids  2011;42(2-3):529-538.
Ornithine decarboxylase antizyme 1 (AZ1) is a major regulatory protein responsible for the regulation and degradation of ornithine decarboxylase (ODC). To better understand the role of AZ1 in polyamine metabolism and in modulating the response to anticancer polyamine analogues, a small interfering RNA strategy was used to create a series of stable clones in human H157 non-small cell lung cancer cells (NSCLC) that expressed less than 5–10 % of basal AZ1 levels. Antizyme 1 knockdown clones accumulated greater amounts of the polyamine analogue N1,N 11 bis(ethyl)norspermine (BENSpm) and were more sensitive to analogue treatment. The possibility of a loss of polyamine uptake regulation in the knockdown clones was confirmed by polyamine uptake analysis. These results are consistent with the hypothesis that AZ1 knockdown leads to dysregulation of polyamine uptake, resulting in increased analogue accumulation and toxicity. Importantly, there appears to be little difference between AZ1 knockdown cells and cells with normal levels of AZ1 with respect to ODC regulation, suggesting that another regulatory protein, potentially AZ2, compensates for the loss of AZ1. The results of these studies are important for the understanding of both the regulation of polyamine homeostasis and in understanding the factors that regulate tumor cell sensitivity to the anti-tumor polyamine analogues.
doi:10.1007/s00726-011-1030-z
PMCID: PMC3240712  PMID: 21814790
antizyme; ornithine decarboxylase; polyamines; spermine; BENSpm
22.  Polyaminohydroxamic Acids and Polyaminobenzamides as Isoform Selective Histone Deacetylase Inhibitors§ 
Journal of medicinal chemistry  2008;51(8):2447-2456.
A series of polyaminohydroxamic acids (PAHAs) and polyaminobenzamides (PABAs) were synthesized and evaluated as isoform-selective histone deacetylase (HDAC) inhibitors. These analogues contain a polyamine chain to increase affinity for chromatin and facilitate cellular import. Seven PAHAs inhibited HDAC >50% (1 µM), and two PABAs inhibited HDAC >50% (5 µM). Compound 17 increased acetylated α-tubulin in HCT116 colon tumor cells 253-fold but only modestly increased p21waf1 and acetylated histones 3 and 4, suggesting that 17 selectively inhibits HDAC 6. PABA 22 alone minimally increased p21waf1 and acetylated histones 3 and 4 but caused dose-dependent increases in p21waf1 in combination with 0.1 µM 5-azadeoxycytidine. Finally, 22 appeared to be a substrate for the polyamine transport system. None of these compounds were cytotoxic at 100 µM. PAHAs and PABAs exhibit strikingly different cellular effects from SAHA and have the potential for use in combination antitumor therapies with reduced toxicity.
doi:10.1021/jm701384x
PMCID: PMC3556737  PMID: 18348516
23.  Alkyl-Substituted Polyaminohydroxamic Acids: A Novel Class of Targeted Histone Deacetylase Inhibitors 
Journal of medicinal chemistry  2005;48(20):6350-6365.
The reversible acetylation of histones is critical for regulation of eukaryotic gene expression. The histone deacetylase inhibitors trichostatin (TSA, 1), MS-275 (2) and suberoylanilide hydroxamic acid (SAHA, 3) arrest growth in transformed cells and in human tumor xenografts. However, 1–3 suffer from lack of specificity among the various HDAC isoforms, prompting us to design and synthesize polyaminohydroxamic acid (PAHA) derivatives 6–21. We felt that PAHAs would be selectively directed to chromatin and associated histones by the positively charged polyamine side chain. At 1 μM, compounds 12, 15 and 20 inhibited HDAC by 74.86, 59.99 and 73.85%, respectively. Although 20 was a less potent HDAC inhibitor than 1, it was more potent than 2, more effective as an initiator of histone hyperacetylation, and significantly more effective than 2 at re-expressing p21Waf1 in ML-1 leukemia cells. On the basis of these results, PAHAs 6–21 represent an important new chemical class of HDAC inhibitors.
doi:10.1021/jm0505009
PMCID: PMC3554812  PMID: 16190761
24.  Inhibition of the LSD1 (KDM1A) demethylase reactivates the all-trans-retinoic acid differentiation pathway in acute myeloid leukemia 
Nature medicine  2012;18(4):605-611.
Acute promyelocytic leukemia (APL), a cytogenetically distinct subtype of acute myeloid leukemia (AML), characterized by the t(15;17)-associated PML-RARA fusion, has been successfully treated with therapy utilizing all-trans-retinoic acid (ATRA) to differentiate leukemic blasts. However, among patients with non- APL AML, ATRA-based treatment has not been effective. Here we show that, through epigenetic reprogramming, inhibitors of lysine- specific demethylase 1 (LSD1, also called KDM1A), including tranylcypromine (TCP), unlocked the ATRA-driven therapeutic response in non-APL AML. LSD1 inhibition did not lead to a large-scale increase in histone 3 Lys4 dimethylation (H3K4me2) across the genome, but it did increase H3K4me2 and expression of myeloid-differentiation–associated genes. Notably, treatment with ATRA plus TCP markedly diminished the engraftment of primary human AML cells in vivo in nonobese diabetic (NOD)- severe combined immunodeficient (SCID) mice, suggesting that ATRA in combination with TCP may target leukemia-initiating cells. Furthermore, initiation of ATRA plus TCP treatment 15 d after engraftment of human AML cells in NOD-SCID γ (with interleukin-2 (IL-2) receptor γ chain deficiency) mice also revealed the ATRA plus TCP drug combination to have a potent anti-leukemic effect that was superior to treatment with either drug alone. These data identify LSD1 as a therapeutic target and strongly suggest that it may contribute to AML pathogenesis by inhibiting the normal pro-differentiative function of ATRA, paving the way for new combinatorial therapies for AML.
doi:10.1038/nm.2661
PMCID: PMC3539284  PMID: 22406747
25.  Polyamine-based small molecule epigenetic modulators† 
MedChemComm  2011;3(1):14-21.
Chromatin remodelling enzymes such as the histone deacetylases (HDACs) and histone demethylases such as lysine-specific demethylase 1 (LSD1) have been validated as targets for cancer drug discovery. Although a number of HDAC inhibitors have been marketed or are in human clinical trials, the search for isoform-specific HDAC inhibitors is an ongoing effort. In addition, the discovery and development of compounds targeting histone demethylases are in their early stages. Epigenetic modulators used in combination with traditional antitumor agents such as 5-azacytidine represent an exciting new approach to cancer chemotherapy. We have developed multiple series of HDAC inhibitors and LSD1 inhibitors that promote the re-expression of aberrantly silenced genes that are important in human cancer. The design, synthesis and biological activity of these analogues is described herein.
doi:10.1039/C1MD00220A
PMCID: PMC3535317  PMID: 23293738

Results 1-25 (48)