PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-4 (4)
 

Clipboard (0)
None

Select a Filter Below

Journals
Authors
more »
Year of Publication
Document Types
1.  Small meteoroids' major contribution to Mercury's exosphere 
Icarus  2014;227:1-7.
The contribution of the meteoroid population to the generation of Mercury's exosphere is analyzed to determine which segment contributes most greatly to exospheric refilling via the process of meteoritic impact vaporization. For the meteoroid data, a differential mass distribution based on work by Grün et al. (Grün, E., Zook, H.A., Fechtig, H., Giese, R.H. [1985]. Icarus 62(2), 244–272) and a differential velocity distribution based on the work of Zook (Zook, H.A. [1975]. In: 6th Lunar Science Conference, vol. 2. Pergamon Press, Inc., Houston, TX, pp. 1653–1672) is used. These distributions are then evaluated using the method employed by Cintala (Cintala, M.J. [1992]. J. Geophys. Res. 97(E1), 947–974) to determine impact rates for selected mass and velocity segments of the meteoroid population.
The amount of vapor created by a single meteor impact is determined by using the framework created by Berezhnoy and Klumov (Berezhnoy, A.A., Klumov, B.A. [2008] Icarus, 195(2), 511–522). By combining the impact rate of meteoroids with the amount of vapor a single such impact creates, we derive the total vapor production rate which that meteoroid mass segment contributes to the Herman exosphere. It is shown that meteoroids with a mass of 2.1 × 10−4 g release the largest amount of vapor into Mercury's exosphere. For meteoroids in the mass range of 10−18 g to 10 g, 90% of all the vapor produced is due to impacts by meteoroids in the mass range 4.2 × 10−7 g ≤ m ≤ 8.3 × 10−2 g.
doi:10.1016/j.icarus.2013.07.032
PMCID: PMC4013548  PMID: 24817768
Impact processes; Interplanetary dust; Mercury; Atmosphere
2.  The Kelvin–Helmholtz instability at Venus: What is the unstable boundary? 
Icarus  2011;216(2):476-484.
Highlights
► We study the Kelvin–Helmholtz instability at boundary layers around of Venus. ► The stability of the induced magnetopause and the ionopause is examined. ► The ionopause seems to be stable due to a large density jump across this boundary. ► The instability evolves into its nonlinear phase on the magnetopause at solar maximum. ► Loss rates are therefore lower than previously assumed.
The Kelvin–Helmholtz instability gained scientific attention after observations at Venus by the spacecraft Pioneer Venus Orbiter gave rise to speculations that the instability contributes to the loss of planetary ions through the formation of plasma clouds. Since then, a handful of studies were devoted to the Kelvin–Helmholtz instability at the ionopause and its implications for Venus. The aim of this study is to investigate the stability of the two instability-relevant boundary layers around Venus: the induced magnetopause and the ionopause. We solve the 2D magnetohydrodynamic equations with the total variation diminishing Lax–Friedrichs algorithm and perform simulation runs with different initial conditions representing the situation at the boundary layers around Venus. Our results show that the Kelvin–Helmholtz instability does not seem to be able to reach its nonlinear vortex phase at the ionopause due to the very effective stabilizing effect of a large density jump across this boundary layer. This seems also to be true for the induced magnetopause for low solar activity. During high solar activity, however, there could occur conditions at the induced magnetopause which are in favour of the nonlinear evolution of the instability. For this situation, we estimated roughly a growth rate for planetary oxygen ions of about 7.6 × 1025 s−1, which should be regarded as an upper limit for loss due to the Kelvin–Helmholtz instability.
doi:10.1016/j.icarus.2011.09.012
PMCID: PMC3280700  PMID: 22347723
Magnetospheres; Solar wind; Venus
3.  Microbial survival in space shuttle crash 
Icarus  2006;181(1):323-325.
A slow growing, heat resistant bacterium, identified by 16S rRNA gene sequencing as Microbispora sp., was recovered from the wreckage of the ill-fated space shuttle Columbia (STS-107). As this organism survived disintegration of the space craft, heat of reentry, and impact, it supports the possibility of a natural mechanism for the interplanetary spread of life by meteorites.
doi:10.1016/j.icarus.2005.12.002
PMCID: PMC3144675  PMID: 21804644
Exobiology; Meteorites
4.  Shape, size and multiplicity of main-belt asteroids I. Keck Adaptive Optics survey 
Icarus  2006;185(1):39-63.
This paper presents results from a high spatial resolution survey of 33 main-belt asteroids with diameters >40 km using the Keck II Adaptive Optics (AO) facility. Five of these (45 Eugenia, 87 Sylvia, 107 Camilla, 121 Hermione, 130 Elektra) were confirmed to have satellite. Assuming the same albedo as the primary, these moonlets are relatively small (∼5% of the primary size) suggesting that they are fragments captured after a disruptive collision of a parent body or captured ejecta due to an impact. For each asteroid, we have estimated the minimum size of a moonlet that can positively detected within the Hill sphere of the system by estimating and modeling a 2-σ detection profile: in average on the data set, a moonlet located at 2/100 × RHill (1/4 × RHill) with a diameter larger than 6 km (4 km) would have been unambiguously seen. The apparent size and shape of each asteroid was estimated after deconvolution using a new algorithm called AIDA. The mean diameter for the majority of asteroids is in good agreement with IRAS radiometric measurements, though for asteroids with a D < 200 km, it is underestimated on average by 6–8%. Most asteroids had a size ratio that was very close to those determined by lightcurve measurements. One observation of 104 Klymene suggests it has a bifurcated shape. The bi-lobed shape of 121 Hermione described in Marchis et al. [Marchis, F., Hestroffer, D., Descamps, P., Berthier, J., Laver, C., de Pater, I., 2005c. Icarus 178, 450–464] was confirmed after deconvolution. The ratio of contact binaries in our survey, which is limited to asteroids larger than 40 km, is surprisingly high (∼6%), suggesting that a non-single configuration is common in the main-belt. Several asteroids have been analyzed with lightcurve inversions. We compared lightcurve inversion models for plane-of-sky predictions with the observed images (9 Metis, 52 Europa, 87 Sylvia, 130 Elektra, 192 Nausikaa, and 423 Diotima, 511 Davida). The AO images allowed us to determine a unique photometric mirror pole solution, which is normally ambiguous for asteroids moving close to the plane of the ecliptic (e.g., 192 Nausikaa and 52 Europa). The photometric inversion models agree well with the AO images, thus confirming the validity of both the lightcurve inversion method and the AO image reduction technique.
doi:10.1016/j.icarus.2006.06.001
PMCID: PMC2600456  PMID: 19081813
Asteroids; Infrared observations; Asteroids, surfaces; Data reduction techniques; Image processing

Results 1-4 (4)