PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (1738)
 

Clipboard (0)
None

Select a Filter Below

Journals
Year of Publication
more »
1.  A distant, cis-acting enhancer drives induction of Arf by Tgfβ in the developing eye 
Developmental biology  2013;380(1):49-57.
The Arf tumor suppressor represents one of several genes encoded at the Cdkn2a and Cdkn2b loci in the mouse. Beyond its role blunting the growth of incipient cancer cells, the Arf gene also plays an essential role in development: Its gene product, p19Arf, is induced by Tgfβ2 in the developing eye to dampen proliferative signals from Pdgfrβ, which effect ultimately fosters the vascular remodeling required for normal vision in the mouse. Mechanisms underlying Arf induction by Tgfβ2 are not fully understood. Using the chr4Δ70kb/Δ70kb mouse, we now show that deletion of the coronary artery disease (CAD) risk interval lying upstream of the Cdkn2a/b locus represses developmentally-timed induction of Arf resulting in eye disease mimicking the persistent hyperplastic primary vitreous (PHPV) found in Arf-null mice and in children. Using mouse embryo fibroblasts, we demonstrate that Arf induction by Tgfβ is blocked in cis to the 70 kb deletion, but Arf induction by activated RAS and cell culture “shock” is not. Finally, we show that Arf induction by Tgfβ is derailed by preventing RNA polymerase II recruitment following Smad 2/3 binding to the promoter. These findings provide the first evidence that the CAD risk interval, located at a distance from Arf, acts as a cis enhancer of Tgfβ2-driven induction of Arf during development.
doi:10.1016/j.ydbio.2013.05.003
PMCID: PMC4336776  PMID: 23665474
9p21; Arf; Tgfβ; PHPV
2.  Oral-aboral axis specification in the sea urchin embryo IV. Hypoxia radializes embryos by preventing the initial spatialization of nodal activity 
Developmental biology  2013;386(2):302-307.
The oral-aboral axis of the sea urchin embryo is specified conditionally via a regulated feedback circuit involving the signaling gene nodal and its antagonist lefty. In normal development nodal activity becomes localized to the prospective oral side of the blastula stage embryo, a process that requires lefty. In embryos of Strongylocentrotus purpuratus, a redox gradient established by asymmetrically distributed mitochondria provides an initial spatial input that positions the localized domain of nodal expression. This expression is perturbed by hypoxia, leading to development of radialized embryos lacking an oral-aboral axis. Here we show that this radialization is not caused by a failure to express nodal, but rather by a failure to localize nodal activity to one side of the embryo. This occurs even when embryos are removed from hypoxia at late cleavage stage when nodal is first expressed, indicating that the effect involves the initiation phase of nodal activity, rather than its positive feedback-driven amplification and maintenance. Quantitative fluorescence microscopy of MitoTracker Orange-labelled embryos expressing nodal-GFP reporter gene revealed that hypoxia abolishes the spatial correlation between mitochondrial distribution and nodal expression, suggesting that hypoxia eliminates the initial spatial bias in nodal activity normally established by the redox gradient. We propose that absent this bias, the initiation phase of nodal expression is spatially uniform, such that the ensuing Nodal-mediated community effect is not localized, and hence refractory to Lefty-mediated enforcement of localization.
doi:10.1016/j.ydbio.2013.12.035
PMCID: PMC3929957  PMID: 24384388
embryo; nodal; axis; polarity; mitochondria; hypoxia
3.  Identification of Pax3 and Zic1 targets in the developing neural crest 
Developmental biology  2013;386(2):473-483.
The neural crest (NC) is a multipotent population of migratory cells unique to the vertebrate embryo, contributing to the development of multiple organ systems. Transcription factors pax3 and zic1 are among the earliest genes activated in NC progenitors, and they are both necessary and sufficient to promote NC fate. In order to further characterize the function of these transcription factors during NC development we have used hormone inducible fusion proteins in a Xenopus animal cap assay, and DNA microarray to identify downstream targets of Pax3 and Zic1. Here we present the results of this screen and the initial validation of these targets using quantitative RT-PCR, in situ hybridization and morpholinos-mediated knockdown. Among the targets identified we found several well-characterized NC-specific genes, including snail2, foxd3, gbx2, twist, sox8 and sox9, which validate our approach. We also obtained several factors with no known function in Xenopus NC, which represent novel regulators of NC fate. The comprehensive characterization of Pax3 and Zic1 targets function in the NC gene regulatory network, are essential to understanding the mechanisms regulating the emergence of this important cell population.
doi:10.1016/j.ydbio.2013.12.011
PMCID: PMC3933997  PMID: 24360908
Xenopus; Neural crest; Pax3; Zic1; Microarray; Gene regulatory network
4.  Retinoic acid regulation by CYP26 in vertebrate lens regeneration 
Developmental biology  2013;386(2):291-301.
Xenopus laevis is among the few species that are capable of fully regenerating a lost lens de novo. This occurs upon removal of the lens, when secreted factors from the retina are permitted to reach the cornea epithelium and trigger it to form a new lens. Although many studies have investigated the retinal factors that initiate lens regeneration, relatively little is known about what factors support this process and make the cornea competent to form a lens. We presently investigate the role of Retinoic acid (RA) signaling in lens regeneration in Xenopus. RA is a highly important morphogen during vertebrate development, including the development of various eye tissues, and has been previously implicated in several regenerative processes as well. For instance, Wolffian lens regeneration in the newt requires active RA signaling. In contrast, we provide evidence here that lens regeneration in Xenopus actually depends on the attenuation of RA signaling, which is regulated by the RA-degrading enzyme CYP26. Using RTPCR we examined the expression of RA synthesis and metabolism related genes within ocular tissues. We found expression of aldh1a1, aldh1a2, and aldh1a3, as well as cyp26a1 and cyp26b1 in both normal and regenerating corneal tissue. On the other hand, cyp26c1 does not appear to be expressed in either control or regenerating corneas, but it is expressed in the lens. Additionally in the lens, we found expression of aldh1a1 and aldh1a2, but not aldh1a3. Using an inhibitor of CYP26, and separately using exogenous retinoids, as well as RA signaling inhibitors, we demonstrate that CYP26 activity is necessary for lens regeneration to occur. We also find using phosphorylated Histone H3 labeling that CYP26 antagonism reduces cell proliferation in the cornea, and using qPCR we find that exogenous retinoids alter the expression of putative corneal stem cell markers. Furthermore, the Xenopus cornea is composed of an outer layer and inner basal epithelium, as well as a deeper fibrillar layer sparsely populated with cells. We employed antibody staining to visualize the localization of CYP26A, CYP26B, and RALDH1 within these corneal layers. Immunohistochemical staining of these enzymes revealed that all 3 proteins are expressed in both the outer and basal layers. CYP26A appears to be unique in also being present in the deeper fibrillar layer, which may contain cornea stem cells. This study reveals a clear molecular difference between newt and Xenopus lens regeneration, and it implicates CYP26 in the latter regenerative process.
doi:10.1016/j.ydbio.2013.12.036
PMCID: PMC3939837  PMID: 24384390
Retinoic acid; Regeneration; Lens; Cornea; CYP26; RALDH
5.  BDNF and NT4 play interchangeable roles in gustatory development 
Developmental biology  2013;386(2):308-320.
A limited number of growth factors are capable of regulating numerous developmental processes, but how they accomplish this is unclear. The gustatory system is ideal for examining this issue because the neurotrophins brain-derived neurotrophic factor (BDNF) and neurotrophin-4 (NT4) have different developmental roles although both of them activate the same receptors, TrkB and p75. Here we first investigated whether the different roles of BDNF and NT4 are due to their differences in temporal and spatial expression patterns. Then, we asked whether or not these two neurotrophins exert their unique roles on the gustatory system by regulating different sets of downstream genes. By using BdnfNt4/Nt4 mice, in which the coding region for BDNF is replaced with NT4, we examined whether the different functions of BDNF and NT4 are interchangeable during taste development. Our results demonstrated that NT4 could mediate most of the unique roles of BDNF during taste development. Specifically, caspase-3-mediated cell death, which was increased in the geniculate ganglion in Bdnf−/− mice, was rescued in BdnfNt4/Nt4 mice. In BDNF knockout mutant mice, tongue innervation was disrupted, and gustatory axons failed to reach their targets. However, disrupted innervation was rescued and target innervation is normal when NT4 replaced BDNF. Genome wide expression analyses revealed that BDNF and NT4 mutant mice exhibited different gene expression profiles in gustatory (geniculate) ganglion. Compared to wild type, the expression of differentiation-, apoptosis- and axon guidance-related genes was changed in BDNF mutant mice, which is consistent with their different roles during taste development. However, replacement of BDNF by NT4 rescued these gene expression changes. These findings indicate that the functions of BDNF and NT4 in taste development are interchangeable. Spatial and temporal differences in BDNF and NT4 expression can regulate differential gene expression in vivo and determine their specific roles during development.
doi:10.1016/j.ydbio.2013.12.031
PMCID: PMC3950349  PMID: 24378336
Taste; neurotrophins; brain derived neurotrophic factor; neurotrophin 4; geniculate ganglion neurons
6.  The role of MATER in endoplasmic reticulum distribution and calcium homeostasis in mouse oocytes 
Developmental biology  2013;386(2):331-339.
Ca2+ oscillations are a hallmark of mammalian fertilization and play a central role in the activation of development. The calcium required for these oscillations is primarily derived from the endoplasmic reticulum (ER), which accumulates in clusters at the microvillar subcortex during oocyte maturation. The migration of the ER to the cortex during maturation is thought to play an important role in rendering the ER competent to generate the calcium transients, and the redistribution of ER is believed to be primarily mediated by microtubules and microfilaments. We have previously shown that the oocyte- and early embryo-restricted maternal effect gene Mater (Nlrp5) localizes to, and is required for, formation of the oocyte cytoplasmic lattices, a tubulin-containing structure that appears to play an important role in organelle positioning and distribution during oocyte maturation. Given these observations, we hypothesized that Mater may also be required for ER redistribution and Ca2+ homeostasis in oocytes. To test this hypothesis, we first investigated ER localization in metaphase-II Matertm/tm (hypomorph) oocytes and found ER clusters to be less abundant at the microvillar cortex when compared to wild type oocytes. To examine the potential mechanisms by which MATER mediates ER redistribution, we tested whether tubulin expression levels and localization were affected in the mutant oocytes and found that the Triton-insoluble fraction of tubulin was significantly decreased in Matertm/tm oocytes. To identify potential functional defects associated with these ER abnormalities, we next set out to investigate if the pattern of Ca2+ oscillations was altered in Matertm/tm oocytes after fertilization in vitro. Intriguingly, Ca2+ oscillations in Matertm/tm oocytes exhibited a significantly lower first peak amplitude and a higher frequency when compared to wild type oocytes. We then found that the Ca2+ oscillation defect in Matertm/tm oocytes was likely caused by a reduced amount of Ca2+ in the ER stores. Taken together, these observations support the hypothesis that MATER is required for ER distribution and Ca2+ homeostasis in oocytes, likely due to defects in lattice-mediated ER positioning and/or redistribution.
doi:10.1016/j.ydbio.2013.12.025
PMCID: PMC3960596  PMID: 24374158
MATER; Calcium homeostasis; Endoplasmic reticulum; Oocyte maturation; Tubulin
7.  Pax3 and Zic1 trigger the early neural crest gene regulatory network by the direct activation of multiple key neural crest specifiers 
Developmental biology  2013;386(2):461-472.
Neural crest development is orchestrated by a complex and still poorly understood gene regulatory network. Premigratory neural crest is induced at the lateral border of the neural plate by the combined action of signaling molecules and transcription factors such as AP2, Gbx2, Pax3 and Zic1. Among them, Pax3 and Zic1 are both necessary and sufficient to trigger a complete neural crest developmental program. However, their gene targets in the neural crest regulatory network remain unknown. Here, through a transcriptome analysis of frog microdissected neural border, we identified an extended gene signature for the premigratory neural crest, and we defined novel potential members of the regulatory network. This signature includes 34 novel genes, as well as 44 known genes expressed at the neural border. Using another microarray analysis which combined Pax3 and Zic1 gain-of-function and protein translation blockade, we uncovered 25 Pax3 and Zic1 direct targets within this signature. We demonstrated that the neural border specifiers Pax3 and Zic1 are direct upstream regulators of neural crest specifiers Snail1/2, Foxd3, Twist1, and Tfap2b. In addition, they may modulate the transcriptional output of multiple signaling pathways involved in neural crest development (Wnt, Retinoic Acid) through the induction of key pathway regulators (Axin2 and Cyp26c1). We also found that Pax3 could maintain its own expression through a positive autoregulatory feedback loop. These hierarchical inductions, feedback loops, and pathway modulations provide novel tools to understand the neural crest induction network.
doi:10.1016/j.ydbio.2013.12.010
PMCID: PMC3962137  PMID: 24360906
Neural crest; Pax3; Zic1; gene regulatory network; transcriptome; microarray; embryo; Xenopus laevis
8.  Abnormal differentiation of dopaminergic neurons in zebrafish trpm7 mutant larvae impairs development of the motor pattern 
Developmental biology  2013;386(2):428-439.
Transient receptor potential, melastatin-like 7 (Trpm7) is a combined ion channel and kinase implicated in the differentiation or function of many cell types. Early lethality in mice and frogs depleted of the corresponding gene impedes investigation of the functions of this protein particularly during later stages of development. By contrast, zebrafish trpm7 mutant larvae undergo early morphogenesis normally and thus do not have this limitation. The mutant larvae are characterized by multiple defects including melanocyte cell death, transient paralysis, and an ion imbalance that leads to the development of kidney stones. Here we report a requirement for Trpm7 in differentiation or function of dopaminergic neurons in vivo. First, trpm7 mutant larvae are hypomotile and fail to make a dopamine-dependent developmental transition in swim-bout length. Both of these deficits are partially rescued by the application of levodopa or dopamine. Second, histological analysis reveals that in trpm7 mutants a significant fraction of dopaminergic neurons lack expression of tyrosine hydroxylase, the rate-limiting enzyme in dopamine synthesis. Third, trpm7 mutants are unusually sensitive to the neurotoxin 1-methyl-4-phenylpyridinium, an oxidative stressor, and their motility is partially rescued by application of the iron chelator deferoxamine, an anti-oxidant. Finally, in SH-SY5Y cells, which model aspects of human dopaminergic neurons, forced expression of a channel-dead variant of TRPM7 causes cell death. In summary, a forward genetic screen in zebrafish has revealed that both melanocytes and dopaminergic neurons depend on the ion channel Trpm7. The mechanistic underpinning of this dependence requires further investigation.
doi:10.1016/j.ydbio.2013.11.015
PMCID: PMC3971878  PMID: 24291744
Parkinson’s; Zebrafish; Dopamine; TRPM7
9.  Dual function of Yap in the regulation of lens progenitor cells and cellular polarity 
Developmental biology  2013;386(2):281-290.
Hippo-Yap signaling has been implicated in organ size determination via its regulation of cell proliferation, growth and apoptosis (Pan, 2007). The vertebrate lens comprises only two major cell types, lens progenitors and differentiated fiber cells, thereby providing a relatively simple system for studying size-controlling mechanisms. In order to investigate the role of Hippo-Yap signaling in lens size regulation, we conditionally ablated Yap in the developing mouse lens. Lens progenitor specific deletion of Yap led to near obliteration of the lens primarily due to hypocellularity in the lens epithelium (LE) and accompanying lens fiber (LF) defects. A significantly reduced LE progenitor pool resulted mainly from failed self-renewal and increased apoptosis. Additionally, Yap-deficient lens progenitor cells precociously exited the cell cycle and expressed the LF marker, β-Crystallin. The mutant progenitor cells also exhibited multiple cellular and subcellular alterations including cell and nuclear shape change, organellar polarity disruption, and disorganized apical polarity complex and junction proteins such as Crumbs, Pals1, Par3 and ZO-1. Yap-deficient LF cells failed to anchor to the overlying LE layer, impairing their normal elongation and packaging. Furthermore, our localization study results suggest that, in the developing LE, Yap participates in the cell context-dependent transition from the proliferative to differentiation-competent state by integrating cell density information. Taken together, our results shed new light on Yap’s indispensable and novel organizing role in mammalian organ size control by coordinating multiple events including cell proliferation, differentiation, and polarity.
doi:10.1016/j.ydbio.2013.12.037
PMCID: PMC3985746  PMID: 24384391
Yap; lens; organogenesis; organ size control; polarity
10.  BMPER-induced BMP signaling promotes coronary artery remodeling 
Developmental biology  2013;386(2):385-394.
Summary
The connection of the coronary vasculature to the aorta is one of the last essential steps of cardiac development. However, little is known about the signaling events that promote normal coronary artery formation. The bone morphogenetic protein (BMP) signaling pathway regulates multiple aspects of endothelial cell biology but has not been specifically implicated in coronary vascular development. BMP signaling is tightly regulated by numerous factors, including BMP-binding endothelial cell precursor-derived regulator (BMPER), which can both promote and repress BMP signaling activity. In the embryonic heart, BMPER expression is limited to the endothelial cells and the endothelial-derived cushions, suggesting that BMPER may play a role in coronary vascular development. Histological analysis of BMPER−/− embryos at early embryonic stages demonstrates that commencement of coronary plexus differentiation is normal and that endothelial apoptosis and cell proliferation are unaffected in BMPER−/− embryos compared with wild-type embryos. However, analysis between embryonic days 15.5-17.5 reveals that, in BMPER−/− embryos, coronary arteries are either atretic or connected distal to the semilunar valves. In vitro tubulogenesis assays indicate that isolated BMPER−/− endothelial cells have impaired tube formation and migratory ability compared with wild-type endothelial cells, suggesting that these defects may lead to the observed coronary artery anomalies seen in BMPER−/− embryos. Additionally, recombinant BMPER promotes wild-type ventricular endothelial migration in a dose-dependent manner, with a low concentration promoting and high concentrations inhibiting migration. Together, these results indicate that BMPER-regulated BMP signaling is critical for coronary plexus remodeling and normal coronary artery development.
doi:10.1016/j.ydbio.2013.12.019
PMCID: PMC4112092  PMID: 24373957
coronary vasculature development; angiogenesis; BMP
11.  An Essential Role for Heat Shock Transcription Factor Binding Protein 1 (HSBP1) During Early Embryonic Development 
Developmental biology  2013;386(2):448-460.
Heat shock factor binding protein 1 (HSBP1) is a 76 amino acid polypeptide that contains two arrays of hydrophobic heptad repeats and was originally identified through its interaction with the oligomerization domain of heat shock factor 1 (Hsf1), suppressing Hsf1’s transcriptional activity following stress. To examine the function of HSBP1 in vivo, we generated mice with targeted disruption of the hsbp1 gene and examined zebrafish embryos treated with HSBP1-specific morpholino oligonucleotides. Our results show that hsbp1 is critical for preimplantation embryonic development. Embryonic stem (ES) cells deficient in hsbp1 survive and proliferate normally into the neural lineage in vitro; however, lack of hsbp1 in embryoid bodies (EBs) leads to disorganization of the germ layers and a reduction in the endoderm-specific markers (such as α-fetoprotein). We further show that hsbp1-deficient mouse EBs and knockdown of HSBP1 in zebrafish leads to an increase in the expression of the neural crest inducers Snail2, Tfap2α and Foxd3, suggesting a potential role for HSBP1 in the Wnt pathway. The hsbp1-deficient ES cells, EBs and zebrafish embryos with reduced HSBP1 levels exhibit elevated levels of Hsf1 activity and expression of heat shock proteins (Hsps). We conclude that HSBP1 plays an essential role during early mouse and zebrafish embryonic development.
doi:10.1016/j.ydbio.2013.12.038
PMCID: PMC4114229  PMID: 24380799
HSBP1; knockout mice; embryonic stem cells; zebrafish; neural crest
12.  Maternal-zygotic knockout reveals a critical role of Cdx2 in the morula to blastocyst transition 
Developmental Biology  2015;398(2):147-152.
The first lineage segregation in the mouse embryo generates the inner cell mass (ICM), which gives rise to the pluripotent epiblast and therefore the future embryo, and the trophectoderm (TE), which will build the placenta. The TE lineage depends on the transcription factor Cdx2. However, when Cdx2 first starts to act remains unclear. Embryos with zygotic deletion of Cdx2 develop normally until the late blastocyst stage leading to the conclusion that Cdx2 is important for the maintenance but not specification of the TE. In contrast, down-regulation of Cdx2 transcripts from the early embryo stage results in defects in TE specification before the blastocyst stage. Here, to unambiguously address at which developmental stage Cdx2 becomes first required, we genetically deleted Cdx2 from the oocyte stage using a Zp3-Cre/loxP strategy. Careful assessment of a large cohort of Cdx2 maternal-zygotic null embryos, all individually filmed, examined and genotyped, reveals an earlier lethal phenotype than observed in Cdx2 zygotic null embryos that develop until the late blastocyst stage. The developmental failure of Cdx2 maternal-zygotic null embryos is associated with cell death and failure of TE specification, starting at the morula stage. These results indicate that Cdx2 is important for the correct specification of TE from the morula stage onwards and that both maternal and zygotic pools of Cdx2 are required for correct pre-implantation embryogenesis.
doi:10.1016/j.ydbio.2014.12.004
PMCID: PMC4319684  PMID: 25512302
Mouse embryo; Cdx2; Maternal-zygotic knockout; Trophectoderm
13.  Fertilization Triggers Localized Activation of Src-Family Protein Kinases in the Zebrafish Egg 
Developmental biology  2006;295(2):604-614.
Fertilization triggers activation of Src-family kinases in eggs of various species including marine invertebrates and lower vertebrates. While immunofluorescence studies have localized Src-family kinases to the plasma membrane or cortical cytoplasm, no information is available regarding the extent to which these kinases are activated in different regions of the zygote. The objective of the present study was to detect the subcellular distribution of activated Src-family kinases in the fertilized zebrafish egg. An antibody specific for the active, non-phosphorylated form of Src-family PTKs was used to detect these activated kinases by immunofluorescence. The results demonstrate that Fyn, and possibly other Src family members are activated by dephosphorylation of the C-terminal tyrosine at fertilization. The activated Src-family kinases are asymmetrically distributed around the egg cortex with an area of higher kinase activity localized adjacent to the micropyle near the presumptive animal pole. Fertilization initially caused elevation of kinase activity in the cytoplasm underlying the micropyle, but this quickly spread to involve the entire zygote cortex. Later during egg activation, formation of the blastodisc involved concentration of active Src-family kinase in the blastodisc cortex. As cytokinesis began, activated Src-family kinases were no longer limited to the cortex, but became more evenly distributed in the clear apical cytoplasm of the blastomeres. The results demonstrate that the cortex of the zebrafish egg is functionally differentiated and that fertilization triggers localized activation of Src-family kinases at the point of sperm entry, which subsequently progresses through the entire egg cortex.
doi:10.1016/j.ydbio.2006.03.041
PMCID: PMC4324460  PMID: 16698010
Fertilization; zebrafish; Src; Fyn; protein kinase
14.  [No title available] 
PMCID: PMC3919068  PMID: 24333177
15.  [No title available] 
PMCID: PMC3920184  PMID: 24309209
16.  [No title available] 
PMCID: PMC3921686  PMID: 24361260
17.  [No title available] 
PMCID: PMC3922219  PMID: 24269904
18.  [No title available] 
PMCID: PMC3935510  PMID: 24183937
19.  [No title available] 
PMCID: PMC3938106  PMID: 24333517
20.  [No title available] 
PMCID: PMC3946671  PMID: 24333635
21.  [No title available] 
PMCID: PMC3962664  PMID: 24380800
22.  [No title available] 
PMCID: PMC3970204  PMID: 24333178
23.  [No title available] 
PMCID: PMC3985168  PMID: 24370450
24.  [No title available] 
PMCID: PMC4047716  PMID: 24362065
25.  Molecular characterization of the apical organ of the anthozoan Nematostella vectensis 
Developmental Biology  2015;398(1):120-133.
Apical organs are sensory structures present in many marine invertebrate larvae where they are considered to be involved in their settlement, metamorphosis and locomotion. In bilaterians they are characterised by a tuft of long cilia and receptor cells and they are associated with groups of neurons, but their relatively low morphological complexity and dispersed phylogenetic distribution have left their evolutionary relationship unresolved. Moreover, since apical organs are not present in the standard model organisms, their development and function are not well understood. To provide a foundation for a better understanding of this structure we have characterised the molecular composition of the apical organ of the sea anemone Nematostella vectensis. In a microarray-based comparison of the gene expression profiles of planulae with either a wildtype or an experimentally expanded apical organ, we identified 78 evolutionarily conserved genes, which are predominantly or specifically expressed in the apical organ of Nematostella. This gene set comprises signalling molecules, transcription factors, structural and metabolic genes. The majority of these genes, including several conserved, but previously uncharacterized ones, are potentially involved in different aspects of the development or function of the long cilia of the apical organ. To demonstrate the utility of this gene set for comparative analyses, we further analysed the expression of a subset of previously uncharacterized putative orthologs in sea urchin larvae and detected expression for twelve out of eighteen of them in the apical domain. Our study provides a molecular characterization of the apical organ of Nematostella and represents an informative tool for future studies addressing the development, function and evolutionary history of apical organ cells.
Highlights
•Microarray-based characterization of the apical organ in Nematostella vectensis.•Apical organ expression of 78 conserved genes confirmed by in situ hybridization.•Putative orthologous genes in sea urchin are also expressed in its apical organ.•The data present a molecular signature for comparative studies of apical organs.
doi:10.1016/j.ydbio.2014.11.019
PMCID: PMC4300403  PMID: 25478911
Apical organ; Nematostella; Sea urchin; Cilia; Life cycle; FGF

Results 1-25 (1738)