Search tips
Search criteria

Results 1-25 (1808)

Clipboard (0)

Select a Filter Below

Year of Publication
more »
1.  TAF4b Promotes Mouse Primordial Follicle Assembly and Oocyte Survival 
Developmental biology  2014;392(1):42-51.
Primary ovarian insufficiency (POI) affects 1% of women under the age of 40 and is associated with premature ovarian follicle depletion. TAF4b deficiency in adult female mouse models results in hallmarks of POI including stereotyped gonadotropin alterations indicative of early menopause, poor oocyte quality, and infertility. However, the precise developmental mechanisms underlying these adult deficits remain unknown. Here we show that TAF4b is required for the initial establishment of the primordial follicle reserve at birth. Ovaries derived from TAF4b-deficient mice at birth exhibit delayed germ cell cyst breakdown and a significant increase in Activated Caspase 3 staining compared to control ovaries. Culturing neonatal TAF4b-deficient ovaries with the pan-caspase inhibitor ZVAD-FMK suppresses the excessive loss of these oocytes around the time of birth. These data reveal a novel TAF4b function in orchestrating the correct timing of germ cell cyst breakdown and establishment of the primordial follicle reserve during a critical window of development.
PMCID: PMC4120270  PMID: 24836512
TFIID; ovary; aging; oocyte survival; primordial follicle; primary ovarian insufficiency
2.  Regulation of broad by the Notch pathway affects timing of follicle cell development 
Developmental biology  2014;392(1):52-61.
During Drosophila oogenesis, activation of Notch signaling in the follicular epithelium (FE) around stage 6 of oogenesis is essential for entry into the endocycle and a series of other changes such as cell differentiation and migration of subsets of the follicle cells. Notch induces the expression of zinc finger protein Hindsight and suppresses homeodomain protein Cut to regulate the mitotic/endocycle (ME) switch. Here we report that broad (br), encoding a small group of zinc-finger transcription factors resulting from alternative splicing, is a transcriptional target of Notch nuclear effector Suppressor of Hairless (Su(H)). The early pattern of Br in the FE, uniformly expressed except in the polar cells, is established by Notch signaling around stage 6, through the binding of Su(H) to the br early enhancer (brE) region. Mutation of the Su(H) binding site leads to a significant reduction of brE reporter expression in follicle cells undergoing the endocycle. Chromatin immunoprecipitation results further confirm Su(H) binding to the br early enhancer. Consistent with its expression in follicle cells during midoogenesis, loss of br function results in a delayed entry into the endocycle. Our findings suggest an important role of br in the timing of follicle cell development, and its transcriptional regulation by the Notch pathway.
PMCID: PMC4296560  PMID: 24815210
endocycle; mitotic cycle; Notch; broad
3.  Developmental enhancers are marked independently of zygotic Nodal signals in Xenopus 
Developmental biology  2014;395(1):38-49.
To determine the hierarchy of transcriptional regulation within the in vivo vertebrate embryo, we examined whether developmental enhancers were influenced by Nodal signaling during early embryogenesis in Xenopus tropicalis. We find that developmental enhancers, defined by the active enhancer chromatin marks H3K4me1 and H3K27ac, are established as early as blastula stage and that Smad2/3 only strongly associates with these regions at gastrula stages. Significantly, when we perturb Nodal signaling using the drug SB431542, most enhancers remain marked, including at genes known to be sensitive to Nodal signaling. Overall, as enhancers are in an active conformation prior to Nodal signaling and are established independently of Nodal signaling, we suggest that many developmental enhancers are marked maternally, prior to exposure to extrinsic signals.
PMCID: PMC4517478  PMID: 25205067
H3K4me1; H3K4me3; H3K27ac; H3K27me3; Smad2; Nodal; Xenopus tropicalis; Gastrulation; Enhancer
4.  Functional divergence of dafachronic acid pathways in the control of C. elegans development and lifespan 
Developmental biology  2010;340(2):605-612.
Steroid hormone and insulin/insulin-like growth factor signaling (IIS) pathways control development and lifespan in the nematode Caenorhabditis elegans by regulating the activity of the nuclear receptor DAF-12 and the FoxO transcription factor DAF-16, respectively. The DAF-12 ligands Δ4- and Δ7-dafachronic acid (DA) promote bypass of the dauer diapause and proper gonadal migration during larval development; in adults, DAs influence lifespan. Whether Δ4- and Δ7-DA have unique biological functions is not known. We identified the 3-β-hydroxysteroid dehydrogenase (3βHSD) family member HSD-1, which participates in Δ4-DA biosynthesis, as an inhibitor of DAF-16/FoxO activity. Whereas IIS promotes the cytoplasmic sequestration of DAF-16/FoxO, HSD-1 inhibits nuclear DAF-16/FoxO activity without affecting DAF-16/FoxO subcellular localization. Thus, HSD-1 and IIS inhibit DAF-16/FoxO activity via distinct and complementary mechanisms. In adults, HSD-1 was required for full lifespan extension in IIS mutants, indicating that HSD-1 interactions with IIS are context-dependent. In contrast to the Δ7-DA biosynthetic enzyme DAF-36, HSD-1 is dispensable for proper gonadal migration and lifespan extension induced by germline ablation. These findings provide insights into the molecular interface between DA and IIS pathways and suggest that Δ4- and Δ7-DA pathways have unique as well as overlapping biological functions in the control of development and lifespan.
PMCID: PMC4511482  PMID: 20178781
C. elegans; Dauer; Lifespan; Aging; Insulin signaling; Steroid hormones; Nuclear receptors; Dafachronic acids; Akt; FoxO
5.  Resident progenitors, not exogenous migratory cells, generate the majority of visceral mesothelium in organogenesis 
Developmental biology  2014;391(2):125-132.
Historically, analyses of mesothelial differentiation have focused on the heart where a highly migratory population of progenitors originating from a localized “extrinsic” source moves to and over the developing organ. This model long stood alone as the paradigm for generation of this cell type. Here, using chick/quail chimeric grafting and subsequent identification of mesothelial cell populations, we demonstrate that a different mechanism for the generation of mesothelia exists in vertebrate organogenesis. In this newly discovered model, mesothelial progenitors are intrinsic to organs of the developing digestive and respiratory systems. Additionally, we demonstrate that the early heart stands alone in its ability to recruit an entirely exogenous mesothelial cell layer during development. Thus, the newly identified “organ intrinsic” model of mesotheliogenesis appears to predominate while the long-studied cardiac model of mesothelial development may be the outlier.
PMCID: PMC4037704  PMID: 24746591
6.  Delayed transition to new cell fates during cellular reprogramming 
Developmental biology  2014;391(2):147-157.
In many embryos specification toward one cell fate can be diverted to a different cell fate through a reprogramming process. Understanding how that process works will reveal insights into the developmental regulatory logic that emerged from evolution. In the sea urchin embryo, cells at gastrulation were found to reprogram and replace missing cell types after surgical dissections of the embryo. Non-skeletogenic mesoderm (NSM) cells reprogrammed to replace missing skeletogenic mesoderm cells and animal caps reprogrammed to replace all endomesoderm. In both cases evidence of reprogramming onset was first observed at the early gastrula stage, even if the cells to be replaced were removed earlier in development. Once started however, the reprogramming occurred with compressed gene expression dynamics. The NSM did not require early contact with the skeletogenic cells to reprogram, but the animal cap cells gained the ability to reprogram early in gastrulation only after extended contact with the vegetal halves prior to that time. If the entire vegetal half was removed at early gastrula, the animal caps reprogrammed and replaced the vegetal half endomesoderm. If the animal caps carried morpholinos to either hox11/13b or foxA (endomesoderm specification genes), the isolated animal caps failed to reprogram. Together these data reveal that the emergence of a reprogramming capability occurs at early gastrulation in the sea urchin embryo and requires activation of early specification components of the target tissues.
PMCID: PMC4064802  PMID: 24780626
Reprogramming; regulative development; gene regulatory network; sea urchin embryo; cell fate; differentiation; cell fate specification
7.  Foxi3 is necessary for the induction of the chick otic placode in response to FGF signaling 
Developmental biology  2014;391(2):158-169.
Vertebrate cranial sensory organs are derived from region at the border of the anterior neural plate called the pre-placodal region (PPR). The otic placode, the anlagen of the inner ear, is induced from PPR ectoderm by FGF signaling. We have previously shown that competence of embryonic ectoderm to respond to FGF signaling during otic placode induction correlates with the expression of PPR genes, but the molecular basis of this competence is poorly understood. Here, we characterize the function of a transcription factor, Foxi3 that is expressed at very early stages in the non-neural ectoderm and later in the PPR of chick embryos. Ablation experiments showed that the underlying hypoblast is necessary for the initiation of Foxi3 expression. Mis-expression of Foxi3 was sufficient to induce markers of non-neural ectoderm such as Dlx5, and the PPR such as Six1 and Eya2. Electroporation of Dlx5, or Six1 together with Eya1 also induced Foxi3, suggesting direct or indirect positive regulation between non-neural ectoderm genes and PPR genes. Knockdown of Foxi3 in chick embryos prevented the induction of otic placode markers, and was able to prevent competent cranial ectoderm from expressing otic markers in response to FGF2. In contrast, Foxi3 expression alone was not sufficient to confer competence to respond to FGF on embryonic ectoderm. Our analysis of PPR and FGF-responsive genes after Foxi3 knockdown at gastrula stages suggests it is not necessary for the expression of PPR genes at these stages, nor for the transduction of FGF signals. The early expression but late requirement for Foxi3 in ear induction suggests it may have some of the properties associated with pioneer transcription factors.
PMCID: PMC4070591  PMID: 24780628
Otic placode; FGF; Pre-placodal region; Foxi3; induction; competence
8.  Directed Bmp4 expression in neural crest cells generates a genetic model for the rare human bony syngnathia birth defect 
Developmental biology  2014;391(2):170-181.
Congenital bony syngnathia, a rare but severe human birth defect, is characterized by bony fusion of the mandible to the maxilla. However, the genetic mechanisms underlying this birth defect are poorly understood, largely due to limitation of available animal models. Here we present evidence that transgenic expression of Bmp4 in neural crest cells causes a series of craniofacial malformations in mice, including a bony fusion between the maxilla and hypoplastic mandible, resembling the bony syngnathia syndrome in humans. In addition, the anterior portion of the palatal shelves emerged from the mandibular arch instead of the maxilla in the mutants. Gene expression assays showed an altered expression of several facial patterning genes, including Hand2, Dlx2, Msx1, Barx1, Foxc2 and Fgf8, in the maxillary and mandibular processes of the mutants, indicating mis-patterned cranial neural crest (CNC) derived cells in the facial region. However, despite of formation of cleft palate and ectopic cartilage, forced expression of a constitutively active form of BMP receptor-Ia (caBmprIa) in CNC lineage did not produce the syngnathia phenotype, suggesting a non-cell autonomous effect of the augmented BMP4 signaling. Our studies demonstrate that aberrant BMP4-mediated signaling in CNC cells leads to mis-patterned facial skeleton and congenital bony syngnathia, and suggest an implication of mutations in BMP signaling pathway in human bony syngnathia.
PMCID: PMC4089042  PMID: 24785830
Bmp signaling; cranial neural crest; syngnathia; cleft palate; craniofacial patterning
9.  A Gene Expression Atlas of Early Craniofacial Development 
Developmental biology  2014;391(2):133-146.
We present a gene expression atlas of early mouse craniofacial development. Laser capture microdissection (LCM) was used to isolate cells from the principal critical micro-regions, whose development, differentiation and signaling interactions are responsible for the construction of the mammalian face. At E8.5, as migrating neural crest cells begin to exit the neural fold/epidermal ectoderm boundary, we examined the cranial mesenchyme, composed of mixed neural crest and paraxial mesoderm cells, as well as cells from adjacent neuroepithelium. At E9.5 cells from the cranial mesenchyme, overlying olfactory placode/epidermal ectoderm, and underlying neuroepithelium, as well as the emerging mandibular and maxillary arches were sampled. At E10.5, as the facial prominences form, cells from the medial and lateral prominences, the olfactory pit, multiple discrete regions of underlying neuroepithelium, the mandibular and maxillary arches, including both their mesenchymal and ectodermal components, as well as Rathke’s pouch, were similarly sampled and profiled using both microarray and RNA-seq technologies. Further, we performed single cell studies to better define the gene expression states of the early E8.5 pioneer neural crest cells and paraxial mesoderm. Taken together, and analyzable by a variety of biological network approaches, these data provide a complementing and cross-validating resource capable of fueling discovery of novel compartment specific markers and signatures whose combinatorial interactions of transcription factors and growth factors/receptors are responsible for providing the master genetic blueprint for craniofacial development.
PMCID: PMC4095820  PMID: 24780627
mammalian craniofacial development; gene expression atlas; RNA-seq; microarrays
10.  Sema3A maintains corneal avascularity during development by inhibiting Vegf induced angioblast migration 
Developmental biology  2014;391(2):241-250.
Corneal avascularity is important for optical clarity and normal vision. However, the molecular mechanisms that prevent angioblast migration and vascularization of the developing cornea are not clear. Previously we showed that periocular angioblasts and forming ocular blood vessels avoid the presumptive cornea despite dynamic ingression of neural crest cells. In the current study, we investigate the role of Semaphorin3A (Sema3A), a cell guidance chemorepellent, on angioblast migration and corneal avascularity during development. We show that Sema3A, Vegf, and Nrp1 are expressed in the anterior eye during cornea development. Sema3A mRNA transcripts are expressed at significantly higher levels than Vegf in the lens that is positioned adjacent to the presumptive cornea. Blockade of Sema3A signaling via lens removal or injection of a synthetic Sema3A inhibitor causes ectopic migration of angioblasts into the cornea and results in its subsequent vascularization. In addition, using bead implantation, we demonstrate that exogenous Sema3A protein inhibits Vegf-induced vascularization of the cornea. In agreement with these findings, loss of Sema/Nrp1 signaling in Nrp1Sema- mutant mice results in ectopic angioblasts and vascularization of the embryonic mouse corneas. Altogether, our results reveal Sema3A signaling as an important cue during the establishment of corneal avascularity in both chick and mouse embryos. Our study introduces cornea development as a new model for studying the mechanisms involved in vascular patterning during embryogenesis and it also provides new insights into therapeutic potential for Sema3A in neovascular diseases.
PMCID: PMC4103428  PMID: 24809797
Vasculogenesis; eye development; angioblast; cornea; Sema3A; Nrp1; Vegf
11.  Huntingtin Protein is Essential for Mitochondrial Metabolism, Bioenergetics and Structure in Murine Embryonic Stem Cells 
Developmental biology  2014;391(2):230-240.
Mutations in the Huntington locus (htt) have devastating consequences. Gain-of-poly-Q repeats in Htt protein causes Huntington's disease (HD), while htt-/- mutants display early embryonic lethality. Despite its importance, the function of Htt remains elusive. To address this, we compared more than 3,700 compounds in three syngeneic mouse embryonic stem cell (mESC) lines: htt-/-, extended poly-Q (Htt-Q140/7), and wildtype mESCs (Htt-Q7/7) using untargeted metabolite profiling. While Htt-Q140/7 cells, did not show major differences in cellular bioenergetics, we find extensive metabolic aberrations in htt-/- mESCs, including: (i) complete failure of ATP production despite preservation of the mitochondrial membrane potential; (ii) near-maximal glycolysis, with little or no glycolytic reserve; (iii) marked ketogenesis; (iv) depletion of intracellular NTPs; (v) accelerated purine biosynthesis and salvage; and (vi) loss of mitochondrial structural integrity. Together, our findings reveal that Htt is necessary for mitochondrial structure and function from the earliest stages of embryogenesis, providing a molecular explanation for htt-/- early embryonic lethality.
PMCID: PMC4109978  PMID: 24780625
Huntington's Disease; embryonic stem cells; metabolomics; metabolism; untargeted metabolite profiling; LC-MS/MS; mitochondria; mitochondrial bioenergetics; mitochondrial respiration; oxygen consumption; glycolysis; AMP kinase
12.  Tbx18 is essential for normal development of vasculature network and glomerular mesangium in the mammalian kidney 
Developmental biology  2014;391(1):17-31.
Tbx18 has been shown to be essential for ureteral development. However, it remains unclear whether it plays a direct role in kidney development. Here we addressed this by focusing on examining the pattern and contribution of Tbx18+ cells in the kidney and its role in kidney vascular development. Expression studies and genetic lineage tracing revealed that Tbx18 is expressed in renal capsule, vascular smooth muscle cells and pericytes and glomerular mesangial cells in the kidney and that Tbx18-expressing progenitors contribute to these cell types. Examination of Tbx18−/− kidneys revealed large reduction in vasculature density and dilation of glomerular capillary loops. While SMA+ cells were reduced in the mutant, PDGFRβ+ cells were seen in early capillary loop renal corpuscles in the mutant, but fewer than in the controls, and further development of the mesangium failed. Analysis of kidney explants cultured from E12.5 excluded the possibility that the defects observed in the mutant were caused by ureter obstruction. Reduced proliferation in glomerular tuft and increased apoptosis in perivascular mesenchyme were observed in Tbx18−/− kidneys. Thus, our analyses have identified a novel role of Tbx18 in kidney vasculature development.
PMCID: PMC4038151  PMID: 24727670
Tbx18; Kidney; Stromal cell; Interstitium; Perivascular mesenchyme; Glomerular mesangium; Vasculogenesis
13.  Cell signaling during development of Dictyostelium 
Developmental biology  2014;391(1):1-16.
Continuous communication between cells is necessary for development of any multicellular organism and depends on the recognition of secreted signals. A wide range of molecules including proteins, peptides, amino acids, nucleic acids, steroids and polylketides are used as intercellular signals in plants and animals. They are also used for communication in the social amoeba Dictyostelium discoideum when the solitary cells aggregate to form multicellular structures. Many of the signals are recognized by surface receptors that are seven-transmembrane proteins coupled to trimeric G proteins, which pass the signal on to components within the cytoplasm. Dictyostelium cells have to judge when sufficient cell density has been reached to warrant transition from growth to differentiation. They have to recognize when exogenous nutrients become limiting, and then synchronously initiate development. A few hours later they signal each other with pulses of cAMP that regulate gene expression as well as direct chemotactic aggregation. They then have to recognize kinship and only continue developing when they are surrounded by close kin. Thereafter, the cells diverge into two specialized cell types, prespore and prestalk cells, that continue to signal each other in complex ways to form well proportioned fruiting bodies. In this way they can proceed through the stages of a dependent sequence in an orderly manner without cells being left out or directed down the wrong path.
PMCID: PMC4075484  PMID: 24726820
Intercellular communication; signal transduction; dependent sequence
14.  Distinct requirements for beta-catenin in pancreatic epithelial growth and patterning 
Developmental biology  2014;391(1):89-98.
Pancreatic exocrine and endocrine lineages arise from multipotent pancreatic progenitor cells (MPCs). Exploiting the mechanisms that govern expansion and differentiation of these cells could enhance efforts to generate β-cells from stem cells. Although our prior work indicates that the canonical Wnt signaling component β-catenin is required qualitatively for exocrine acinar but not endocrine development, precisely how this requirement plays out at the level of MPCs and their lineage-restricted progeny is unknown. In addition, the contribution of β-catenin function to β-cell development remains controversial. To resolve the potential roles of β-catenin in development of MPCs and β-cells, we generated pancreas- and pre-endocrine-specific β-catenin knockout mice. Pancreas-specific loss of β-catenin produced not only a dramatic reduction in acinar cell numbers, but also a significant reduction in β-cell mass. The loss of β-cells is due not to a defect in the differentiation of endocrine precursors, but instead correlates with an early and specific loss of MPCs. In turn, this reflects a novel role for β-catenin in maintaining proximal-distal patterning of the early epithelium, such that distal MPCs resort to a proximal, endocrine-competent “trunk” fate when β-catenin is deleted. Moreover, β-catenin maintains proximal-distal patterning, in part, by inhibiting Notch signaling. Subsequently, β-catenin is required for proliferation of both distal and proximal cells, driving overall organ growth. In distinguishing two distinct roles for β-catenin along the route of β-cell development, we suggest that temporally appropriate positive and negative manipulation of this molecule could enhance expansion and differentiation of stem cell-derived MPCs.
PMCID: PMC4065238  PMID: 24721715
pancreas; beta-catenin; beta-cells; progenitors; Notch; islet
15.  miR-373 is regulated by TGFβ signaling and promotes mesendoderm differentiation in human Embryonic Stem Cells 
Developmental biology  2014;391(1):81-88.
MicroRNAs (miRNAs) belonging to the evolutionary conserved miR-302 family play important functions in Embryonic Stem Cells (ESCs). The expression of some members, such as the human miR-302 and mouse miR-290 clusters, is regulated by ESC core transcription factors. However, whether miRNAs act downstream of signaling pathways involved in human ESC pluripotency remains unknown. The maintenance of pluripotency in hESCs is under the control of the TGFβ pathway. Here, we show that inhibition of the Activin/Nodal branch of this pathway affects the expression of a subset of miRNAs in hESCs. Among them, we found miR-373, a member of the miR-302 family. Proper levels of miR-373 are crucial for the maintenance of hESC pluripotency, since its overexpression leads to differentiation towards the mesendodermal lineage. Among miR-373 predicted targets, involved in TGFβ signaling, we validated the Nodal inhibitor Lefty. Our work suggests a crucial role for the interplay between miRNAs and signaling pathways in ESCs.
PMCID: PMC4081558  PMID: 24709321
human embryonic stem cells; microRNAs; TGFβ signaling; mesendoderm
16.  CEH-28 activates dbl-1 expression and TGF-ß signaling in the C. elegans M4 neuron 
Developmental biology  2014;390(2):149-159.
M4 is a multifunctional neuron in the C. elegans pharynx that can both stimulate peristaltic contractions of the muscles in the pharyngeal isthmus and function systemically to regulate an enhanced sensory response under hypoxic conditions. Here we identify a third function for M4 that depends on activation of the TGF-ß family gene dbl-1 by the homeodomain transcription factor CEH-28. dbl-1 is expressed in M4 and a subset of other neurons, and we show CEH-28 specifically activates dbl-1 expression in M4. Characterization of the dbl-1 promoter indicates that CEH-28 targets an M4-specific enhancer within the dbl-1 promoter region, while expression in other neurons is mediated by separate regulatory sequences. Unlike ceh-28 mutants, dbl-1 mutants do not exhibit M4 synaptic and signaling defects. Instead, both ceh-28 and dbl-1 mutants exhibit morphological defects in the g1 gland cells located adjacent to M4 in the pharynx, and these defects can be partially rescued by M4-specific expression of dbl-1 in these mutants. Identical gland cell defects are observed in sma-6 and daf-4 mutants defective in the receptor for DBL-1, but they are not observed in sma-2 and sma-3 mutants lacking the R-Smads functioning downstream of this receptor. Together these results identify a novel neuroendocrine function for M4 and provide evidence for an R-Smad-independent mechanism for DBL-1 signaling in C. elegans.
PMCID: PMC4023489  PMID: 24690231
C. elegans; pharynx; TGF-ß signaling; gland cells; motor neuron; R-Smad independent
17.  prdm12b specifies the p1 progenitor domain and reveals a role for V1 interneurons in swim movements 
Developmental biology  2014;390(2):247-260.
Proper functioning of the vertebrate central nervous system requires the precise positioning of many neuronal cell types. This positioning is established during early embryogenesis when gene regulatory networks pattern the neural tube along its anteroposterior and dorsoventral axes. Dorsoventral patterning of the embryonic neural tube gives rise to multiple progenitor cell domains that go on to differentiate unique classes of neurons and glia. While the genetic program is reasonably well understood for some lineages, such as ventrally derived motor neurons and glia, other lineages are much less characterized. Here we show that prdm12b, a member of the PR domain containing-family of transcriptional regulators, is expressed in the p1 progenitor domain of the zebrafish neural tube in response to Sonic Hedgehog signaling. We find that disruption of prdm12b function leads to dorsal expansion of nkx6.1 expression and loss of p1-derived eng1b-expressing V1 interneurons, while the adjacent p0 and p2 domains are unaffected. We also demonstrate that prdm12b-deficient fish exhibit an abnormal touch-evoked escape response with excessive body contractions and a prolonged response time, as well as an inability to coordinate swimming movements, thereby revealing a functional role for V1 interneurons in locomotor circuits. We conclude that prdm12b is required for V1 interneuron specification and that these neurons control swimming movements in zebrafish.
PMCID: PMC4030435  PMID: 24631215
locomotion; dorsoventral patterning; spinal cord; hindbrain; interneuron; gene regulatory network
18.  DLG1 influences distal ureter maturation via a non-epithelial cell autonomous mechanism involving reduced retinoic acid signaling, Ret expression, and apoptosis 
Developmental biology  2014;390(2):160-169.
The absence of Discs-large 1 (DLG1), the mouse ortholog of the Drosophila discs-large tumor suppressor, results in congenital hydronephrosis characterized by urinary tract abnormalities, reduced ureteric bud branching, and delayed disconnection of the ureter from the common nephric duct (CND). To define the specific cellular requirements for Dlg1 expression during urogenital development, we used a floxed Dlg1 allele and Pax2-Cre, Pax3-Cre, Six2-Cre, and HoxB7-Cre transgenes to generate cell type-restricted Dlg1 mutants. In addition, we used RetGFP knockin and retinoic acid response element-lacZ transgenic mice to determine the effects of Dlg1 mutation on the respective morphogenetic signaling pathways. Mutation of Dlg1 in urothelium and collecting ducts (via HoxB7-Cre or Pax2-Cre) and in nephron precursors (via Pax2-Cre and Six2-Cre) resulted in no apparent abnormalities in ureteric bud branching or in distal ureter maturation, and no hydronephrosis. Mutation in nephrons, ureteric smooth muscle, and mesenchyme surrounding the lower urinary tract (via the Pax3-Cre transgene) resulted in congenital hydronephrosis accompanied by reduced branching, abnormal distal ureter maturation and insertion, and smooth muscle orientation defects, phenotypes very similar to those in Dlg1 null mice. Dlg1 null mice showed reduced Ret expression and apoptosis during ureter maturation and evidence of reduced retinoic acid signaling in the kidney. Taken together, these results suggest that Dlg1 expression in ureter and CND-associated mesenchymal cells is essential for ensuring distal ureter maturation by facilitating retinoic acid signaling, Ret expression, and apoptosis of the urothelium.
PMCID: PMC4038003  PMID: 24699546
Urogenital system; PDZ domain; hydronephrosis
19.  AcvR1-mediated BMP signaling in second heart field is required for arterial pole development: Implications for myocardial differentiation and regional identity 
Developmental biology  2014;390(2):191-207.
BMP signaling plays an essential role in second heart field-derived heart and arterial trunk development, including myocardial differentiation, right ventricular growth, and interventricular, outflow tract and aortico-pulmonary septation. It is mediated by a number of different BMP ligands, and receptors, many of which are present simultaneously. The mechanisms by which they regulate morphogenetic events and degree of redundancy amongst them have still to be elucidated. We therefore assessed the role of BMP Type I receptor AcvR1 in anterior second heart field-derived cell development, and compared it with that of BmpR1a.
By removing Acvr1 using the driver Mef2c[AHF]-Cre, we show that AcvR1 plays an essential role in arterial pole morphogenesis, identifying defects in outflow tract wall and cushion morphology that preceded a spectrum of septation defects from double outlet right ventricle to common arterial trunk in mutants. Its absence caused dysregulation in gene expression important for myocardial differentiation (Isl1, Fgf8) and regional identity (Tbx2, Tbx3, Tbx20, Tgfb2). Although these defects resemble to some degree those in the equivalent Bmpr1a mutant, a novel gene knock-in model in which Bmpr1a was expressed in the Acvr1 locus only partially restored septation in Acvr1 mutants. These data show that both BmpR1a and AcvR1 are needed for normal heart development, in which they play some non-redundant roles, and refine our understanding of the genetic and morphogenetic processes underlying Bmp-mediated heart development important in human congenital heart disease.
PMCID: PMC4057048  PMID: 24680892
cardiac development; second heart field; conotruncal defects; BMP signaling; receptors
20.  The Drosophila Wilms’ Tumor 1-Associating Protein (WTAP) Homolog is Required for Eye Development 
Developmental biology  2014;390(2):170-180.
Sine Oculis (So), the founding member of the SIX family of homeobox transcription factors, binds to sequence specific DNA elements and regulates transcription of downstream target genes. It does so, in part, through the formation of distinct biochemical complexes with Eyes Absent (Eya) and Groucho (Gro). While these complexes play significant roles during development, they do not account for all So-dependent activities in Drosophila. It is thought that additional So-containing complexes make important contributions as well. This contention is supported by the identification of nearly two-dozen additional proteins that complex with So. However, very little is known about the roles that these additional complexes play in development. In this report we have used yeast two-hybrid screens and co-immunoprecipitation assays from Kc167 cells to identify a biochemical complex consisting of So and Fl(2)d, the Drosophila homolog of human Wilms’ Tumor 1-Associating Protein (WTAP). We show that Fl(2)d protein is distributed throughout the entire eye-antennal imaginal disc and that loss-of-function mutations lead to perturbations in retinal development. The eye defects are manifested behind the morphogenetic furrow and result in part from increased levels of the pan-neuronal RNA binding protein Embryonic Lethal Abnormal Vision (Elav) and the RUNX class transcription factor Lozenge (Lz). We also provide evidence that So and Fl(2)d interact genetically in the developing eye. Wilms’ tumor-1 (WT1), a binding partner of WTAP, is required for normal eye formation in mammals and loss-of-function mutations are associated with some versions of retinoblastoma. In contrast, WTAP and its homologs have not been implicated in eye development. To our knowledge, the results presented in this report are the first description of a role for WTAP in the retina of any seeing animal.
PMCID: PMC4063124  PMID: 24690230
sine oculis; fl(2)d; elav; lozenge; eye development; Drosophila
21.  The Period protein homolog LIN-42 negatively regulates microRNA biogenesis in C. elegans 
Developmental biology  2014;390(2):126-135.
MicroRNAs (miRNAs) are small RNAs that post-transcriptionally regulate gene expression in many multicellular organisms. They are encoded in the genome and transcribed into primary (pri-) miRNAs before two processing steps that ultimately produce the mature miRNA. In order to generate the appropriate amount of a particular miRNA in the correct location at the correct time, proper regulation of miRNA biogenesis is essential. Here we identify the Period protein homolog LIN-42 as a new regulator of miRNA biogenesis in Caenorhabditis elegans. We mapped a spontaneous suppressor of the normally lethal let-7(n2853) allele to the lin-42 gene. Mutations in this allele (ap201) or a second lin-42 allele (n1089) caused increased mature let-7 miRNA levels at most time points when mature let-7 miRNA is normally expressed. Levels of pri-let-7 and a let-7 transcriptional reporter were also increased in lin-42(n1089) worms. These results indicate that LIN-42 normally represses pri-let-7 transcription and thus the accumulation of let-7 miRNA. This inhibition is not specific to let-7, as pri- and mature levels of lin-4 and miR-35 were also increased in lin-42 mutants. Furthermore, small RNA-seq analysis showed widespread increases in the levels of mature miRNAs in lin-42 mutants. Thus, we propose that the period protein homolog LIN-42 is a global regulator of miRNA biogenesis.
PMCID: PMC4077587  PMID: 24699545
22.  SoxF factors and Notch regulate nr2f2 gene expression during venous differentiation in zebrafish 
Developmental biology  2014;390(2):116-125.
Initial embryonic determination of artery or vein identity is regulated by genetic factors that work in concert to specify endothelial cell (EC) fate, giving rise to two structurally unique components of the circulatory loop. The Shh/VEGF/Notch pathway is critical for arterial specification, while the orphan receptor nr2f2 (COUP-TFII) has been implicated in venous specification. Studies in mice have shown that nr2f2 is expressed in venous but not arterial ECs, and that it preferentially induces markers of venous cell fate. We have examined the role of nr2f2 during early arterial-venous development in the zebrafish trunk. We show that expression of a subset of markers of venous endothelial identity requires nr2f2, while the expression of nr2f2 itself requires sox7 and sox18 gene function. However, while sox7 and sox18 are expressed in both the cardinal vein and the dorsal aorta during early trunk development, nr2f2 is expressed only in the cardinal vein. We show that Notch signaling activity present in the dorsal aorta suppresses expression of nr2f2, restricting nr2f2-dependent promotion of venous differentiation to the cardinal vein.
PMCID: PMC4104406  PMID: 24699544
Nr2f2; COUP-TFII; zebrafish; cardinal vein; dorsal aorta
23.  Imprinted expression in cystic embryoid bodies shows an embryonic and not an extra-embryonic pattern 
Developmental Biology  2015;402(2):291-305.
A large subset of mammalian imprinted genes show extra-embryonic lineage (EXEL) specific imprinted expression that is restricted to placental trophectoderm lineages and to visceral yolk sac endoderm (ysE). Isolated ysE provides a homogenous in vivo model of a mid-gestation extra-embryonic tissue to examine the mechanism of EXEL-specific imprinted gene silencing, but an in vitro model of ysE to facilitate more rapid and cost-effective experiments is not available. Reports indicate that ES cells differentiated into cystic embryoid bodies (EBs) contain ysE, so here we investigate if cystic EBs model ysE imprinted expression. The imprinted expression pattern of cystic EBs is shown to resemble fetal liver and not ysE. To investigate the reason for this we characterized the methylome and transcriptome of cystic EBs in comparison to fetal liver and ysE, by whole genome bisulphite sequencing and RNA-seq. Cystic EBs show a fetal liver pattern of global hypermethylation and low expression of repeats, while ysE shows global hypomethylation and high expression of IAPEz retroviral repeats, as reported for placenta. Transcriptome analysis confirmed that cystic EBs are more similar to fetal liver than ysE and express markers of early embryonic endoderm. Genome-wide analysis shows that ysE shares epigenetic and repeat expression features with placenta. Contrary to previous reports, we show that cystic EBs do not contain ysE, but are more similar to the embryonic endoderm of fetal liver. This explains why cystic EBs reproduce the imprinted expression seen in the embryo but not that seen in the ysE.
•Cystic EBs model embryonic, and not extra-embryonic, imprinted expression.•The transcriptome and methylome of yolk sac endoderm, cystic EBs, and fetal liver.•Cystic EBs are more similar to fetal liver than to yolk sac endoderm.•Genomic analysis shows yolk sac endoderm shares epigenetic features with placenta.
PMCID: PMC4454777  PMID: 25912690
Genomic imprinting; Visceral yolk sac (VYS); Visceral endoderm (VE); Visceral yolk sac Endoderm (ysE); Cystic embryoid bodies (EBs); DNA methylation
24.  Mesodermal Nkx2.5 is necessary and sufficient for early second heart field development 
Developmental biology  2014;390(1):68-79.
The vertebrate heart develops from mesoderm and requires inductive signals secreted from early endoderm. During embryogenesis, Nkx2.5 acts as a key transcription factor and plays essential roles for heart formation from Drosophila to human. In mice, Nkx2.5 is expressed in the early first heart field, second heart field pharyngeal mesoderm, as well as pharyngeal endodermal cells underlying the second heart field. Currently, the specific requirements for Nkx2.5 in the endoderm versus mesoderm with regard to early heart formation are incompletely understood. Here, we performed tissue-specific deletion in mice to dissect the roles of Nkx2.5 in the pharyngeal endoderm and mesoderm. We found that heart development appeared normal after endodermal deletion of Nkx2.5 whereas mesodermal deletion engendered cardiac defects almost identical to those observed on Nkx2.5 null embryos (Nkx2.5−/−). Furthermore, re-expression of Nkx2.5 in the mesoderm rescued Nkx2.5−/− heart defects. Our findings reveal that Nkx2.5 in the mesoderm is essential while endodermal expression is dispensable for early heart formation in mammals.
PMCID: PMC4461860  PMID: 24613616
Nkx2.5; pharyngeal endoderm; pharyngeal mesoderm; second heart field; heart development
25.  Specific roles for the GATA transcription factors end-1 and end-3 during C. elegans E-lineage development 
Developmental biology  2011;358(2):345-355.
end-1 and end-3 are GATA transcription factors important for specifying endoderm cell fate in Caenorhabditis elegans. Deletion of both factors together results in larval arrest, 0% survival and a fate change in the endoderm-specifying E lineage. Individual deletions of either factor, however, result in the development of viable, fertile adults, with 100% of worms developing to adults for end-1(−) and 95% for end-3(−). We sought to quantify the variable phenotypes seen in both deletions using automated cell lineaging. We quantified defects in cell lifetime, cell movement and division axis in end-3(−) embryos, while quantifying perturbations in downstream reporter gene expression in strains with homozygous deletions for either gene, showing that each deletion leads to a unique profile of downstream perturbations in gene expression and cellular phenotypes with a high correlation between early and late defects. Combining observations in both cellular and gene expression defects we found that misaligned divisions at the E2 stage resulted in ectopic expression of the Notch target ref-1 in end-3(−) embryos. Using a maximum likelihood phylogenetic approach we found end-1 and end-3 split to form two distinct clades within the Caenorhabditis lineage with distinct DNA-binding structures. These results indicate that end-1 and end-3 have each evolved into genes with unique functions during endoderm development, that end-3(−) embryos have a delay in the onset of E lineage cell fate and that end-1 has only a partially penetrant ability to activate E lineage fate.
PMCID: PMC4454387  PMID: 21854766
C. elegans; Endoderm; GATA factors; Gene expression; Cell fate; Cell migration; Gastrulation

Results 1-25 (1808)