Search tips
Search criteria

Results 1-25 (1432)

Clipboard (0)

Select a Filter Below

Year of Publication
more »
1.  Mutations in Traf3ip1 reveal defects in ciliogenesis, embryonic development, and altered cell size regulation 
Developmental biology  2011;360(1):66-76.
Tumor necrosis factor alpha receptor 3 interacting protein 1 (Traf3ip1), also known as MIPT3, was initially characterized through its interactions with tubulin, actin, TNFR-associated factor-3 (Traf3), IL-13R1, and DISC1. It functions as an inhibitor of IL-13-mediated phosphorylation of Stat6 and in sequestration of Traf3 and DISC1 to the cytoskeleton. Studies of the Traf3ip1 homologs in C. elegans (DYF-11), Zebrafish (elipsa), and Chlamydomonas (IFT54) revealed that the protein localizes to the cilium and is required for ciliogenesis. Similar localization data has now been reported for mammalian Traf3ip1. This raises the possibility that Traf3ip1 has an evolutionarily conserved role in mammalian ciliogenesis in addition to its previously indicated functions. To evaluate this possibility, a Traf3ip1 mutant mouse line was generated. Traf3ip1mutant cells are unable to form cilia. Homozygous Traf3ip1 mutant mice are not viable and have both neural developmental defects and polydactyly, phenotypes typical of mouse mutants with ciliary assembly defects. Furthermore, in Traf3ip1 mutants the hedgehog pathway is disrupted, as evidenced by abnormal dorsal-ventral neural tube patterning and diminished expression of a hedgehog reporter. Analysis of the canonical Wnt pathway indicates that it was largely unaffected; however, specific domains in the pharyngeal arches have elevated levels of reporter activity. Interestingly, Traf3ip1 mutant embryos and cells failed to show alterations in IL-13 signaling, one of the pathways associated with its initial discovery. Novel phenotypes observed in Traf3ip1 mutant cells include elevated cytosolic levels of acetylated microtubules and a marked increase in cell size in culture. The enlarged Traf3ip1 mutant cell size was associated with elevated basal mTor pathway activity. Taken together, these data demonstrate that Traf3ip1 function is highly conserved in ciliogenesis and is important for proper regulation of a number of essential developmental and cellular pathways. The Traf3ip1 mutant mouse and cell lines will provide valuable resources to assess cilia function in mammalian development and also serve as a tool to explore the potential connections between cilia and cytoskeletal dynamics, mTor regulation, and cell volume control.
PMCID: PMC4059607  PMID: 21945076
primary cilia; IFT; Traf3ip1; MIPT3
2.  Cyclin dependent kinase 5 is required for the normal development of oligodendrocytes and myelin formation 
Developmental biology  2013;378(2):94-106.
The development of oligodendrocytes, the myelinating cells of the vertebrate CNS, is regulated by a cohort of growth factors and transcription factors. Less is known about the signaling pathways that integrate extracellular signals with intracellular transcriptional regulators to control oligodendrocyte development. Cyclin dependent kinase 5 (Cdk5) and its co-activators play critical roles in the regulation of neuronal differentiation, cortical lamination, neuronal cell migration and axon outgrowth. Here we demonstrate a previously unrecognized function of Cdk5 in regulating oligodendrocyte maturation and myelination. During late embryonic development Cdk5 null animals displayed a reduction in the number of MBP+ cells in the spinal cord, but no difference in the number of OPCs. To determine whether the reduction of oligodendrocytes reflected a cell-intrinsic loss of Cdk5, it was selectively deleted from Olig1+ oligodendrocyte lineage cells. In Olig1Cre/+; Cdk5fl/fl conditional mutants, reduced levels of expression of MBP and PLP mRNA were observed throughout the CNS and ultrastructural analyses demonstrated a significant reduction in the proportion of myelinated axons in the optic nerve and spinal cord. Pharmacological inhibition or RNAi knockdown of Cdk5 in vitro resulted in the reduction in oligodendrocyte maturation, but had no effect on OPC cell proliferation. Conversely, over-expression of Cdk5 promoted oligodendrocyte maturation and enhanced process outgrowth. Consistent with this data, Cdk5−/− oligodendrocytes developed significantly fewer primary processes and branches than control cells. Together, these findings suggest that Cdk5 function as a signaling integrator to regulate oligodendrocyte maturation and myelination.
PMCID: PMC3686511  PMID: 23583582
conditional Cdk5 knockout; OPC; oligodendrocytes; differentiation; myelination
3.  Smad signaling pathways regulate pancreatic endocrine development 
Developmental biology  2013;378(2):83-93.
Expansion of the pancreatic endocrine cell population occurs during both embryonic development and during post-natal pancreatic growth and regeneration. Mechanisms of the expansion of endocrine cells during embryonic development are not completely understood, and no clear mechanistic link has been established between growth of the embryonic endocrine pancreas and the islet cell replication that occurs in an adult animal. We found that transforming growth factor-beta (TGF-β) superfamily signaling, which has been implicated in many developmental processes, plays a key role in regulating pancreatic endocrine maturation and development. Specifically, the intracellular mediators of TGF-β signaling, smad2 and smad3, along with their inhibitor smad7, appear to mediate this process. Smad2, smad3 and smad7 were all broadly expressed throughout the early embryonic pancreatic epithelium. However, during later stages of development, smad2 and smad3 became strongly localized to the nuclei of the endocrine positive cells, whereas the inhibitory smad7 became absent in the endocrine component. Genetic inactivation of smad2 and smad3 led to a significant expansion of the embryonic endocrine compartment, whereas genetic inactivation of smad7 led to a significant decrease in the endocrine compartment. In vitro antisense studies further corroborated these results and supported the possibility that interplay between the inhibitory smad7 and the intracellular mediators smad2/3 is a control point for pancreatic endocrine development. These results should provide a better understanding of the key control mechanisms for β-cell development.
PMCID: PMC3711209  PMID: 23603491
Pancreas; TGF-β; Smads; Embryonic
4.  Dissection of a Ciona regulatory element reveals complexity of cross-species enhancer activity 
Developmental Biology  2014;390(2):261-272.
Vertebrate genomes share numerous conserved non-coding elements, many of which function as enhancer elements and are hypothesised to be under evolutionary constraint due to a need to be bound by combinations of sequence-specific transcription factors. In contrast, few such conserved elements can be detected between vertebrates and their closest invertebrate relatives. Despite this lack of sequence identity, cross-species transgenesis has identified some cases where non-coding DNA from invertebrates drives reporter gene expression in transgenic vertebrates in patterns reminiscent of the expression of vertebrate orthologues. Such instances are presumed to reflect the presence of conserved suites of binding sites in the regulatory regions of invertebrate and vertebrate orthologues, such that both regulatory elements can correctly interpret the trans-activating environment. Shuffling of binding sites has been suggested to lie behind loss of sequence conservation; however this has not been experimentally tested. Here we examine the underlying basis of enhancer activity for the Ciona intestinalis βγ-crystallin gene, which drives expression in the lens of transgenic vertebrates despite the Ciona lineage predating the evolution of the lens. We construct an interactive gene regulatory network (GRN) for vertebrate lens development, allowing network interactions to be robustly catalogued and conserved network components and features to be identified. We show that a small number of binding motifs are necessary for Ciona βγ-crystallin expression, and narrow down the likely factors that bind to these motifs. Several of these overlap with the conserved core of the vertebrate lens GRN, implicating these sites in cross species function. However when we test these motifs in a transgenic vertebrate they prove to be dispensable for reporter expression in the lens. These results show that current models depicting cross species enhancer function as dependent on conserved binding sites can be overly simplistic, with sound evolutionary inference requiring detailed dissection of underlying mechanisms.
•Analysis of binding motifs in a Ciona enhancer that also works in vertebrate lens.•Establishment of candidate transcription factors that may regulate this enhancer.•Construction of a curated, interactive gene regulatory network of lens development.•Public accessibility of this via a dedicated web site.•Experimental test of binding motif function in cross species transgenesis.
PMCID: PMC4010673  PMID: 24680932
Ciona; Lens; Crystallin; Evolution; Gene regulatory network
5.  Evolutionarily conserved morphogenetic movements at the vertebrate head–trunk interface coordinate the transport and assembly of hypopharyngeal structures 
Developmental Biology  2014;390(2):231-246.
The vertebrate head–trunk interface (occipital region) has been heavily remodelled during evolution, and its development is still poorly understood. In extant jawed vertebrates, this region provides muscle precursors for the throat and tongue (hypopharyngeal/hypobranchial/hypoglossal muscle precursors, HMP) that take a stereotype path rostrally along the pharynx and are thought to reach their target sites via active migration. Yet, this projection pattern emerged in jawless vertebrates before the evolution of migratory muscle precursors. This suggests that a so far elusive, more basic transport mechanism must have existed and may still be traceable today.
Here we show for the first time that all occipital tissues participate in well-conserved cell movements. These cell movements are spearheaded by the occipital lateral mesoderm and ectoderm that split into two streams. The rostrally directed stream projects along the floor of the pharynx and reaches as far rostrally as the floor of the mandibular arch and outflow tract of the heart. Notably, this stream leads and engulfs the later emerging HMP, neural crest cells and hypoglossal nerve. When we (i) attempted to redirect hypobranchial/hypoglossal muscle precursors towards various attractants, (ii) placed non-migratory muscle precursors into the occipital environment or (iii) molecularly or (iv) genetically rendered muscle precursors non-migratory, they still followed the trajectory set by the occipital lateral mesoderm and ectoderm. Thus, we have discovered evolutionarily conserved morphogenetic movements, driven by the occipital lateral mesoderm and ectoderm, that ensure cell transport and organ assembly at the head–trunk interface.
•At the vertebrate head–trunk interface, all tissues engage in stereotype cell movements.•A ventrally–rostrally directed stream of cells leads along the floor of the pharynx to the developing jaw and outflow tract of the heart.•The cell movements are spearheaded by the lateral mesoderm and surface ectoderm; muscle precursors for throat and tongue muscles (hypopharyngeal muscles); neural crest cells and outgrowing axons of the hypoglossal nerve follow.•Hypopharyngeal muscle precursors follow the trajectory set by the lateral mesoderm and ectoderm, even when challenged with ectopic attractants or when rendered non-migratory.•The newly discovered cell movements are the likely ground state for cell transport and organ assembly at the head–trunk interface before actively migrating muscle precursors evolved in “bony” (osteichthyan) vertebrates.
PMCID: PMC4010675  PMID: 24662046
Evolution of vertebrate developmental mechanisms; Head–trunk interface; Morphogenetic movements; Occipital lateral mesoderm; Occipital somites; Occipital ectoderm; Occipital neural crest; Hypobranchial/hypoglossal muscle; Migratory muscle precursors; Floor of pharynx; Pharyngeal arches; Circumpharyngeal route; Zebrafish; Xenopus; Chicken; Mouse
6.  Apical constriction and invagination downstream of the canonical Wnt signaling pathway requires Rho1 and Myosin II 
Developmental biology  2010;340(1):54-66.
The tumor suppressor Adenomatous polyposis coli (APC) is a negative regulator of Wnt signaling and functions in cytoskeletal organization. Disruption of human APC in colonic epithelia initiates benign polyps that progress to carcinoma following additional mutations. The early events of polyposis are poorly understood, as is the role of canonical Wnt signaling in normal epithelial architecture and morphogenesis. To determine the consequences of complete loss of APC in a model epithelium, we generated APC2 APC1 double null clones in the Drosophila wing imaginal disc. APC loss leads to segregation, apical constriction, and invagination that result from transcriptional activation of canonical Wnt signaling. Further, we show that Wnt-dependent changes in cell fate can be decoupled from Wnt-dependent changes in cell shape. Wnt activation is reported to upregulate DE-cadherin in wing discs, and elevated DE-cadherin is thought to promote apical constriction. We find that apical constriction and invagination of APC null tissue are independent of DE-cadherin elevation, but are dependent on Myosin II activity. Further, we show that disruption of Rho1 suppresses apical constriction and invagination in APC null cells. Our data suggest a novel link between canonical Wnt signaling and epithelial structure that requires activation of the Rho1 pathway and Myosin II.
PMCID: PMC4056678  PMID: 20102708
Wnt; morphogenesis; Adenomatous Polyposis Coli; Drosophila; imaginal disc; apical constriction
7.  Neuroblast lineage-specific origin of the neurons of the Drosophila larval olfactory system 
Developmental biology  2012;373(2):322-337.
The complete neuronal repertoire of the central brain of Drosophila originates from only approximately 100 pairs of neural stem cells, or neuroblasts. Each neuroblast produces a highly stereotyped lineage of neurons which innervate specific compartments of the brain. Neuroblasts undergo two rounds of mitotic activity: embryonic divisions produce lineages of primary neurons that build the larval nervous system; after a brief quiescence, the neuroblasts go through a second round of divisions in larval stage to produce secondary neurons which are integrated into the adult nervous system. Here we investigate the lineages that are associated with the larval antennal lobe, one of the most widely studied neuronal systems in fly. We find that the same five neuroblasts responsible for the adult antennal lobe also produce the antennal lobe of the larval brain. However, there are notable differences in the composition of larval (primary) lineages and their adult (secondary) counterparts. Significantly, in the adult, two lineages (lNB/BAlc and adNB/BAmv3) produce uniglomerular projection neurons connecting the antennal lobe with the mushroom body and lateral horn; another lineage, vNB/BAla1, generates multiglomerular neurons reaching the lateral horn directly. lNB/BAlc, as well as a fourth lineage, vlNB/BAla2, generate a diversity of local interneurons. We describe a fifth, previously unknown lineage, BAlp4, which connects the posterior part of the antennal lobe and the neighboring tritocerebrum (gustatory center) with a higher brain center located adjacent to the mushroom body. In the larva, only one of these lineages, adNB/BAmv3, generates all uniglomerular projection neurons. Also as in the adult, lNB/BAlc and vlNB/BAla2 produce local interneurons which, in terms of diversity in architecture and transmitter expression, resemble their adult counterparts. In addition, lineages lNB/BAlc and vNB/BAla1, as well as the newly described BAlp4, form numerous types of projection neurons which along the same major axon pathways (antennal tracts) used by the antennal projection neurons, but which form connections that include regions outside the “classical” olfactory circuit triad antennal lobe-mushroom body-lateral horn. Our work will benefit functional studies of the larval olfactory circuit, and shed light on the relationship between larval and adult neurons.
PMCID: PMC4045504  PMID: 23149077
Drosophila; Larval olfactory system; Local interneuron; Projection neuron; Olfactory lineage
8.  Primary Cilia are required for cerebellar development and Shh-dependent expansion of progenitor pool 
Developmental biology  2008;317(1):246-259.
Cerebellar granule cell precursors (GCPs), which give rise to the most abundant neuronal type in the mammalian brain, arise from a restricted pool of primary progenitors in the rhombic lip (RL). Sonic hedgehog (Shh) secreted by developing Purkinje cells is essential for the expansion of GCPs and for cerebellar morphogenesis. Recent studies have shown that the primary cilium concentrates components of Shh signaling and that this structure is required for Shh signaling. GCPs have a primary cilium on their surface (Del Cerro and Snider, 1972). Here, we show that 1) this cilium can be conditionally ablated by crossing Kif3afl/- mice with hGFAP-Cre mice, 2) removal of Kif3a from GCPs disrupts cerebellar development, and 3) these defects are due to a drastic reduction in Shh-dependent expansion of GCPs. A similar phenotype is observed when Smoothened (Smo), an essential transducer of Shh signaling, is removed from the same population of GCPs. Interestingly, Kif3a-Smo double conditional mutants show that Kif3a is epistatic to Smo. This work shows that Kif3a is essential for Shh-dependent expansion of cerebellar progenitors. Dysfunctional cilia are associated with diverse human disorders including Bardet-Biedl and Joubert syndromes. Cerebellar abnormalities observed in these patients could be explained by defects in Shh-induced GCP expansion.
PMCID: PMC4043448  PMID: 18353302
Neurogenesis; Primary cilia; Kif3a; Sonic hedgehog; Cerebellar development; Joubert syndrome
9.  Essential roles for stat92E in expanding and patterning the proximodistal axis of the Drosophila wing imaginal disc 
Developmental biology  2013;378(1):38-50.
The Drosophila wing imaginal disc is subdivided along the proximodistal axis into the distal pouch, the hinge, the surrounding pleura, and the notum. While the genetic pathways that specify the identity of each of these domains have been well studied, the mechanisms that coordinate the relative expansion of these domains are not well understood. Here we investigated the role of the stat92E signal transducer and activator of transcription in wing proximodistal development. We find that Stat92E is active ubiquitously in early wing imaginal discs, where it acts to inhibit the induction of ectopic wing fields. Subsequently, Stat92E activity is down regulated in the notum and distal pouch. These dynamics coincide with and contribute to the proportional subdivision and expansion of these primordia. As development proceeds, Stat92E activity becomes restricted to the hinge, where it promotes normal expansion of the hinge, and restricts expansion of the notum. We also find that stat92E is required autonomously to specify dorsal pleura identity and inhibit notum identity to properly subdivide the body wall. Our data suggest that Stat92E activity is regulated along the proximodistal axis to pattern this axis and control the relative expansion of the pouch, hinge, and notum.
PMCID: PMC3776456  PMID: 23499656
Notum; pleura; hinge; pouch; Upd; Bowl; Eyg; Mirr; Zfh2
10.  Apc Deficiency Alters Pulmonary Epithelial Cell Fate and Inhibits Nkx2.1 via Triggering TGF-beta Signaling 
Developmental biology  2013;378(1):10.1016/j.ydbio.2013.03.018.
Wnt signaling is critical for cell fate specification and cell differentiation in many organs, but its function in pulmonary neuroendocrine cell (PNEC) differentiation has not been fully addressed. In this study, we examined the role of canonical Wnt signaling by targeting the gene for Adenomatous Polyposis Coli (Apc), which controls Wnt signaling activity via mediating phosphorylation of beta-catenin (Ctnnb). Targeting the Apc gene in lung epithelial progenitors by Nkx2.1-cre stabilized Ctnnb and activated canonical Wnt signaling. Apc deficiency altered lung epithelial cell fate by inhibiting Clara and ciliated cell differentiation and activating Uchl1, a marker of neuroendocrine cells. Similar to PNEC in normal lung, Uchl1positive cells were innervated. In mice with targeted inactivation of Ctnnb by Nkx2.1-cre, PNEC differentiation was not interrupted. These indicate that, after lung primordium formation, Wnt signaling is not essential for PNEC differentiation; however, its over-activation promotes PNEC features. Interestingly, Nkx2.1 was extinguished in Apc deficient epithelial progenitors before activation of Uchl1. Examination of Nkx2.1 null lungs suggested that early deletion of Nkx2.1 inhibits PNEC differentiation, while late repression does not. Nkx2.1 was specifically inhibited in Apc deficient lungs but not in Ctnnb gain-of-function lungs indicating a functional difference between Apc deletion and Ctnnb stabilization, both of which activate Wnt signaling. Further analysis revealed that Apc deficiency led to increased TGF-beta signaling, which inhibited Nkx2.1 in cultured lung endodermal explants. In contrast, TGF-beta activity was not increased in Ctnnb gain-of-function lungs. Therefore, our studies revealed an important mechanism involving Apc and TGF-beta signaling in regulating the key transcriptional factor, Nkx2.1, for lung epithelial progenitor cell fate determination.
PMCID: PMC3838671  PMID: 23562608
11.  The Engrailed Homeobox genes are required in multiple cell lineages to coordinate sequential formation of fissures and growth of the cerebellum 
Developmental biology  2012;367(1):25-39.
The layered cortex of the cerebellum is folded along the anterior-posterior axis into lobules separated by fissures, allowing the large number of cells needed for advanced cerebellar functions to be packed into a small volume. During development, the cerebellum begins as a smooth ovoid structure with two progenitor zones, the ventricular zone and upper rhombic lip, which give rise to distinct cell types in the mature cerebellum. Initially, the cerebellar primordium is divided into five cardinal lobes, which are subsequently further subdivided by fissures. The cellular processes and genes that regulate the formation of a normal pattern of fissures are poorly understood. The engrailed genes (En1 and En2) are expressed in all cerebellar cell types and are critical for regulating formation of specific fissures. However, the cerebellar cell types that En1 and En2 act in to control growth and/or patterning of fissures has not been determined. We conditionally eliminated En2 or En1 and En2 either in both progenitor zones and their descendents or in the two complementary sets of cells derived from each progenitor zone. En2 was found to be required only transiently in the progenitor zones and their immediate descendents to regulate formation of three fissures and for general growth of the cerebellum. In contrast, En1 and En2 have overlapping functions in the cells derived from each progenitor zone in regulating formation of additional fissures and for extensive cerebellar growth. Furthermore, En1/2 function in ventricular zone-derived cells plays a more significant role in determining the timing of initiation and positioning of fissures, whereas in upper rhombic lip-derived cells the genes are more important in regulating cerebellar growth. Our studies reveal the complex manner in which the En genes control cerebellar growth and foliation in distinct cell types.
PMCID: PMC4038292  PMID: 22564796
cerebellum; brain development; foliation; transcription factors; patterning; conditional knockouts; CRE
12.  Zebrafish narrowminded disrupts the transcription factor prdm1 and is required for neural crest and sensory neuron specification 
Developmental biology  2005;278(2):347-357.
Specification of both neural crest cells and Rohon–Beard (RB) sensory neurons involves a complex series of interactions between the neural and non-neural ectoderm. The molecular mechanisms directing this process are not well understood. The zebrafish narrowminded (nrd) mutation is unique, since it is one of two mutations in which defects are observed in both cell populations: it leads to a complete absence of RB neurons and a reduction in neural crest cells and their derivatives. Here, we show that nrd is a mutation in prdm1, a SET/zincfinger domain transcription factor. A Morpholino-mediated depletion of prdm1 phenocopies the nrd mutation, and conversely overexpression of prdm1 mRNA rescues the nrd RB sensory neuron and neural crest phenotype. prdm1 is expressed at the border of the neural plate within the domain where neural crest cells and RB sensory neurons form. Analysis of prdm1 function by overexpression indicates that prdm1 functions to promote the cell fate specification of both neural crest cells and RB sensory neurons, most likely as a downstream effector of the BMP signaling pathway.
PMCID: PMC4028833  PMID: 15680355
Narrowminded; Neural crest; Rohon–Beard sensory neurons; Blimp-1
13.  dlx3b and dlx4b function in the development of Rohon-Beard sensory neurons and trigeminal placode in the zebrafish neurula 
Developmental biology  2004;276(2):523-540.
Rohon-Beard sensory neurons, neural crest cells, and sensory placodes can be distinguished at the boundary of the embryonic epidermis (skin) and the neural plate. The inductive signals at the neural plate border region are likely to involve a gradient of bone morphogenic protein (BMP) in conjunction with FGF and Wnts and other signals. However, how these signals are transduced to produce the final cell fate remains to be determined. Recent evidence from Xenopus and chick suggest that Dlx genes are required for the generation of cell fates at the neural plate border (McLarren, K.W., Litsiou, A., Streit, A., 2003. DLX5 positions the neural crest and preplacode region at the border of the neural plate. Dev. Biol. 259, 34–47; Woda, J.M., Pastagia, J., Mercola, M., Artinger, K.B., 2003. Dlx proteins position the neural plate border and determine adjacent cell fates. Development 130, 331–342). In the present study, we extend these findings to zebrafish, where we unequivocally demonstrate that dlx3b and dlx4b function in a dose-dependent manner to specify cell fates such as Rohon-Beard sensory neurons and trigeminal sensory placodes. dlx function was examined by inhibiting: (1) protein levels with antisense morpholino oligonucleotides (MOs), and (2) activity by repressing the ability of dlx-homeodomain to bind to downstream targets (EnR-dlx3bhd mRNA; dlx3b homeodomain fused to Engrailed transcriptional repressor domain). Inhibition of dlx3b and dlx4b protein and activity resulted in the reduction or complete loss of Rohon-Beard (RB) sensory neurons and trigeminal (TG) sensory placodes. These data suggest that dlx3b and dlx4b function in the specification of RB neurons and trigeminal sensory placodes in zebrafish. Further, we have shown that dlx3b and dlx4b function in a non-cell-autonomous manner for RB neuron development; dlx3b and dlx4b act to regulate bmp2b expression at the non-neural ectodermal border. These data suggest that the contribution of dlx3b and dlx4b to neural plate border formation is partially non-cell-autonomous acting via BMP activity.
PMCID: PMC4027963  PMID: 15581883
dlx genes; bmp genes; Neural crest; Rohon-Beard sensory neurons; Sensory placodes; Neural plate
14.  Common developmental pathways link tooth shape to regeneration 
Developmental biology  2013;377(2):399-414.
In many non-mammalian vertebrates, adult dentitions result from cyclical rounds of tooth regeneration wherein simple unicuspid teeth are replaced by more complex forms. Therefore and by contrast to mammalian models, the numerical majority of vertebrate teeth develop shape during the process of replacement. Here, we exploit the dental diversity of Lake Malawi cichlid fishes to ask how vertebrates generally replace their dentition and in turn how this process acts to influence resulting tooth morphologies. First, we used immunohistochemistry to chart organogenesis of continually replacing cichlid teeth and discovered an epithelial down-growth that initiates the replacement cycle via a labial proliferation bias. Next, we identified sets of co-expressed genes from common pathways active during de novo, lifelong tooth replacement and tooth morphogenesis. Of note, we found two distinct epithelial cell populations, expressing markers of dental competence and cell potency, which may be responsible for tooth regeneration. Related gene sets were simultaneously active in putative signaling centers associated with the differentiation of replacement teeth with complex shapes. Finally, we manipulated targeted pathways (BMP, FGF, Hh, Notch, Wnt/β-catenin) in vivo with small molecules and demonstrated dose-dependent effects on both tooth replacement and tooth shape. Our data suggest that the processes of tooth regeneration and tooth shape morphogenesis are integrated via a common set of molecular signals. This linkage has subsequently been lost or decoupled in mammalian dentitions where complex tooth shapes develop in first generation dentitions that lack the capacity for lifelong replacement. Our dissection of the molecular mechanics of vertebrate tooth replacement coupled to complex shape pinpoints aspects of odontogenesis that might be re-evolved in the lab to solve problems in regenerative dentistry.
PMCID: PMC3640738  PMID: 23422830
Tooth Replacement; Odontogenesis; Regeneration; Stem Cells
15.  Murine craniofacial development requires Hdac3-mediated repression of Msx gene expression 
Developmental biology  2013;377(2):333-344.
Craniofacial development is characterized by reciprocal interactions between neural crest cells and neighboring cell populations of ectodermal, endodermal and mesodermal origin. Various genetic pathways play critical roles in coordinating the development of cranial structures by modulating the growth, survival and differentiation of neural crest cells. However, the regulation of these pathways, particularly at the epigenomic level, remains poorly understood. Using murine genetics, we show that neural crest cells exhibit a requirement for the class I histone deacetylase Hdac3 during craniofacial development. Mice in which Hdac3 has been conditionally deleted in neural crest demonstrate fully penetrant craniofacial abnormalities, including microcephaly, cleft secondary palate and dental hypoplasia. Consistent with these abnormalities, we observe dysregulation of cell cycle genes and increased apoptosis in neural crest structures in mutant embryos. Known regulators of cell cycle progression and apoptosis in neural crest, including Msx1, Msx2 and Bmp4, are upregulated in Hdac3-deficient cranial mesenchyme. These results suggest that Hdac3 serves as a critical regulator of craniofacial morphogenesis, in part by repressing core apoptotic pathways in cranial neural crest cells.
PMCID: PMC3652235  PMID: 23506836
Neural crest; Palate development; Cleft palate; Hdac3; Msx1/2; Bmp4
16.  Dlg5 maintains apical aPKC and regulates progenitor differentiation during lung morphogenesis 
Developmental biology  2013;377(2):375-384.
Cell polarity plays an important role in tissue morphogenesis; however, the mechanisms of polarity and their role in mammalian development are still poorly understood. We show here that membrane-associated guanylate kinase protein Dlg5 is required for proper branching morphogenesis and progenitor differentiation in mammalian lung. We found that during lung development Dlg5 functions as an apical-basal polarity protein, which is necessary for the apical maintenance of atypical protein kinase C (aPKC). These results identify Dlg5 as a regulator of apical polarity complexes and uncover the critical function of Dlg5 in branching morphogenesis and differentiation of lung progenitor cells.
PMCID: PMC3652546  PMID: 23466739
branching morphogenesis; lung development; cell polarity; apical-basal polarity; Dlg5
17.  WAVE/SCAR promotes endocytosis and early endosome morphology in polarized C. elegans epithelia 
Developmental biology  2013;377(2):319-332.
Cells can use the force of actin polymerization to drive intracellular transport, but the role of actin in endocytosis is not clear. Studies in single-celled yeast demonstrate the essential role of the branched actin nucleator, Arp2/3, and its activating nucleation promoting factors (NPFs) in the process of invagination from the cell surface through endocytosis. However, some mammalian studies have disputed the need for F-actin and Arp2/3 in Clathrin-Mediated Endocytosis (CME) in multicellular organisms. We investigate the role of Arp2/3 during endocytosis in C. elegans, a multicellular organism with polarized epithelia. Arp2/3 and its NPF, WAVE/SCAR, are essential for C. elegans embryonic morphogenesis. We show that WAVE/SCAR and Arp2/3 regulate endocytosis and early endosome morphology in diverse tissues of C. elegans. Depletion of WAVE/SCAR or Arp2/3, but not of the NPF Wasp, severely disrupts the distribution of molecules proposed to be internalized via CME, and alters the subcellular enrichment of the early endosome regulator RAB-5. Loss of WAVE/SCAR or of the GEFs that regulate RAB-5 results in similar defects in endocytosis in the intestine and coelomocyte cells. This study in a multicellular organism supports an essential role for branched actin regulators in endocytosis, and identifies WAVE/SCAR as a key NPF that promotes Arp2/3 endocytic function in C. elegans.
PMCID: PMC3700809  PMID: 23510716
morphogenesis; actin nucleation; endocytosis; nucleation promoting factors; early endosomes
18.  Disruption of Eaat2b, a glutamate transporter, results in abnormal motor behaviors in developing zebrafish 
Developmental biology  2011;362(2):162-171.
Analysis of zebrafish mutants that have defects in motor behavior can allow entrée into the hindbrain and spinal cord networks that control locomotion. Here, we report that zebrafish techno trousers (tnt) locomotor mutants harbor a mutation in slc1a2b, which encodes Eaat2b, a plasma membrane glutamate transporter. We used tnt mutants to explore the effects of impaired glutamate transporter activity on locomotor network function. Wild-type larvae perform robust swimming behavior in response to touch stimuli at two and four days after fertilization. In contrast, tnt mutant larvae demonstrate aberrant, exaggerated body bends beginning two days after fertilization and they are almost paralyzed four days after fertilization. We show that slc1a2b is expressed in glial cells in a dynamic fashion across development, which may explain the abnormal sequence of motor behaviors demonstrated by tnt mutants. We also show that tnt larvae demonstrate enhanced excitation of neurons, consistent with the predicted effects of excessive glutamate. These findings illustrate the dynamic regulation and importance of glutamate transporters during development. Since glutamate toxicity caused by EAAT2 dysfunction is thought to promote several different neurological disorders in humans, including epilepsy and neurodegenerative diseases, tnt mutants hold promise as a new tool to better understand these pathologies.
PMCID: PMC4013685  PMID: 22094018
Behavior; Zebrafish; Glutamate; Transporter; Hindbrain; Spinal cord
19.  Sgt1 acts via an LKB1/AMPK pathway to establish cortical polarity in larval neuroblasts 
Developmental biology  2012;363(1):258-265.
Drosophila neuroblasts are a model system for studying stem cell self-renewal and the establishment of cortical polarity. Larval neuroblasts generate a large apical self-renewing neuroblast, and a small basal cell that differentiates. We performed a genetic screen to identify regulators of neuroblast self-renewal, and identified a mutation in sgt1(suppressor-of-G2-allele-of-skp1) that had fewer neuroblasts. We found that sgt1 neuroblasts have two polarity phenotypes: failure to establish apical cortical polarity at prophase, and lack of cortical Scribble localization throughout the cell cycle. Apical cortical polarity was partially restored at metaphase by a microtubule-induced cortical polarity pathway. Double mutants lacking Sgt1 and Pins (a microtubule-induced polarity pathway component) resulted in neuroblasts without detectable cortical polarity and formation of “neuroblast tumors.” Mutants in hsp83 (encoding the predicted Sgt1-binding protein Hsp90), LKB1, or AMPKα all show similar prophase apical cortical polarity defects (but no Scribble phenotype), and activated AMPKα rescued the sgt1 mutant phenotype. We propose that an Sgt1/Hsp90-LKB1-AMPK pathway acts redundantly with a microtubule-induced polarity pathway to generate neuroblast cortical polarity, and the absence of neuroblast cortical polarity can produce neuroblast tumors.
PMCID: PMC4013783  PMID: 22248825
20.  Crosstalk between the p190-B RhoGAP and IGF signaling pathways is required for embryonic mammary bud development 
Developmental biology  2007;309(1):137-149.
P190-B RhoGAP (p190-B, also known as ARHGAP5) has been shown to play an essential role in invasion of the terminal end buds (TEBs) into the surrounding fat pad during mammary gland ductal morphogenesis. Here we report that embryos with a homozygous p190-B gene deletion exhibit major defects in embryonic mammary bud development. Overall, p190-B deficient buds were smaller in size, contained fewer cells, and displayed characteristics of impaired mesenchymal proliferation and differentiation. Consistent with the reported effects of p190-B deletion on IGF-1R signaling, IGF-1R deficient embryos also displayed a similar small mammary bud phenotype. However, unlike the p190-B deficient embryos, the IGF-1R deficient embryos exhibited decreased epithelial proliferation and did not display mesenchymal defects. Because both IGF and p190-B signaling affect IRS-1/2, we examined IRS-1/2 double knockout embryonic mammary buds. These embryos displayed major defects similar to the p190-B deficient embryos including smaller bud size. Importantly, like the p190-B deficient buds, proliferation of the IRS-1/2 deficient mesenchyme was impaired. These results indicate that IGF signaling through p190-B and IRS proteins is critical for mammary bud formation and ensuing epithelial-mesenchymal interactions necessary to sustain mammary bud morphogenesis.
PMCID: PMC4011021  PMID: 17662267
p190-B; ARHGAP5; IGF-1R; IRS-1; IRS-2; mammary bud; epithelial-mesenchymal
21.  Direct transcriptional regulation of Six6 is controlled by SoxB1 binding to a remote forebrain enhancer 
Developmental biology  2012;366(2):393-403.
Six6, a sine oculis homeobox protein, plays a crucial and conserved role in the development of the forebrain and eye. To understand how the expression of Six6 is regulated during embryogenesis, we screened ~250 kb of genomic DNA encompassing the Six6 locus for cis-regulatory elements capable of directing reporter gene expression to sites of Six6 transcription in transgenic mouse embryos. Here, we describe two novel enhancer elements, that are highly conserved in vertebrate species and whose activities recapitulate Six6 expression in the ventral forebrain and eye, respectively. Cross-species comparisons of the Six6 forebrain enhancer sequences revealed highly conserved binding sites matching the consensus for homeodomain and SoxB1 transcription factors. Deletion of either of the binding sites resulted in loss of the forebrain enhancer activity in the ventral forebrain. Moreover, our studies show that members of the SoxB1 family, including Sox2 and Sox3, are expressed in the overlapping region of the ventral forebrain with Six6 and can bind to the Six6 forebrain enhancer. Loss of function of SoxB1 genes in vivo further emphasizes their role in regulating Six6 forebrain enhancer activity. Thus, our data strongly suggest that SoxB1 transcription factors are direct activators of Six6 expression in the ventral forebrain.
PMCID: PMC4009495  PMID: 22561201
Six6; SoxB1; forebrain; Gene expression
22.  Interaction between DMRT1 function and genetic background modulates signaling and pluripotency to control tumor susceptibility in the fetal germ line 
Developmental biology  2013;377(1):67-78.
Dmrt1(doublesex and mab-3 related transcription factor 1) is a regulator of testis development in vertebrates that has been implicated in testicular germ cell tumors of mouse and human. In the fetal mouse testis Dmrt1 regulates germ cell pluripotency in a strain-dependent manner. Loss of Dmrt1 in 129Sv strain mice results in a >90% incidence of testicular teratomas, tumors consisting cells of multiple germ layers; by contrast, these tumors have never been observed in Dmrt1 mutants of C57BL/6J (B6) or mixed genetic backgrounds. To further investigate the interaction between Dmrt1 and genetic background we compared mRNA expression in wild type and Dmrt1 mutant fetal testes of 129Sv and B6 mice at embryonic day 15.5 (E15.5), prior to overt tumorigenesis. Loss of Dmrt1 caused misexpression of overlapping but distinct sets of mRNAs in the two strains. The mRNAs that were selectively affected included some that changed expression only in one strain or the other and some that changed in both strains but to a greater degree in one versus the other. In particular, loss of Dmrt1 in 129Sv testes caused a more severe failure to silence regulators of pluripotency than in B6 testes. A number of genes misregulated in 129Sv mutant testes also are misregulated in human testicular germ cell tumors (TGCTs), suggesting similar etiology between germ cell tumors in mouse and man. Expression profiling showed that DMRT1 also regulates pluripotency genes in the fetal ovary, although Dmrt1 mutant females do not develop teratomas. Pathway analysis indicated disruption of several signaling pathways in Dmrt1 mutant fetal testes, including Nodal, Notch, and GDNF. We used a Nanos3-cre knock-in allele to perform conditional gene targeting, testing the GDNF coreceptors Gfra1 and Ret for effects on teratoma susceptibility. Conditional deletion of Gfra1 but not Ret in fetal germ cells of animals outcrossed to 129Sv caused a modest but significant elevation in tumor incidence. Despite some variability in genetic background in these crosses, this result is consistent with previous genetic mapping of teratoma susceptibility loci to the region containing Gfra1. Using Nanos3-cre we also uncovered a strong genetic interaction between Dmrt1 and Nanos3, suggesting parallel functions for these two genes in fetal germ cells. Finally, we used chromatin immunoprecipitation (ChIP-seq) analysis to identify a number of potentially direct DMRT1 targets. This analysis suggested that DMRT1 controls pluripotency via transcriptional repression of Esrrb, Nr5a2/Lrh1, and Sox2. Given the strong evidence for involvement of DMRT1 in human TGCT, the downstream genes and pathways identified in this study provide potentially useful candidates for roles in the human disease.
PMCID: PMC3630265  PMID: 23473982
Dmrt1; Nanos3; teratoma; TGCT; pluripotency; germ cell
23.  An autocrine Wnt5a-Ror signaling loop mediates sympathetic target innervation 
Developmental biology  2013;377(1):79-89.
During nervous system development, axon branching at nerve terminals is an essential step in the formation of functional connections between neurons and target cells. It is known that target tissues exert control of terminal arborization through secretion of trophic factors. However, whether the in-growing axons themselves produce diffusible cues to instruct target innervation remains unclear. Here, we use conditional mutant mice to show that Wnt5a derived from sympathetic neurons is required for their target innervation in vivo. Conditional deletion of Wnt5a resulted in specific deficits in the extension and arborization of sympathetic fibers in their final target fields, while no defects were observed in the overall tissue patterning, proliferation, migration or differentiation of neuronal progenitors. Using compartmentalized neuronal cultures, we further demonstrate that the Ror receptor tyrosine kinases are required locally in sympathetic axons to mediate Wnt5a-dependent branching. Thus, our study suggests an autocrine Wnt5a-Ror signaling pathway that directs sympathetic axon branching during target innervation.
PMCID: PMC3774606  PMID: 23454479
Autocrine Wnt signaling; axon branching; sympathetic neural development; conditional mouse mutants
24.  Constitutive activation of NOTCH1 signaling in Sertoli cells causes gonocyte exit from quiescence 
Developmental biology  2013;377(1):188-201.
Notch signaling components have long been detected in Sertoli and germ cells in the developing and mature testis. However, the role of this pathway in testis development and spermatogenesis remains unknown. Using reporter mice expressing green fluorescent protein following Notch receptor activation, we found that Notch signaling was active in Sertoli cells at various fetal, neonatal, and adult stages. Since Notch signaling specifies stem cell fate in many developing and mature organ systems, we hypothesized that maintenance and differentiation of gonocytes and/or spermatogonial stem cells would be modulated through this pathway in Sertoli cells. To this end, we generated mutant mice constitutively expressing the active, intracellular domain of NOTCH1 (NICD1) in Sertoli cells. We found that mutant Sertoli cells were morphologically normal before and after birth, but presented a number of functional changes that drastically affected gonocyte numbers and physiology. We observed aberrant exit of gonocytes from mitotic arrest, migration toward cord periphery, and premature differentiation before birth. These events, presumably unsupported by the cellular microenvironment, were followed by gonocyte apoptosis and near complete disappearance of the gonocytes by day 2 after birth. Molecular analysis demonstrated that these effects are correlated with a dysregulation of Sertoli-expressed genes that are required for germ cell maintenance, such as Cyp26b1 and Gdnf. Taken together, our results demonstrate that Notch signaling is active in Sertoli cells throughout development and that proper regulation of Notch signaling in Sertoli cells is required for the maintenance of gonocytes in an undifferentiated state during fetal development.
PMCID: PMC3630254  PMID: 23391689
gonocyte; Sertoli cell; Notch signaling; CYP26B1; GDNF; testis development
25.  Rac1 GTPase acts downstream of αPS1βPS integrin to control collective migration and lumen size in the Drosophila salivary gland 
Developmental biology  2013;377(1):10.1016/j.ydbio.2013.02.020.
During collective migration of the Drosophila embryonic salivary gland, the distal gland cells mediate integrin-based contacts with surrounding tissues while proximal gland cells change shape and rearrange. Here, we show that αPS1βPS integrin controls salivary gland migration through Rac1 GTPase which downregulates E-cadherin in proximal and distal gland cells, and promotes extension of actin-rich basal membrane protrusions in the distal cells. In embryos mutant for multiple edematous wings(mew), which encodes the αPS1 subunit of the αPS1βPS integrin heterodimer, or rac1 and rac2 GTPases, salivary gland cells failed to migrate, to downregulate E-cadherin and to extend basal membrane protrusions. Selective inhibition of Rac1 in just the proximal or distal gland cells demonstrate that proximal gland cells play an active role in the collective migration of the whole gland and that continued migration of the distal cells depends on the proximal cells. Loss of rac1rac2 also affected gland lumen length and width whereas, loss of mew affected lumen length only. Activation of rac1 in mew mutant embryos significantly rescued the gland migration, lumen length and basal membrane protrusion defects and partially rescued the E-cadherin defects. Independent of mew, Rac regulates cell shape change and rearrangement in the proximal gland, which is important for migration and lumen width. Our studies shed novel insight into a Rac1-mediated link between integrin and cadherin adhesion proteins in vivo, control of lumen length and width and how activities of proximal and distal gland cells are coordinated to result in the collective migration of the entire salivary gland.
PMCID: PMC3878610  PMID: 23500171
Rac GTPase; Collective migration; Tube; Lumen; Integrin; Cadherin; Adhesion; Drosophila

Results 1-25 (1432)