Search tips
Search criteria

Results 1-25 (94)

Clipboard (0)

Select a Filter Below

Year of Publication
more »
1.  Motion area V5/MT+ response to global motion in the absence of V1 resembles early visual cortex 
Brain : a journal of neurology  2014;138(0 1):164-178.
Motion area V5/MT+ shows a variety of characteristic visual responses, often linked to perception, which are heavily influenced by its rich connectivity with the primary visual cortex (V1). This human motion area also receives a number of inputs from other visual regions, including direct subcortical connections and callosal connections with the contralateral hemisphere. Very little is currently known about such alternative inputs to V5/MT+ and how they may drive and influence its activity. Using functional magnetic resonance imaging, the response of human V5/MT+ to increasing the proportion of coherent motion was measured in seven patients with unilateral V1 damage acquired during adulthood, and a group of healthy age-matched controls. When V1 was damaged, the typical V5/MT+ response to increasing coherence was lost. Rather, V5/MT+ in patients showed a negative trend with coherence that was very similar to coherence-related activity in V1 of healthy controls. This shift to a response-pattern more typical of early visual cortex suggests that in the absence of V1, V5/MT+ activity may be shaped by similar direct subcortical input. This is likely to reflect intact residual pathways rather than a change in connectivity, and has important implications for blindsight function. It also confirms predictions that V1 is critically involved in normal V5/MT+ global motion processing, consistent with a convergent model of V1 input to V5/MT+. Historically, most attempts to model cortical visual responses do not consider the contribution of direct subcortical inputs that may bypass striate cortex, such as input to V5/MT+. We have shown that the signal change driven by these non-striate pathways can be measured, and suggest that models of the intact visual system may benefit from considering their contribution.
PMCID: PMC4285193  PMID: 25433915
Hemianopia; visual cortex; motion coherence; subcortical; functional MRI
2.  Lewy- and Alzheimer-type pathologies in Parkinson’s disease dementia: which is more important? 
Brain : a journal of neurology  2011;134(0 5):1493-1505.
The relative importance of Lewy- and Alzheimer-type pathologies to dementia in Parkinson’s disease remains unclear. We have examined the combined associations of α-synuclein, tau and amyloid-β accumulation in 56 pathologically confirmed Parkinson’s disease cases, 29 of whom had developed dementia. Cortical and subcortical amyloid-β scores were obtained, while tau and α-synuclein pathologies were rated according to the respective Braak stages. Additionally, cortical Lewy body and Lewy neurite scores were determined and Lewy body densities were generated using morphometry. Non-parametric statistics, together with regression models, receiver-operating characteristic curves and survival analyses were applied. Cortical and striatal amyloid-β scores, Braak tau stages, cortical Lewy body, Lewy neurite scores and Lewy body densities, but not Braak α-synuclein stages, were all significantly greater in the Parkinson’s disease-dementia group (P < 0.05), with all the pathologies showing a significant positive correlation to each other (P < 0.05). A combination of pathologies [area under the receiver-operating characteristic curve = 0.95 (0.88–1.00); P < 0.0001] was a better predictor of dementia than the severity of any single pathology. Additionally, cortical amyloid-β scores (r = −0.62; P = 0.043) and Braak tau stages (r = −0.52; P = 0.028), but not Lewy body scores (r = −0.25; P = 0.41) or Braak α-synuclein stages (r = −0.44; P = 0.13), significantly correlated with mini-mental state examination scores in the subset of cases with this information available within the last year of life (n = 15). High cortical amyloid-β score (P = 0.017) along with an older age at onset (P = 0.001) were associated with a shorter time-to-dementia period. A combination of Lewy- and Alzheimer-type pathologies is a robust pathological correlate of dementia in Parkinson’s disease, with quantitative and semi-quantitative assessment of Lewy pathology being more informative than Braak α-synuclein stages. Cortical amyloid-β and age at disease onset seem to determine the rate to dementia.
PMCID: PMC4194668  PMID: 21596773
lewy bodies; amyloid-β; tau; Parkinson’s disease; dementia
4.  SGCE mutations cause psychiatric disorders: clinical and genetic characterization 
Brain : a journal of neurology  2013;136(0 1):294-303.
Myoclonus dystonia syndrome is a childhood onset hyperkinetic movement disorder characterized by predominant alcohol responsive upper body myoclonus and dystonia. A proportion of cases are due to mutations in the maternally imprinted SGCE gene. Previous studies have suggested that patients with SGCE mutations may have an increased rate of psychiatric disorders. We established a cohort of patients with myoclonus dystonia syndrome and SGCE mutations to determine the extent to which psychiatric disorders form part of the disease phenotype. In all, 89 patients with clinically suspected myoclonus dystonia syndrome were recruited from the UK and Ireland. SGCE was analysed using direct sequencing and for copy number variants. In those patients where no mutation was found TOR1A (GAG deletion), GCH1, THAP1 and NKX2-1 were also sequenced. SGCE mutation positive cases were systematically assessed using standardized psychiatric interviews and questionnaires and compared with a disability-matched control group of patients with alcohol responsive tremor. Nineteen (21%) probands had a SGCE mutation, five of which were novel. Recruitment of family members increased the affected SGCE mutation positive group to 27 of whom 21 (77%) had psychiatric symptoms. Obsessive–compulsive disorder was eight times more likely (P < 0.001) in mutation positive cases, compulsivity being the predominant feature (P < 0.001). Generalized anxiety disorder (P = 0.003) and alcohol dependence (P = 0.02) were five times more likely in mutation positive cases than tremor controls. SGCE mutations are associated with a specific psychiatric phenotype consisting of compulsivity, anxiety and alcoholism in addition to the characteristic motor phenotype. SGCE mutations are likely to have a pleiotropic effect in causing both motor and specific psychiatric symptoms.
PMCID: PMC4052887  PMID: 23365103
myoclonus dystonia; SGCE; psychiatric disorders
5.  Myeloperoxidase-targeted imaging of active inflammatory lesions in murine experimental autoimmune encephalomyelitis 
Brain : a journal of neurology  2008;131(0 4):1123-1133.
Inflammatory demyelinating plaques are the pathologic hallmark of active multiple sclerosis and often precede clinical manifestations. Noninvasive early detection of active plaques would thus be crucial in establishing presymptomatic diagnosis and could lead to early preventive treatment strategies. Using murine experimental autoimmune encephalomyelitis as a model of multiple sclerosis, we demonstrate that a prototype paramagnetic myeloperoxidase (MPO) sensor can detect and confirm more, smaller, and earlier active inflammatory lesions in living mice by in vivo magnetic resonance imaging (MRI). We show that MPO expression corresponded with areas of inflammatory cell infiltration and demyelination, and higher MPO activity as detected by MPO imaging, biochemical assays, and histopathological analyses correlated with increased clinical disease severity. Our findings present a potential new translational approach for specific noninvasive inflammatory plaque imaging. This approach could be used in longitudinal studies to identify active demyelinating plaques as well as to more accurately track disease course following treatment in clinical trials.
PMCID: PMC4044727  PMID: 18234693
myeloperoxidase; neuroinflammation; demyelination; targeted imaging; MRI
6.  Prevalence of genetic muscle disease in Northern England: in-depth analysis of a muscle clinic population 
Brain : a journal of neurology  2009;132(0 11):3175-3186.
We have performed a detailed population study of patients with genetic muscle disease in the northern region of England. Our current clinic population comprises over 1100 patients in whom we have molecularly characterized 31 separate muscle disease entities. Diagnostic clarity achieved through careful delineation of clinical features supported by histological, immunological and genetic analysis has allowed us to reach a definitive diagnosis in 75.7% of our patients. We have compared our case profile with that from Walton and Nattrass’ seminal study from 1954, also of the northern region, together with data from other more recent studies from around the world. Point prevalence figures for each of the five major disease categories are comparable with those from other recent studies. Myotonic dystrophies are the most common, comprising 28.6% of our clinic population with a point prevalence of 10.6/100 000. Next most frequent are the dystrophinopathies and facioscapulohumeral muscular dystrophy making up 22.9% (8.46/100 000) and 10.7% (3.95/100 000) of the clinic population, respectively. Spinal muscular atrophy patients account for 5.1% or 1.87/100 000 patients. Limb girdle muscular dystrophy, which was described for the first time in the paper by Walton and Nattrass (1954) and comprised 17% of their clinic population, comprises 6.2% of our clinic population at a combined prevalence of 2.27/100 000. The clinic population included patients with 12 other muscle disorders. These disorders ranged from a point prevalence of 0.89/100 000 for the group of congenital muscular dystrophies to conditions with only two affected individuals in a population of three million. For the first time our study provides epidemiological information for X-linked Emery–Dreifuss muscular dystrophy and the collagen VI disorders. Each of the X-linked form of Emery–Dreifuss muscular dystrophy and Ullrich muscular dystrophy has a prevalence of 0.13/100 000, making both very rare. Bethlem myopathy was relatively more common with a prevalence of 0.77/100 000. Overall our study provides comprehensive epidemiological information on individually rare inherited neuromuscular conditions in Northern England. Despite the deliberate exclusion of relatively common groups such as hereditary motor and sensory neuropathy (40/100 000) and mitochondrial disorders (9.2/100 000), the combined prevalence is 37.0/100 000, demonstrating that these disorders, taken as a group, encompass a significant proportion of patients with chronic disease. The study also illustrates the immense diagnostic progress since the first regional survey over 50 years ago by Walton and Nattrass.
PMCID: PMC4038491  PMID: 19767415
population study; prevalence; Northern England; inherited neuromuscular diseases; muscular dystrophy
7.  A founder mutation in Anoctamin 5 is a major cause of limb girdle muscular dystrophy 
Brain : a journal of neurology  2011;134(0 1):171-182.
The limb girdle muscular dystrophies (LGMDs) are a group of disorders with wide genetic and clinical heterogeneity. Recently, mutations in the ANO5 gene, which encodes a putative calcium-activated chloride channel belonging to the Anoctamin family of proteins, were identified in five families with one of two previously identified disorders, LGMD2L and non-dysferlin Miyoshi muscular dystrophy (MMD3). We screened a candidate group of 64 patients from 59 British and German kindreds and found the truncating mutation, c.191dupA in exon 5 of ANO5 in 20 patients, homozygously in 15 and in compound heterozygosity with other ANO5 variants in the rest. An intragenic SNP and an extragenic microsatellite marker are in linkage disequilibrium with the mutation, suggesting a founder effect in the Northern European population. We have further defined the clinical phenotype of ANO5-associated muscular dystrophy. Patients show adult onset proximal lower limb weakness with highly raised creatinine kinase (CK) values (average 4500 IU/l) and frequent muscle atrophy and asymmetry of muscle involvement. Onset varies from the early 20s to 50s and the weakness is generally slowly progressive, with most patients remaining ambulant for several decades. Distal presentation is much less common but a milder degree of distal lower limb weakness is often observed. Upper limb strength is only mildly affected and cardiac and respiratory function is normal. Females appear less frequently affected. In the North of England population we have identified eight patients with ANO5 mutations, suggesting a minimum prevalence of 0.27/100 000, twice as common as dysferlinopathy. We suggest that mutations in ANO5 represent a relatively common cause of adult onset muscular dystrophy with high CK and that mutation screening, particularly of the common mutation c.191dupA, should be an early step in the diagnostic algorithm of adult LGMD patients.
PMCID: PMC4038512  PMID: 21186264
Autosomal recessive; genetic or acquired neuromuscular disorders; muscle; muscular dystrophy
8.  C9orf72 repeat expansions are a rare genetic cause of parkinsonism 
Brain  2013;136(Pt 2):385-391.
The recently identified C9ORF72 gene accounts for a large proportion of amyotrophic lateral sclerosis and frontotemporal lobar degenerations. Since several forms of these disorders are associated with parkinsonism, we hypothesized that some patients with Parkinson’s disease or other forms of parkinsonism might carry pathogenic C9OFR72 expansions. Therefore, we looked for C9ORF72 repeat expansions in 1,446 parkinsonian unrelated patients consisted of 1,225 clinically diagnosed with Parkinson’s disease, 123 with progressive supranuclear palsy, 21 with corticobasal degeneration syndrome, 43 with Lewy body dementia and 25 with multiple system atrophy-parkinsonism. Of the 1,446 parkinsonian patients, five carried C9ORF72 expansions: three patients with typical Parkinson’s disease, one with corticobasal degeneration syndrome and another with progressive supranuclear palsy. This study shows that: i) although rare, C9ORF72 repeat expansions may be associated with clinically typical Parkinson’s disease, but also with other parkinsonism; ii) in several patients, parkinsonism was dopa-responsive and remained pure, without associated dementia, for more than 10 years; iii) interestingly, all C9ORF72 repeat expansion carriers had positive family histories of parkinsonism, degenerative dementias or amyotrophic lateral sclerosis. This study also provides the tools for identifying parkinsonian patients with C9ORF72 expansions, with important consequences for genetic counseling.
PMCID: PMC3984141  PMID: 23413259
Adolescent; Adult; Aged; Aged, 80 and over; Female; Humans; Male; Middle Aged; Open Reading Frames; genetics; Parkinson Disease; diagnosis; genetics; Pedigree; Proteins; genetics; Trinucleotide Repeat Expansion; genetics; Young Adult; parkinsonism; C9ORF72; dementia
9.  Functional dysconnectivity in schizophrenia associated with attentional modulation of motor function 
Brain : a journal of neurology  2005;128(0 11):10.1093/brain/awh632.
It is not known whether there is a core abnormality that occurs in all cases of schizophrenia. The cognitive dysmetria hypothesis proposes that there is such an abnormality which is characterized cognitively by a disruption in control and coordination processes, and functionally by abnormal inter-regional connectivity within the cortico-cerebellar-thalamo-cortical circuit (CCTCC). In the current study, we used functional MRI (fMRI) to investigate these two key aspects of the hypothesis. Since patients with schizophrenia show deficits in attention which have been characterized extensively using the continuous performance task (CPT) and since functional imaging studies have also demonstrated that this task engages the CCTCC, we used this task to investigate whether two patient groups with distinct symptom profiles would show functional dysconnectivity within this network. Three groups of subjects participated in the study: healthy volunteers (n = 12), schizophrenia patients with both negative and positive symptoms (n = 11) and schizophrenia patients with primarily positive symptoms (n = 11). Patient groups were matched for age of illness onset and medication, and to the control group for age, gender and handedness. Subjects were scanned using fMRI whilst they performed a modified version of the CPT, involving both degraded and non-degraded stimuli. Stimulus degradation has been shown to produce decrements in sensitivity, which is thought to reflect increased demands on the limited capacity of visual attention. Between-group comparisons revealed that patients with schizophrenia, irrespective of symptomatology, showed attenuation of the anterior cingulate and cerebellar response to stimulus degradation in comparison with control subjects. We also observed disruptions of inter-regional brain integration in schizophrenia. A task-specific relationship between the medial superior frontal gyrus and both anterior cingulate and the cerebellum was disrupted in both patient groups in comparison with controls. In addition, patients with negative symptoms showed impaired behavioural performance, and abnormal task-related connectivity between anterior cingulate and supplementary motor area. These findings are consistent with theoretical accounts of schizophrenia as a disorder of functional integration, and with the cognitive dysmetria hypothesis, which posits a disconnection within the CCTCC as a fundamental abnormality in schizophrenia, independent of diagnostic subtype. Furthermore, these data show evidence of additional functional deficits in patients with negative symptoms, deficits which may explain the accompanying attentional impairment.
PMCID: PMC3838931  PMID: 16183659
schizophrenia; functional imaging; cognitive function; attention deficit
10.  Inhibition of subliminally primed responses is mediated by the caudate and thalamus: evidence from functional MRI and Huntington’s disease 
Brain : a journal of neurology  2003;126(0 3):713-723.
Masked prime tasks have shown that sensory information that has not been consciously perceived can nevertheless trigger the preactivation of a motor response. Automatic inhibitory control processes prevent such response tendencies from interfering with behaviour. The present study investigated the possibility that these inhibitory control processes are mediated by a cortico-striatal-pallidal-thalamic pathway by using a masked prime task with Huntington’s disease patients (Experiment 1) and with healthy volunteers in a functional MRI (fMRI) study (Experiment 2). In the masked prime task, clearly visible left- or right-pointing target arrows are preceded by briefly presented and subsequently masked prime arrows. Participants respond quickly with a left or right key-press to each target. Trials are either compatible (prime and target pointing in the same direction) or incompatible (prime and target pointing in different directions). Prior behavioural and electrophysiological results show that automatic inhibition of the initially primed response tendency is reflected in a ‘negative compatibility effect’ (faster reaction times for incompatible trials than for compatible trials), and is shown to consist of three distinct processes (prime activation, response inhibition and response conflict) occurring within 300 ms. Experiment 1 tested the hypothesis that lesions of the striatum would interrupt automatic inhibitory control by studying early-stage Huntington’s disease patients. Findings supported the hypothesis: there was a bimodal distribution for patients, with one-third (choreic) showing disinhibition, manifested as an absent negative compatibility effect, and two-thirds (non-choreic) showing excessive inhibition, manifested as a significantly greater negative compatibility effect than that in controls. Experiment 2 used fMRI and a region of interest (ROI) template-based method to further test the hypothesis that structures of the striatal-pallidal-thalamic pathway mediate one or more of the processes of automatic inhibitory control. Neither prime activation nor response conflict significantly engaged any ROIs, but the response inhibition process led to significant modulation of both the caudate and thalamus. Taken together, these experiments indicate a causal role for the caudate nucleus and thalamus in automatic inhibitory motor control, and the results are consistent with performance of the task requiring both direct and indirect striatal-pallidalthalamic pathways. The finding that Huntington’s disease patients with greater chorea were disinhibited is consistent with the theory that chorea arises from selective degeneration of striatal projections to the lateral globus pallidus, while the exaggerated inhibitory effect for patients with little or no chorea may be due to additional degeneration of projections to the medial globus pallidus.
PMCID: PMC3838934  PMID: 12566291
priming; striatum; motor control; subliminal; compatibility
11.  Dopaminergic drug effects on physiological connectivity in a human cortico-striato-thalamic system 
Brain : a journal of neurology  2003;126(0 8):10.1093/brain/awg184.
Cortico-striato-thalamic (CST) systems are anatomical substrates for many motor and executive functions and are implicated in diverse neuropsychiatric disorders. Electrophysiological studies in rats, monkeys and patients with Parkinson’s disease have shown that power and coherence of low frequency oscillations in CST systems can be profoundly modulated by dopaminergic drugs. We combined functional MRI with correlational and path analyses to investigate functional and effective connectivity, respectively, of a prefronto-striato-thalamic system activated by object location learning in healthy elderly human subjects (n = 23; mean age = 72 years). Participants were scanned in a repeated measures, randomized, placebo-controlled design to measure modulation of physiological connectivity between CST regions following treatment with drugs which served both to decrease (sulpiride) and increase (methylphenidate) dopaminergic transmission, as well as non-dopaminergic treatments (diazepam and scopolamine) to examine non-specific effects. Functional connectivity of caudate nucleus was modulated specifically by dopaminergic drugs, with opposing effects of sulpiride and methylphenidate. The more salient effect of sulpiride was to increase functional connectivity between caudate and both thalamus and ventral midbrain. A path diagram based on prior knowledge of unidirectional anatomical projections between CST components was fitted satisfactorily to the observed inter-regional covariance matrix. The effect of sulpiride was defined more specifically in the context of this model as increased strength of effective connection from ventral midbrain to caudate nucleus. In short, we have demonstrated enhanced functional and effective connectivity of human caudate nucleus following sulpiride treatment, which is compatible both with the anatomy of ascending dopaminergic projections and with electrophysiological studies indicating abnormal coherent oscillations of CST neurons in parkinsonian states.
PMCID: PMC3838939  PMID: 12805106
cortico-striato-thalamic loops; functional/effective connectivity; pharmacological MRI; dopamine; path analysis
12.  Functional neuroimaging of schizophrenia: from a genetic predisposition to the emergence of symptoms 
Brain : a journal of neurology  2004;127(0 3):10.1093/brain/awh113.
PMCID: PMC3838940  PMID: 14990535
13.  Disrupted prediction-error signal in psychosis: evidence for an associative account of delusions 
Brain : a journal of neurology  2007;130(0 9):10.1093/brain/awm173.
Delusions are maladaptive beliefs about the world. Based upon experimental evidence that prediction error—a mismatch between expectancy and outcome—drives belief formation, this study examined the possibility that delusions form because of disrupted prediction-error processing. We used fMRI to determine prediction-error-related brain responses in 12 healthy subjects and 12 individuals (7 males) with delusional beliefs. Frontal cortex responses in the patient group were suggestive of disrupted prediction-error processing. Furthermore, across subjects, the extent of disruption was significantly related to an individual’s propensity to delusion formation. Our results support a neurobiological theory of delusion formation that implicates aberrant prediction-error signalling, disrupted attentional allocation and associative learning in the formation of delusional beliefs.
PMCID: PMC3838942  PMID: 17690132
prediction error; associative learning; fMRI; delusions; psychosis
14.  High frequency oscillations in intracranial EEGs mark epileptogenicity rather than lesion type 
Brain : a journal of neurology  2009;132(0 4):1022-1037.
High frequency oscillations (HFOs) called ripples (80–250 Hz) and fast ripples (FR, 250–500 Hz) can be recorded from intracerebral EEG macroelectrodes in patients with intractable epilepsy. HFOs occur predominantly in the seizure onset zone (SOZ) but their relationship to the underlying pathology is unknown. It was the aim of this study to investigate whether HFOs are specific to the SOZ or result from pathologically changed tissue, whether or not it is epileptogenic. Patients with different lesion types, namely mesial temporal atrophy (MTA), focal cortical dysplasia (FCD) and nodular heterotopias (NH) were investigated. Intracranial EEG was recorded from depth macroelectrodes with a sampling rate of 2000 Hz. Ripples (80–250 Hz) and Fast Ripples (250–500 Hz) were visually marked in 12 patients: five with MTA, four with FCD and three with NH. Rates of events were statistically compared in channels in four areas: lesional SOZ, non-lesional SOZ, lesional non-SOZ and non-lesional non-SOZ. HFO rates were clearly more linked to the SOZ than to the lesion. They were highest in areas in which lesion and SOZ overlap, but in patients with a SOZ outside the lesion, such as in NHs, HFO rates were clearly higher in the non-lesional SOZ than in the inactive lesions. No specific HFO pattern could be identified for the different lesion types. The findings suggest that HFOs represent a marker for SOZ areas independent of the underlying pathology and that pathologic tissue changes alone do not lead to high rates of HFOs.
PMCID: PMC3792079  PMID: 19297507 CAMSID: cams3471
high frequency oscillations; focal cortical dysplasia; nodular heterotopia; temporal atrophy; seizure onset zone; intracranial EEG
15.  Different structures involved during ictal and interictal epileptic activity in malformations of cortical development: an EEG-fMRI study 
Brain : a journal of neurology  2008;131(0 8):2042-2060.
Malformations of cortical development (MCDs) are commonly complicated by intractable focal epilepsy. Epileptogenesis in these disorders is not well understood and may depend on the type of MCD. The cellular mechanisms involved in interictal and ictal events are notably different, and could be influenced independently by the type of pathology. We evaluated the relationship between interictal and ictal zones in eight patients with different types of MCD in order to better understand the generation of these activities: four had nodular heterotopia, two focal cortical dysplasia and two subcortical band heterotopia (double-cortex). We used the non-invasive EEG-fMRI technique to record simultaneously all cerebral structures with a high spatio-temporal resolution. We recorded interictal and ictal events during the same session. Ictal events were either electrical only or clinical with minimal motion. BOLD changes were found in the focal cortical dysplasia during interictal and ictal epileptiform events in the two patients with this disorder. Heterotopic and normal cortices were involved in BOLD changes during interictal and ictal events in the two patients with double cortex, but the maximum BOLD response was in the heterotopic band in both patients. Only two of the four patients with nodular heterotopia showed involvement of a nodule during interictal activity. During seizures, although BOLD changes affected the lesion in two patients, the maximum was always in the overlying cortex and never in the heterotopia. For two patients intracranial recordings were available and confirm our findings. The dysplastic cortex and the heterotopic cortex of band heterotopia were involved in interictal and seizure processes. Even if the nodular gray matter heterotopia may have the cellular substrate to produce interictal events, the often abnormal overlying cortex is more likely to be involved during the seizures. The non-invasive BOLD study of interictal and ictal events in MCD patients may help to understand the role of the lesion in epileptogenesis and also determine the potential surgical target.
PMCID: PMC3792088  PMID: 18669486 CAMSID: cams3476
malformation of cortical development; EEG; functional MRI; epileptogenesis; seizure
16.  Ipsilesional motor deficits following stroke reflect hemispheric specializations for movement control 
Brain : a journal of neurology  2007;130(0 8):2146-2158.
Recent reports of functional impairment in the ‘unaffected’ limb of stroke patients have suggested that these deficits vary with the side of lesion. This not only supports the idea that the ipsilateral hemisphere contributes to arm movements, but also implies that such contributions are lateralized. We have previously suggested that the left and right hemispheres are specialized for controlling different features of movement. In reaching movements, the non-dominant arm appears better adapted for achieving accurate final positions and the dominant arm for specifying initial trajectory features, such as movement direction and peak acceleration. The purpose of this study was to determine whether different features of control could characterize ipsilesional motor deficits following stroke. Healthy control subjects and patients with either left- or right-hemisphere damage performed targeted single-joint elbow movements of different amplitudes in their ipsilateral hemi-space. We predicted that left-hemisphere damage would produce deficits in specification of initial trajectory features, while right-hemisphere damage would produce deficits in final position accuracy. Consistent with our predictions, patients with left, but not right, hemisphere damage showed reduced modulation of acceleration amplitude. However, patients with right, but not left, hemisphere damage showed significantly larger errors in final position, which corresponded to reduced modulation of acceleration duration. Neither patient group differed from controls in terms of movement speed. Instead, the mechanisms by which speed was specified, through modulation of acceleration amplitude and modulation of acceleration duration, appeared to be differentially affected by left- and right-hemisphere damage. These findings support the idea that each hemisphere contributes differentially to the control of initial trajectory and final position, and that ipsilesional deficits following stroke reflect this lateralization in control.
PMCID: PMC3769213  PMID: 17626039
lateralization; stroke; control; arm movements
17.  Neural correlates of outcome after stroke: a cross-sectional fMRI study 
Brain : a journal of neurology  2003;126(0 6):1430-1448.
Recovery of motor function after stroke may occur over weeks or months and is often attributed to neuronal reorganization. Functional imaging studies investigating patients who have made a good recovery after stroke have suggested that recruitment of other motor-related networks underlies this recovery. However, patients with less complete recovery have rarely been studied, or else the degree of recovery has not been taken into account. We set out to investigate the relationship between the degree of recovery after stroke and the pattern of recruitment of brain regions during a motor task as measured using functional MRI. We recruited 20 patients who were at least 3 months after their first ever stroke, and 26 right-handed age-matched control subjects. None of our patients had infarcts involving the hand region of the primary motor cortex. All subjects were scanned whilst performing an isometric, dynamic visually paced handgrip task. The degree of functional recovery of each patient was assessed using a battery of outcome measures. Single-patient versus control group analysis revealed that patients with poor recovery were more likely to recruit a number of motor-related brain regions over and above those seen in the control group during the motor task, whereas patients with more complete recovery were more likely to have ‘normal’ task-related brain activation. Across the whole patient group and across stroke subtypes, we were able to demonstrate a negative correlation between outcome and the degree of task-related activation in regions such as the supplementary motor area, cingulate motor areas, premotor cortex, posterior parietal cortex, and cerebellum. This negative correlation was also seen in parts of both contralateral and ipsilateral primary motor cortex. These results further our understanding of the recovery process by demonstrating for the first time a clear relationship between task-related activation of the motor system and outcome after stroke.
PMCID: PMC3717456  PMID: 12764063
stroke recovery; functional MRI; motor system; neuronal plasticity
18.  Neural correlates of motor recovery after stroke: a longitudinal fMRI study 
Brain : a journal of neurology  2003;126(0 11):2476-2496.
Recovery of motor function after stroke may occur over weeks or months and is often attributed to cerebral reorganization. We have investigated the longitudinal relationship between recovery after stroke and task-related brain activation during a motor task as measured using functional MRI (fMRI). Eight first-ever stroke patients presenting with hemiparesis resulting from cerebral infarction sparing the primary motor cortex, and four control subjects were recruited. Subjects were scanned on a number of occasions whilst performing an isometric dynamic visually paced hand grip task. Recovery in the patient group was assessed using a battery of outcome measures at each time point. Task-related brain activations decreased over sessions as a function of recovery in a number of primary and non-primary motor regions in all patients, but no session effects were seen in the controls. Furthermore, consistent decreases across sessions correlating with recovery were seen across the whole patient group independent of rate of recovery or initial severity, in primary motor cortex, premotor and prefrontal cortex, supplementary motor areas, cingulate sulcus, temporal lobe, striate cortex, cerebellum, thalamus and basal ganglia. Although recovery-related increases were seen in different brain regions in four patients, there were no consistent effects across the group. These results further our understanding of the recovery process by demonstrating for the first time a clear temporal relationship between recovery and task-related activation of the motor system after stroke.
PMCID: PMC3717457  PMID: 12937084
stroke recovery; longitudinal functional MRI; motor system; neuronal plasticity
19.  Motor system activation after subcortical stroke depends on corticospinal system integrity 
Brain : a journal of neurology  2006;129(0 3):809-819.
Movement-related brain activation patterns after subcortical stroke are characterized by relative overactivations in cortical motor areas compared with controls. In patients able to perform a motor task, overactivations are greater in those with more motor impairment. We hypothesized that recruitment of motor regions would shift from primary to secondary motor networks in response to impaired functional integrity of the corticospinal system (CSS). We measured the magnitude of brain activation using functional MRI during a motor task in eight chronic subcortical stroke patients. CSS functional integrity was assessed using transcranial magnetic stimulation to obtain stimulus/response curves for the affected first dorsal interosseus muscle, with a shallower gradient representing increasing disruption of CSS functional integrity. A negative correlation between the gradient of stimulus/response curve and magnitude of task-related brain activation was found in several motor-related regions, including ipsilesional posterior primary motor cortex [Brodmann area (BA) 4p], contralesional anterior primary motor cortex (BA 4a), bilateral premotor cortex, supplementary motor area, intraparietal sulcus, dorsolateral prefrontal cortex and contralesional superior cingulate sulcus. There were no significant positive correlations in any brain region. These results suggest that impaired functional integrity of the CSS is associated with recruitment of secondary motor networks in both hemispheres in an attempt to generate motor output to spinal cord motoneurons. Secondary motor regions are less efficient at generating motor output so this reorganization can only be considered partially successful in reducing motor impairment after stroke.
PMCID: PMC3717515  PMID: 16421171
functional brain imaging; motor recovery; motor system; stroke
20.  Age-related changes in the neural correlates of motor performance 
Brain : a journal of neurology  2003;126(0 4):873-888.
Age-related neurodegenerative and neurochemical changes are thought to underlie decline in motor and cognitive functions, but compensatory processes in cortical and subcortical function may allow maintenance of performance level in some people. Our objective was to investigate age-related changes in the motor system of the human brain using functional MRI. Twenty six right handed volunteers were scanned whilst performing an isometric, dynamic, visually paced hand grip task, using dominant (right) and non-dominant (left) hands in separate sessions. Hand grip with visual feedback activated a network of cortical and subcortical regions known to be involved in the generation of simple motor acts. In addition, activation was seen in a putative human ‘grasping circuit’, involving rostral ventral premotor cortex (Brodmann area 44) and intraparietal sulcus. Within this network, a number of regions were more likely to be activated the older the subject. In particular, age-related changes in task-specific activations were demonstrated in left deep anterior central sulcus when using the dominant or non-dominant hand. Additional age-related increases were seen in caudal dorsal premotor cortex, caudal cingulate sulcus, intraparietal sulcus, insula, frontal operculum and cerebellar vermis. We have demonstrated a clear age-related effect in the neural correlates of motor performance, and furthermore suggest that these changes are non-linear. These results support the notion that an adaptable and plastic motor network is able to respond to age-related degenerative changes in order to maintain performance levels.
PMCID: PMC3717766  PMID: 12615645
ageing; functional MRI; hand grip; motor system
21.  Non-invasive mapping of corticofugal fibres from multiple motor areas—relevance to stroke recovery 
Brain : a journal of neurology  2006;129(0 7):1844-1858.
Recovery of motor function after subcortical stroke appears to be related to the integrity of descending connections from the ipsilesional cortical motor system, a view supported by the observation of greater than normal movement-related activation in ipsilesional motor regions in chronic subcortical stroke patients. This suggests that damage to the descending output fibres from one region of the cortical motor system may be compensated by activity in areas that retain corticofugal outputs. Though the trajectories of corticofugal fibres from each major component of the motor system through the corona radiata and internal capsule are well described in non-human primates, they have not been described fully in humans. Our study set out to map the trajectories of these connections in a group of healthy volunteers (8 male, 4 female; age range = 31–68 years, median = 48.5 years) and establish whether this knowledge can be used to assess stroke-induced disconnection of the cortical motor system and better interpret functional reorganization of the cortical motor system. We describe the trajectories of the connections from each major component of the motor system to the cerebral peduncle using diffusion-weighted imaging and probabilistic tractography in normal subjects. We observed good reproducibility of these connections over subjects. The comparative topography of these connections revealed many similarities between humans and other primates. We then inferred damage to corticofugal pathways in stroke patients (n = 3) by comparing the overlap between regions of subcortical white matter damage with the trajectories of the connections to each motor area. In a small series of case studies, we found that inferred disconnections could explain enhanced hand-grip-related responses, as assessed with functional MRI, in the ipsilesional motor system. These results confirm that selective disruption of motor corticofugal fibres influences functional reorganization and outcome in individual patients.
PMCID: PMC3718077  PMID: 16702192
diffusion tensor; tractography; stroke; motor recovery; functional MRI
22.  Neural basis of irony comprehension in children with autism: the role of prosody and context 
Brain : a journal of neurology  2006;129(0 4):932-943.
While individuals with autism spectrum disorders (ASD) are typically impaired in interpreting the communicative intent of others, little is known about the neural bases of higher-level pragmatic impairments. Here, we used functional MRI (fMRI) to examine the neural circuitry underlying deficits in understanding irony in high-functioning children with ASD. Participants listened to short scenarios and decided whether the speaker was sincere or ironic. Three types of scenarios were used in which we varied the information available to guide this decision. Scenarios included (i) both knowledge of the event outcome and strong prosodic cues (sincere or sarcastic intonation), (ii) prosodic cues only or (iii) knowledge of the event outcome only. Although children with ASD performed well above chance, they were less accurate than typically developing (TD) children at interpreting the communicative intent behind a potentially ironic remark, particularly with regard to taking advantage of available contextual information. In contrast to prior research showing hypoactivation of regions involved in understanding the mental states of others, children with ASD showed significantly greater activity than TD children in the right inferior frontal gyrus (IFG) as well as in bilateral temporal regions. Increased activity in the ASD group fell within the network recruited in the TD group and may reflect more effortful processing needed to interpret the intended meaning of an utterance. These results confirm that children with ASD have difficulty interpreting the communicative intent of others and suggest that these individuals can recruit regions activated as part of the normative neural circuitry when task demands require explicit attention to socially relevant cues.
PMCID: PMC3713234  PMID: 16481375
autism; brain development; fMRI; language pragmatics; social cognition
23.  Cortical activity in Parkinson’s disease during executive processing depends on striatal involvement 
Brain : a journal of neurology  2006;130(0 1):233-244.
Patients with idiopathic Parkinson’s disease exhibit impairments in executive processes, including planning and set-shifting, even at the early stages of the disease. We have recently developed a new card-sorting task to study the specific role of the caudate nucleus in such executive processes and have shown, using functional magnetic resonance imaging (fMRI) in young healthy adults, that the caudate nucleus is specifically required when a set-shift must be planned. Here the same fMRI protocol was used to compare the patterns of activation in a group of early-stage Parkinson’s disease patients (seven right-handed patients at Hoehn and Yahr stages 1 and 2; mean age 62 years, range 56–70) and matched control subjects. Increased cortical activation was observed in the patients compared with the control group in the condition not specifically requiring the caudate nucleus. On the other hand, decreased cortical activation was observed in the patient group in the condition significantly involving the caudate nucleus. This event-related fMRI study showed a pattern of cortical activation in Parkinson’s disease characterized by either reduced or increased activation depending on whether the caudate nucleus was involved or not in the task. This activation pattern included not only the prefrontal regions but also posterior cortical areas in the parietal and prestriate cortex. These findings are not in agreement with the traditional model, which proposes that the nigrostriatal dopamine depletion results in decreased cortical activity. These observations provide further evidence in favour of the hypothesis that not only the nigrostriatal and but also the mesocortical dopaminergic substrate may play a significant role in the cognitive deficits observed in Parkinson’s disease.
PMCID: PMC3714298  PMID: 17121746 CAMSID: cams3203
executive functions; fMRI; Parkinson’s disease; set-shifting; striatum
24.  White matter abnormalities in Methcathinone abusers with an extrapyramidal syndrome 
Brain : a journal of neurology  2010;133(0 12):3676-3684.
We examined white matter abnormalities in patients with a distinctive extrapyramidal syndrome due to intravenous methcathinone (ephedrone) abuse. We performed diffusion tensor imaging in ten patients and fifteen age-matched controls to assess white matter structure across the whole brain. Diffuse significant decreases in white matter fractional anisotropy, a diffusion tensor imaging metric which reflects microstructural integrity, occurred in the patients compared with controls. In addition, we identified two foci of severe white matter abnormality underlying the right ventral premotor cortex and the medial frontal cortex, two cortical regions involved in higher-level executive control of motor function. Paths connecting different cortical regions with the globus pallidus, the nucleus previously shown to be abnormal on structural imaging in these patients, were generated using probabilistic tractography. The fractional anisotropy within all these tracts was lower in the patient group than controls. Finally, we tested for a relationship between white matter integrity and clinical outcome. We identified a region within the left corticospinal tract in which lower fractional anisotropy was associated with greater functional deficit but this region did not show reduced fractional anisotropy in the overall patient group compared to controls. These patients have widespread white matter damage with greatest severity of damage underlying executive motor areas.
PMCID: PMC3677802  PMID: 21036949
Extrapyramidal syndrome; Methcathinone; Manganese toxicity; diffusion imaging; white matter tracts
25.  Theory of mind impairments in patients with semantic dementia 
Brain  2012;135(Pt 1):228-241.
Semantic dementia is characterized by semantic deficits and behavioural abnormalities which occur in the wake of bilateral inferolateral and predominantly left-sided anterior temporal lobe atrophy. The temporal poles have been shown to be involved in theory of mind, namely the ability to ascribe cognitive and affective mental states to others that regulates social interactions by predicting and interpreting human behaviour. However, very few studies have examined theory of mind in semantic dementia. In this study, we investigated both cognitive and affective theory of mind in a group of semantic dementia patients, using separate objective and subjective assessment tasks. Results provided objective evidence of an impact of semantic dementia on cognitive and affective theory of mind, consistent with the patients’ atrophy in the left temporal lobe and hypometabolism in the temporal lobes and the medial frontal cortex. However, the subjective assessment of theory of mind suggested that awareness of the affective but not cognitive theory of mind deficit persists into the moderate stage of the disease.
PMCID: PMC3655376  PMID: 22232593
Aged; Atrophy; pathology; psychology; Attention; Executive Function; Female; Frontotemporal Lobar Degeneration; pathology; psychology; Humans; Male; Memory; Middle Aged; Neuropsychological Tests; Temporal Lobe; pathology; Theory of Mind; semantic dementia; cognitive/affective theory of mind; objective/subjective assessment; imaging.

Results 1-25 (94)