Search tips
Search criteria

Results 1-25 (628)

Clipboard (0)

Select a Filter Below

Year of Publication
more »
Document Types
1.  Growth differentiation factor 15 stimulates rapamycin-sensitive ovarian cancer cell growth and invasion 
Biochemical pharmacology  2012;85(1):46-58.
Identification of novel molecular markers and therapeutic targets may improve survival rates for patients with ovarian cancer. In the current study, immunohistochemical (IHC) analysis of two human ovarian tumor tissue arrays showed high staining for GDF15 in a majority of tissues. Exogenous stimulation of ovarian cancer cell lines with recombinant human GDF15 (rhGDF15) or stable overexpression of a GDF15 expression plasmid promoted anchorage-independent growth, increased invasion, and up-regulation of matrix metalloproteinases (MMPs) and vascular endothelial growth factor (VEGF). MMP inhibition suppressed GDF15-mediated invasion. In addition, IHC analysis of human ovarian tumor tissue arrays indicated that GDF15 expression correlated significantly with high MMP2 and MMP9 expression. Exogenous and endogenous GDF15 over-expression stimulated phosphorylation of p38, Erk1/2, and Akt. Pharmacologic inhibition of p38, MEK, or PI3K suppressed GDF15-stimulated growth. Further, proliferation, growth, and invasion of GDF15 stable clones were blocked by rapamycin. IHC analysis demonstrated significant correlation between GDF15 expression and phosphorylation of mTOR. Finally, knockdown of endogenous GDF15 or neutralization of secreted GDF15 suppressed invasion and growth of a GDF15-over-expressing ovarian cancer cell line. These data indicate that GDF15 over-expression, which occurred in a majority of human ovarian cancers, promoted rapamycin-sensitive invasion and growth of ovarian cancer cells. Inhibition of mTOR may be an effective therapeutic strategy for ovarian cancers that over-express GDF15. Future studies should examine GDF15 as a novel molecular target for blocking ovarian cancer progression.
PMCID: PMC4329765  PMID: 23085437
GDF15; mTOR; PI3K; Ovarian cancer; Invasion; Rapamycin
2.  Genetic Matters: Thirty years of progress using mouse models in nicotinic research 
Biochemical pharmacology  2013;86(8):1105-1113.
This Research Update summarizes thirty years of studies on genetic influences on responses to the acute or chronic administration of nicotine. Early studies established that various inbred mice are differentially sensitive to the effects of the drug. Classical genetic analyses confirmed that nicotine effects on locomotion, body temperature and seizures are heritable. A significant inverse correlation between the locomotor and hypothermic effects and the density of nicotine binding sites suggested that differential expression α4β2-neuronal nicotinic acetylcholine receptor (nAChR) mediated some of this genetic variability. Subsequent studies with α4 and β2 nAChR null (decreased sensitivity) and gain of function mutants (increased sensitivity) supports the role of the α4β2*nAChR subtype. However, null mutant mice still respond to nicotine, indicating that other nAChR subtypes also mediate these responses. Mice differing in initial sensitivity to nicotine also differ in tolerance development following chronic treatment: Those mice that are initially more sensitive to nicotine develop tolerance at lower treatment doses than less sensitive mice, indicating that tolerance is an adaptive response to the effects of nicotine.. In contrast, the sensitivity of mice to pre-pulse inhibition of acoustic startle response is correlated with the expression of α7-nAChR. While genetic variability in nAChR expression and function is an important factor contributing to differences in response to nicotine, the observations that altered activity of opioid, glutamate, and cannabinoid receptors among others also change nicotine sensitivity reinforces the proposal that the genetics of nicotine response is more complex than differences in nAChRs.
PMCID: PMC4329927  PMID: 23747348
3.  Regulation of Autophagy by miR-30d Impacts Sensitivity of Anaplastic Thyroid Carcinoma to Cisplatin* 
Biochemical pharmacology  2013;87(4):562-570.
miR-30d has been observed to be significantly down-regulated in human anaplastic thyroid carcinoma (ATC), and is believed to be an important event in thyroid cell transformation. In this study, we found that miR-30d has a critical role in modulating sensitivity of ATC cells to cisplatin, a commonly used chemotherapeutic drug for treatment of this neoplasm. Using a mimic of miR-30d, we demonstrated that miR-30d could negatively regulate the expression of beclin 1, a key autophagy gene, leading to suppression of the cisplatin-activated autophagic response that protects ATC cells from apoptosis. A reporter gene assay demonstrated that the binding sequences of miR-30d in the beclin 1-3′ UTR was the region required for the inhibition of beclin 1 expression by this miRNA. We further showed that inhibition of the beclin 1-mediated autophagy by the miR-30d mimic sensitized ATC cells to cisplatin both in vitro (cell culture) and in vivo (animal xenograft model). These results suggest that dysregulation of miR-30d in ATC cells is responsible for the insensitivity to cisplatin by promoting autophagic survival. Thus, miR-30d may be exploited as a potential target for therapeutic intervention in the treatment of ATC.
PMCID: PMC3926201  PMID: 24345332
miR-30d; autophagy; apoptosis; Beclin1; cisplatin; Anaplastic thyroid cancer
4.  (R,R′)-4′-Methoxy-1-naphthylfenoterol Targets GPR55-mediated Ligand Internalization and Impairs Cancer Cell Motility 
Biochemical pharmacology  2013;87(4):547-561.
(R,R′)-4′-Methoxy-1-naphthylfenoterol (MNF) promotes growth inhibition and apoptosis of human HepG2 hepatocarcinoma cells via cannabinoid receptor (CBR) activation. The synthetic CB1R inverse agonist, AM251, has been shown to block the anti-mitogenic effect of MNF in these cells; however, AM251 is also an agonist of the recently deorphanized, lipid-sensing receptor, GPR55, whose upregulation contributes to carcinogenesis. Here, we investigated the role of MNF in GPR55 signaling in human HepG2 and PANC-1 cancer cell lines in culture by focusing first on internalization of the fluorescent ligand Tocrifluor 1117 (T1117). Initial results indicated that cell pretreatment with GPR55 agonists, including the atypical cannabinoid O-1602 and L-α-lysophosphatidylinositol, dose-dependently reduced the rate of cellular T1117 uptake, a process that was sensitive to MNF inhibition. GPR55 internalization and signaling mediated by O-1602 was blocked by MNF in GPR55-expressing HEK293 cells. Pretreatment of HepG2 and PANC-1 cells with MNF significantly abrogated the induction of ERK1/2 phosphorylation in response to AM251 and O-1602. Moreover, MNF exerted a coordinated negative regulation of AM251 and O-1602 inducible processes, including changes in cellular morphology and cell migration using scratch wound healing assay. This study shows for the first time that MNF impairs GPR55-mediated signaling and, therefore, may have therapeutic potential in the management of cancer.
PMCID: PMC3935314  PMID: 24355564
G-protein coupled receptor; GPR55; ligand internalization; cellular morphology; cell motility
5.  Mechanisms of homologous and heterologous phosphorylation of FFA receptor 4 (GPR120): GRK6 and PKC mediate phosphorylation of Thr347, Ser350, and Ser357 in the C-terminal tail 
Biochemical pharmacology  2014;87(4):650-659.
Free fatty acid receptor 4 (FFA4), previously known as GPR120, is a G protein-coupled receptor that promotes numerous anti-inflammatory and antidiabetic effects upon its agonism by long chained unsaturated fatty acids. We have previously demonstrated that agonism of FFA4 with docosahexaenoic acid (DHA) and alpha-linoleic acid (ALA) facilitates rapid and transient phosphorylation of FFA4 expressed ectopically on the surface of HEK293 cells. However, the precise mechanisms that promote FFA4 phosphorylation remain elusive. In the current study, we examined the mechanisms behind both heterologous and homologous phosphorylation of FFA4 and set out to identify the foci of FFA4 phosphorylation. Our results demonstrate that basal and heterologous phosphorylation of FFA4 are mediated by protein kinase C (PKC), while G protein-coupled receptor kinase 6 (GRK6) plays the predominant role in DHA-mediated phosphorylation of FFA4. Furthermore, we identify Thr347, Ser350, and Ser357 in the C-terminal tail as major sites of FFA4 phosphorylation. Concurrent mutation of these three sites leads to a FFA4 receptor that seemingly affects Gαq/11 signaling in a positive manner as demonstrated by heightened intracellular Ca+2 responses following agonism with DHA. Importantly, this phosphodefective FFA4 mutant lacked the ability to promote β -arrestin-2 recruitment to the cell membrane. Since many of the functionally beneficial physiological effects of FFA4 are noted to be β -arrestin mediated, these findings could provide insight into the structural requirements for FFA4 function.
PMCID: PMC3959902  PMID: 24412271
6.  Aldehyde dehydrogenase-independent bioactivation of nitroglycerin in porcine and bovine blood vessels 
Biochemical Pharmacology  2015;93(4):440-448.
Graphical abstract
The vascular bioactivation of the antianginal drug nitroglycerin (GTN), yielding 1,2-glycerol dinitrate and nitric oxide or a related activator of soluble guanylate cyclase, is catalyzed by aldehyde dehydrogenase-2 (ALDH2) in rodent and human blood vessels. The essential role of ALDH2 has been confirmed in many studies and is considered as general principle of GTN-induced vasodilation in mammals. However, this view is challenged by an early report showing that diphenyleneiodonium, which we recently characterized as potent ALDH2 inhibitor, has no effect on GTN-induced relaxation of bovine coronary arteries (De La Lande et al., 1996). We investigated this issue and found that inhibition of ALDH2 attenuates GTN-induced coronary vasodilation in isolated perfused rat hearts but has no effect on relaxation to GTN of bovine and porcine coronary arteries. This observation is explained by low levels of ALDH2 protein expression in bovine coronary arteries and several types of porcine blood vessels. ALDH2 mRNA expression and the rates of GTN denitration were similarly low, excluding a significant contribution of ALDH2 to the bioactivation of GTN in these vessels. Attempts to identify the responsible pathway with enzyme inhibitors did not provide conclusive evidence for the involvement of ALDH3A1, cytochrome P450, or GSH-S-transferase. Thus, the present manuscript describes a hitherto unrecognized pathway of GTN bioactivation in bovine and porcine blood vessels. If present in the human vasculature, this pathway might contribute to the therapeutic effects of organic nitrates that are not metabolized by ALDH2.
PMCID: PMC4321882  PMID: 25576686
ALDH, aldehyde dehydrogenase; CB25, 1-{[4-(1,3-benzodioxol-5-ylmethyl)-1-piperazinyl]methyl}-1H-indole-2,3-dione; cGMP, 3′,5′-cyclic guanosine monophosphate; DEA/NO, 2,2-diethyl-1-nitroso-oxyhydrazine; DMSO, dimethyl sulfoxide; DPI, diphenyleneiodonium; DTPA, diethylenetriamine pentaacetic acid; DTT, dithiothreitol; EDTA, ethylene diamine tetraacetic acid; GDN, glycerol dinitrate; GTN, glycerol trinitrate (nitroglycerin); NAD, nicotinamide adenine dinucleotide; l-NNA, NG-nitro-l-arginine; NO, nitric oxide; ODQ, 1H-[1,2,4]oxadiazolo-[4,3-a]quinoxalin-1-one; sGC, soluble guanylate cyclase.; Aldehyde dehydrogenase-2; Denitration; Nitroglycerin; Protein expression; Vascular relaxation
7.  Covalent adduct formation between the plasmalogen-derived modification product 2-chlorohexadecanal and phloretin 
Biochemical Pharmacology  2015;93(4):470-481.
Graphical abstract
Hypochlorous acid added as reagent or generated by the myeloperoxidase (MPO)-H2O2-Cl− system oxidatively modifies brain ether-phospholipids (plasmalogens). This reaction generates a sn2-acyl-lysophospholipid and chlorinated fatty aldehydes. 2-Chlorohexadecanal (2-ClHDA), a prototypic member of chlorinated long-chain fatty aldehydes, has potent neurotoxic potential by inflicting blood–brain barrier (BBB) damage. During earlier studies we could show that the dihydrochalcone-type polyphenol phloretin attenuated 2-ClHDA-induced BBB dysfunction. To clarify the underlying mechanism(s) we now investigated the possibility of covalent adduct formation between 2-ClHDA and phloretin. Coincubation of 2-ClHDA and phloretin in phosphatidylcholine liposomes revealed a half-life of 2-ClHDA of approx. 120 min, decaying at a rate of 5.9 × 10−3 min−1. NMR studies and enthalpy calculations suggested that 2-ClHDA-phloretin adduct formation occurs via electrophilic aromatic substitution followed by hemiacetal formation on the A-ring of phloretin. Adduct characterization by high-resolution mass spectroscopy confirmed these results. In contrast to 2-ClHDA, the covalent 2-ClHDA-phloretin adduct was without adverse effects on MTT reduction (an indicator for metabolic activity), cellular adenine nucleotide content, and barrier function of brain microvascular endothelial cells (BMVEC). Of note, 2-ClHDA-phloretin adduct formation was also observed in BMVEC cultures. Intraperitoneal application and subsequent GC–MS analysis of brain lipid extracts revealed that phloretin is able to penetrate the BBB of C57BL/6J mice. Data of the present study indicate that phloretin scavenges 2-ClHDA, thereby attenuating 2-ClHDA-mediated brain endothelial cell dysfunction. We here identify a detoxification pathway for a prototypic chlorinated fatty aldehyde (generated via the MPO axis) that compromises BBB function in vitro and in vivo.
PMCID: PMC4321883  PMID: 25576489
Chlorinated fatty aldehyde; Blood–brain barrier; Neuroinflammation; Myeloperoxidase; Plasmalogens
8.  [No title available] 
PMCID: PMC3927324  PMID: 24184504
9.  [No title available] 
PMCID: PMC3934577  PMID: 24291777
10.  Disulfiram-induced cytotoxicity and endo-lysosomal sequestration of zinc in breast cancer cells 
Biochemical Pharmacology  2015;93(3):332-342.
Graphical abstract
Disulfiram, a clinically used alcohol-deterrent has gained prominence as a potential anti-cancer agent due to its impact on copper-dependent processes. Few studies have investigated zinc effects on disulfiram action, despite it having high affinity for this metal. Here we studied the cytotoxic effects of disulfiram in breast cancer cells, and its relationship with both intra and extracellular zinc. MCF-7 and BT474 cancer cell lines gave a striking time-dependent biphasic cytotoxic response between 0.01 and 10 μM disulfiram. Co-incubation of disulfiram with low-level zinc removed this effect, suggesting that availability of extracellular zinc significantly influences disulfiram efficacy. Live-cell confocal microscopy using fluorescent endocytic probes and the zinc dye Fluozin-3 revealed that disulfiram selectively and rapidly increased zinc levels in endo-lysosomes. Disulfiram also caused spatial disorganization of late endosomes and lysosomes, suggesting they are novel targets for this drug. This relationship between disulfiram toxicity and ionophore activity was consolidated via synthesis of a new disulfiram analog and overall we demonstrate a novel mechanism of disulfiram-cytotoxicity with significant clinical implications for future use as a cancer therapeutic.
PMCID: PMC4318799  PMID: 25557293
Breast cancer; Disulfiram; Lysosomes; Zinc; Fluozin-3
11.  BAFF activates Erk1/2 promoting cell proliferation and survival by Ca2+-CaMKII-dependent inhibition of PP2A in normal and neoplastic B-lymphoid cells 
Biochemical pharmacology  2013;87(2):332-343.
B-cell activating factor (BAFF) is involved in not only the physiology of normal B cells, but also the pathophysiology of aggressive B cells related to malignant and autoimmune diseases. However, how excessive BAFF promotes aggressive B-cell proliferation and survival is not well understood. Here we show that excessive human soluble BAFF (hsBAFF) enhanced cell proliferation and survival in normal and B-lymphoid (Raji) cells, which was associated with suppression of PP2A, resulting in activation of Erk1/2. This is supported by the findings that pretreatment with U0126 or PD98059, expression of dominant negative MKK1, or overexpression of PP2A prevented hsBAFF-induced activation of Erk1/2 and cell proliferation/viability in the cells. It appears that hsBAFF-mediated PP2A-Erk1/2 pathway and B-cell proliferation/viability was Ca2+-dependent, as pretreatment with BAPTA/AM, EGTA or 2-APB significantly attenuated these events. Furthermore, we found that inhibiting CaMKII with KN93 or silencing CaMKII also attenuated hsBAFF-mediated PP2A-Erk1/2 signaling and B-cell proliferation/viability. The results indicate that BAFF activates Erk1/2, in part through Ca2+-CaMKII-dependent inhibition of PP2A, increasing cell proliferation/viability in normal and neoplastic B-lymphoid cells. Our data suggest that inhibitors of CaMKII and Erk1/2, activator of PP2A or manipulation of intracellular Ca2+ may be exploited for prevention of excessive BAFF-induced aggressive B-cell malignancies and autoimmune diseases.
PMCID: PMC3896221  PMID: 24269630
BAFF; Erk1/2; PP2A; Calcium ion; CaMKII; B cells
12.  Identification and Characterization of Phosphorylation Sites within the Pregnane X Receptor Protein 
Biochemical pharmacology  2013;87(2):360-370.
Pregnane X receptor (PXR) is a xenobiotic sensor regulating the expression of genes involved in xenobiotic detoxification and elimination. Phosphorylation plays an important role in modulating PXR activity and several phosphorylation sites have been predicted and characterized in in vitro experiments. Although PXR has been shown to be a phosphoprotein in vivo, the exact residues that are phosphorylated remain elusive. Using mass spectrometry, we identified for the first time S114, T133/135, S167, and S200 residues that are phosphorylated in PXR following an in vitro kinase assay using cyclin-dependent kinase 2. We further found that the phosphorylation at S114, T133, and T135 occurred in PXR isolated from cells. We tested the phosphodeficient and phosphomimetic mutants corresponding to all the sites identified and determined that phosphorylation at S114 attenuates the transcriptional activity of PXR, consistent with the observation that the S114D mutant displayed reduced association with the PXR-targeted DNA response element. Phosphomimetic mutations at either T133 or T135 did not show a significant change in transcriptional activity however, the dual phosphomimetic mutant T133D/T135D displayed reduced transcriptional activity. Subcellular localization studies showed a varied distribution of the mutants suggesting that the regulation of PXR is much more complex than what we can observe by just overexpressing the mutants. Thus, our results provide the first direct evidence that PXR is phosphorylated at specific residues and suggest that further investigation is warranted to fully understand the regulation of PXR by phosphorylation.
PMCID: PMC3947193  PMID: 24184507
PXR; drug metabolism; phosphorylation; phosphomimetic mutations
13.  Heme Oxygenase-1 Counteracts Contrast Media-Induced Endothelial Cell Dysfunction 
Biochemical pharmacology  2013;87(2):303-311.
Endothelial cell (EC) dysfunction is involved in the pathogenesis of contrast-induced acute kidney injury, which is a major adverse event following coronary angiography. In this study, we evaluated the effect of contrast media (CM) on human EC proliferation, migration, and inflammation, and determined if heme oxygenase-1 (HO-1) influences the biological actions of CM. We found that three distinct CM, including high-osmolar (diatrizoate), low-osmolar (iopamidol), and iso-osmolar (iodixanol), stimulated the expression of HO-1 protein and mRNA. The induction of HO-1 was associated with an increase in NF-E2-related factor-2 (Nrf2) activity and reactive oxygen species (ROS). CM also stimulated HO-1 promoter activity and this was prevented by mutating the antioxidant responsive element or by overexpressing dominant-negative Nrf2. In addition, the CM-mediated induction of HO-1 and activation of Nrf2 was abolished by acetylcysteine. Finally, CM inhibited the proliferation and migration of ECs and stimulated the expression of intercellular adhesion molecule-1 and the adhesion of monocytes on ECs. Inhibition or silencing of HO-1 exacerbated the anti-proliferative and inflammatory actions of CM but had no effect on the anti-migratory effect. Thus, induction of HO-1 via the ROS-Nrf2 pathway counteracts the anti-proliferative and inflammatory actions of CM. Therapeutic approaches targeting HO-1 may provide a novel approach in preventing CM-induced endothelial and organ dysfunction.
PMCID: PMC3947226  PMID: 24239896
radiocontrast media; endothelial cells; heme oxygenase-1; inflammation
14.  [No title available] 
PMCID: PMC4292888  PMID: 24960263
15.  Sarcoplasmic reticulum Ca2+ release channel ryanodine receptor (RyR2) plays a crucial role in aconitine-induced arrhythmias 
Biochemical pharmacology  2008;75(11):2147-2156.
The present study established a model of RyR2 knockdown cardiomyocytes and elucidated the role of RyR2 in aconitine-induced arrhythmia. Cardiomyocytes were obtained from hearts of neonatal Sprague–Dawlay rats. siRNAs were used to down-regulate RyR2 expression. Reduction of RyR2 expression was documented by RT-PCR, western blot, and immunofluorescence. Ca2+ signals were investigated by measuring the relative intracellular Ca2+ concentration, spontaneous Ca2+ oscillations, caffeine-induced Ca2+ release, and L-type Ca2+ currents. In normal cardiomyocytes, steady and periodic spontaneous Ca2+ oscillations were observed, and the baseline [Ca2+]i remained at the low level. Exposure to 3 μM aconitine increased the frequency and decreased the amplitude of Ca2+ oscillations; the baseline [Ca2+]i and the level of caffeine-induced Ca2+ release were increased but the L-type Ca2+ currents were inhibited after application of 3 μM aconitine for 5 min. In RyR2 knockdown cardiomyocytes, the steady and periodic spontaneous Ca2+ oscillations almost disappeared, but were re-induced by aconitine without affecting the baseline [Ca2+]i level; the level of caffeine-induced Ca2+ release was increased but L-type Ca2+ currents were inhibited. Alterations of RyR2 are important consequences of aconitine-stimulation and activation of RyR2 appear to have a direct relationship with aconitine-induced arrhythmias. The present study demonstrates a potential method for preventing aconitine-induced arrhythmias by inhibiting Ca2+ leakage through the sarcoplasmic reticulum RyR2 channel.
PMCID: PMC4280015  PMID: 18439986
RyR2; Knockdown; Aconitine; Arrhythmia; Excitation–contraction coupling
16.  Estrogen, Vascular Estrogen Receptor and Hormone Therapy in Postmenopausal Vascular Disease 
Biochemical pharmacology  2013;86(12):10.1016/j.bcp.2013.09.024.
Cardiovascular disease (CVD) is less common in premenopausal women than men of the same age or postmenopausal women, suggesting vascular benefits of estrogen. Estrogen activates estrogen receptors ERα, ERβ and GPR30 in endothelium and vascular smooth muscle (VSM), which trigger downstream signaling pathways and lead to genomic and non-genomic vascular effects such as vasodilation, decreased VSM contraction and growth and reduced vascular remodeling. However, randomized clinical trials (RCTs), such as the Women’s Health Initiative (WHI) and Heart and Estrogen/progestin Replacement Study (HERS), have shown little vascular benefits and even adverse events with menopausal hormone therapy (MHT), likely due to factors related to the MHT used, ER profile, and RCT design. Some MHT forms, dose, combinations or route of administration may have inadequate vascular effects. Age-related changes in ER amount, distribution, integrity and post-ER signaling could alter the vascular response to MHT. The subject’s age, preexisting CVD, and hormone environment could also reduce the effects of MHT. Further evaluation of natural and synthetic estrogens, phytoestrogens, and selective estrogen-receptor modulators (SERMs), and the design of appropriate MHT combinations, dose, route and 'timing' could improve the effectiveness of conventional MHT and provide alternative therapies in the peri-menopausal period. Targeting ER using specific ER agonists, localized MHT delivery, and activation of specific post-ER signaling pathways could counter age-related changes in ER. Examination of the hormone environment and conditions associated with hormone imbalance such as polycystic ovary syndrome may reveal the causes of abnormal hormone-receptor interactions. Consideration of these factors in new RCTs such as the Kronos Early Estrogen Prevention Study (KEEPS) could enhance the vascular benefits of estrogen in postmenopausal CVD.
PMCID: PMC3840081  PMID: 24099797
sex hormones; progesterone; testosterone; endothelium; vascular smooth muscle; extracellular matrix; hypertension
17.  Stilbene 5c, A Microtubule Poison with Vascular Disrupting Properties That Induces Multiple Modes of Growth Arrest and Cell Death 
Biochemical pharmacology  2013;86(12):10.1016/j.bcp.2013.10.007.
The stilbene derivative, cis-3, 4’, 5-trimethoxy-3’-aminostilbene (stilbene 5c), is a potentially potent antitumor agent that acts via binding to the colchicine-binding site in tubulin. The current studies were designed to investigate the effectiveness of stilbene 5c against the HCT-116 human colon cancer cell line and B16/F10 melanoma cells as well as human endothelial cell formation and tumor perfusion. Stilbene 5c produced a time-dependent decrease in cell viability in both cell lines and the capacity of the cells to proliferate was not restored upon removal of the drug. Treatment with stilbene 5c also promoted both senescence and autophagy in both cell lines. TUNEL and annexin 5 staining indicated that apoptosis also occurs in stilbene 5c-treated HCT-116 cells, but not in B16/F10 melanoma cells. DAPI staining revealed morphological changes in the cell nuclei (binucleated and micronucleated cells) indicative of mitotic catastrophe in HCT-116 cells but not in the B16/F10 melanoma cells. p53-null HCT-116 cells demonstrated a similar growth arrest/cell death response to stilbene as p53-wild type HCT-116 cells. Stilbene 5c also completely inhibited human endothelial cell tube formation on Matrigel, consistent with potential anti-angiogenic actions. Using a new method developed for monitoring the pharmacodynamic effects of stilbene 5c in vivo, we found that a single injection of stilbene 5c reduced tumor perfusion by 65% at 4 hours, returning to baseline by 24 hours, while subsequent daily injections of stilbene 5c produced progressively larger reductions and smaller rebounds. This work indicates that stilbene 5c could potentially be effective against melanoma and colon cancer through the promotion of multiple modes of growth arrest and cell death coupled with anti-angiogenic and antivascular actions.
PMCID: PMC3855433  PMID: 24144631
microtubules; autophagy; senescence; angiogenic; vascular disrupting
18.  Ligand modulation of a dinuclear platinum compound leads to mechanistic differences in cell cycle progression and arrest 
Biochemical pharmacology  2013;86(12):1708-1720.
Despite similar structures and DNA binding profiles, two recently synthesized dinuclear platinum compounds are shown to elicit highly divergent effects on cell cycle progression. In colorectal HCT116 cells, BBR3610 shows a classical G2/M arrest with initial accumulation in S phase, but the derivative compound BBR3610-DACH, formed by introduction of the 1,2-diaminocyclohexane (DACH) as carrier ligand, results in severe G1/S as well as G2/M phase arrest, with nearly complete S phase depletion. The origin of this unique effect was studied. Cellular interstrand crosslinking as assayed by comet analysis was similar for both compounds, confirming previous in vitro results obtained on plasmid DNA. Immunoblotting revealed a stabilization of p53 and concomitant transient increases in p21 and p27 proteins after treatment with BBR3610-DACH. Cell viability assays and cytometric analysis of p53 and p21 null cells indicated that BBR3610-DACH-induced cell cycle arrest was p21-dependent and partially p53-dependent. However, an increase in the levels of cyclin E was observed with steady state levels of CDK2 and Cdc25A, suggesting that the G1 block occurs downstream of CDK/cyclin complex formation. The G2/M block was corroborated with decreased levels of cyclin A and cyclin B1. Surprisingly, BBR3610-DACH-induced G1 block was independent of ATM and ATR. Finally, both compounds induced apoptosis, with BBR3610-DACH showing a robust PARP-1 cleavage that was not associated with caspase-3/7 cleavage. In summary, BBR3610-DACH is a DNA binding platinum agent with unique inhibitory effects on cell cycle progression that could be further developed as a chemotherapeutic agent complementary to cisplatin and oxaliplatin.
PMCID: PMC3932533  PMID: 24161784
Dinuclear platinum compounds; interstrand crosslinks; cell cycle; p53; DNA damage response; apoptosis
19.  Novel Compound 1, 3-bis (3, 5-dichlorophenyl) urea Inhibits Lung Cancer Progression 
Biochemical pharmacology  2013;86(12):1664-1672.
The successful clinical management of lung cancer is limited by frequent loss-of-function mutations in p53 which cooperates with chronic oxidant-stress induced adaptations in mercapturic acid pathway (MAP) which in turn regulates critical intracellular signaling cascades that determine therapeutic refractoriness. Hence, we investigated the anti-cancer effects and mechanisms of action of a novel compound called 1, 3 bis (3, 5-dichlorophenyl) urea (COH-SR4) in lung cancer. Treatment with COH-SR4 effectively inhibited the survival and clonogenic potential along with inducing apoptosis in lung cancer cells. COH-SR4 treatment caused the inhibition of GST activity and G0/G1 cell cycle arrest and inhibited the expression of cell cycle regulatory proteins CDK2, CDK4, cyclin A, cyclin B1, cyclin E1, and p27. The COH-SR4 activated AMPK pathway and knock-down of AMPK partially reversed the cytotoxic effects of COH-SR4 in lung cancer. COH-SR4 treatment lead to regression of established xenografts of H358 lung cancer cells without any overt toxicity. The histopathology of resected tumor sections revealed an increase in pAMPK, a decrease in the nuclear proliferative marker Ki67 and angiogenesis marker CD31. Western-blot analyses of resected tumor lysates revealed a decrease in pAkt and anti-apoptotic protein Bcl2 along with an increase in pAMPK, pro-apoptotic protein Bax and cleaved PARP levels. Importantly, COH-SR4 lead to decrease in the mesenchymal marker vimentin and increase in the normal epithelial marker E-cadherin. The results from our in-vitro and in-vivo studies reveal that COH-SR4 represents a novel candidate with strong mechanistic relevance to target aggressive and drug-resistant lung tumors.
PMCID: PMC4186798  PMID: 24099794
Lung cancer; SR4; AMPK; tumor xenografts
Biochemical pharmacology  2009;79(7):1007-1014.
Evidence for the important role for poly(ADP-ribose) polymerase (PARP) in the pathogenesis of diabetic nephropathy is emerging. We previously reported that PARP inhibitors counteract early Type 1 diabetic nephropathy. This study evaluated the role for PARP in kidney disease in long-term Type 1 diabetes. Control and streptozotocin-diabetic rats were maintained with or without treatment with the PARP inhibitor 10-(4-methyl-piperazin-1-ylmethyl)-2H-7-oxa-1,2-diaza-benzo[de] anthracen-3-one (GPI-15,427, Eisai Inc.), 30 mg kg−1d−1, for 26 weeks after first 2 weeks without treatment. PARP activity in the renal cortex was assessed by Western blot analysis of poly(ADP-ribosyl)ated proteins. Urinary albumin, isoprostane, and 8-hydroxy-2′-deoxyguanosine excretion, and renal concentrations of transforming growth factor-β1, vascular endothelial growth factor, soluble intercellular adhesion molecule-1, fibronectin, and nitrotyrosine were evaluated by ELISA, and urinary creatinine and renal lipid peroxidation products by colorimetric assays. PARP inhibition counteracted diabetes-associated increase in renal cortex poly(ADP-ribosyl)ated protein level. Urinary albumin, isoprostane, and 8-hydroxy-2′-deoxyguanosine excretions and urinary albumin/creatinine ratio were increased in diabetic rats, and all these changes were at least partially prevented by GPI-15,427 treatment. PARP inhibition counteracted diabetes-induced renal transforming growth factor-β1, vascular endothelial growth factor, and fibronectin, but not soluble intercellular adhesion molecule-1 and nitrotyrosine, accumulations. Lipid peroxidation product concentrations were indistinguishable among control and diabetic rats maintained with or without GPI-15,427 treatment. In conclusion, PARP activation plays an important role in kidney disease in long-term diabetes. These findings provide rationale for development and further studies of PARP inhibitors and PARP inhibitor-containing combination therapies, for prevention and treatment of diabetic nephropathy.
PMCID: PMC4259265  PMID: 19945439
Poly(ADP-ribose) polymerase; diabetic nephropathy; streptozotocin-diabetic rat; oxidative-nitrosative stress; vascular endothelial growth factor; transforming growth factor-β
21.  Dipyridamole analogues as pharmacological inhibitors of equilibrative nucleoside transporters. Identification of novel potent and selective inhibitors of the adenosine transporter function of human equilibrative nucleoside transporter 4 (hENT4) 
Biochemical pharmacology  2013;86(11):10.1016/j.bcp.2013.08.063.
To identify needed human equilibrative nucleoside transporter 4 (hENT4) inhibitors, we cloned and stably expressed the recombinant protein in PK15NTD (nucleoside transporter deficient) cells, and, investigated its interaction with a series of dipyridamole analogues synthesized in our laboratory. Compounds were tested in this newly established hENT4 expressing system as well in previous stably expressed hENT1 and hENT2 expressing systems. Of the dipyridamole analogues evaluated, about one fourth of the compounds inhibited hENT4 with higher potencies than dipyridamole. The most potent of them, Compound 30 displayed an IC50 of 74.4 nM, making it about 38 times more potent than dipyridamole (IC50 = 2.8 μM), and selectivities of about 80-fold and 20-fold relative to ENT1 and ENT2, respectively. Structure-activity relationship showed nitrogen-containing monocyclic rings and noncyclic substituents at the 4-and 8-positions of the pyrimido[5,4-d]pyrimidine were important for the inhibitory activity against hENT4. The most potent and selective hENT4 inhibitors tended to have a 2,6-di(N-monohydroxyethyl) substitution on the pyrimidopyrimidine ring system. The inhibitors of hENT4 identified in this study are the most selective and potent inhibitors of hENT4 adenosine transporter function to date, and should serve as useful pharmacological/biochemical tools and/or potential leads for ENT4-based therapeutics. Also, the new hENT4-expressing PK15 cell line established will serve as a useful screening tool for the discovery and design of hENT4 ligands.
PMCID: PMC3866046  PMID: 24021350
Equilibrative nucleoside transporters; human equilibrative nucleoside transporter 4; dipyridamole analogues; structure-activity relationships
22.  Bile Acid Receptors in Non-alcoholic Fatty Liver Disease 
Biochemical pharmacology  2013;86(11):1517-1524.
Accumulating data have shown that bile acids are important cell signaling molecules, which may activate several signaling pathways to regulate biological processes. Bile acids are endogenous ligands for the farnesoid X receptor (FXR) and TGR5, a G-protein coupled receptor. Gain- and loss-of-function studies have demonstrated that both FXR and TGR5 play important roles in regulating lipid and carbohydrate metabolism and inflammatory responses. Importantly, activation of FXR or TGR5 lowers hepatic triglyceride levels and inhibits inflammation. Such properties of FXR or TGR5 have indicated that these two bile acid receptors are ideal targets for treatment of non-alcoholic fatty liver disease, one of the major health concerns worldwide. In this article, we will focus on recent advances on the role of both FXR and TGR5 in regulating hepatic triglyceride metabolism and inflammatory responses under normal and disease conditions.
PMCID: PMC3925679  PMID: 23988487
FXR; TGR5; triglyceride; cholesterol; inflammation
23.  MLK3 is a direct target of biochanin A, which plays a role in solar UV-induced COX-2 expression in human keratinocytes 
Biochemical pharmacology  2013;86(7):896-903.
Solar UV (sUV) is an important environmental carcinogen. Recent studies have shown that sUV is associated with numerous human skin disorders, such as wrinkle formation and inflammation. In this study, we found that the isoflavone, biochanin A, inhibited the expression of sUV-induced COX-2, which is a well-characterized sUV-induced enzyme, in both human HaCaT keratinocytes and JB6 P+ mouse skin epidermal cells. Several studies have demonstrated the beneficial effects of biochanin A. However, its direct molecular target is unknown. We found that biochanin A inhibited sUV-induced phosphorylation of MKK4/JNK/c-Jun and MKK3/6/p38/MSK1. Mixed-lineage kinase 3 (MLK3) is an upstream kinase of MKK4 and MKK3/6. Thus, we evaluated the effect of biochanin A on MLK3. We found that sUV-induced MLK3 phosphorylation was not affected, whereas MLK3 kinase activity was significantly suppressed by biochanin A. Furthermore, direct binding of biochanin A in the MLK3 ATP-binding pocket was detected using pull-down assays. Computer modeling supported our observation that MLK3 is a novel target of biochanin A. These results suggest that biochanin A exerts chemopreventive effects by suppressing sUV-induced COX-2 expression mediated through MLK3 inhibition.
PMCID: PMC4241970  PMID: 23948065
Biochanin A; Cyclooxygenase-2; Mixed-lineage kinase 3; Solar UV
24.  Reevesioside F induces potent and efficient anti-proliferative and apoptotic activities through Na+/K+-ATPase α3 subunit-involved mitochondrial stress and amplification of caspase cascades 
Biochemical pharmacology  2013;86(11):1564-1575.
Reevesioside F, isolated from Reevesia formosana, induced anti-proliferative activity that was highly correlated with the expression of Na+/K+-ATPase α3 subunit in several cell lines, including human leukemia HL-60 and Jurkat cells, and some other cell lines. Knockdown of α3 subunit significantly inhibited cell apoptosis suggesting a crucial role of the α3 subunit. Reevesioside F induced a rapid down-regulation of survivin protein, followed by release of cytochrome c from mitochondria and loss of mitochondrial membrane potential (ΔΨm). Further examination demonstrated the mitochondrial damage in leukemic cells through Mcl-1 down-regulation, Noxa up-regulation and an increase of the formation of truncated Bid, tBim and a 23-kDa cleaved Bcl-2 fragment. Furthermore, reevesioside F induced an increase of mitochondria-associated acetyl α-tubulin that may also contribute to apoptosis. The caspase cascade was profoundly activated by reevesioside F. Notably, the specific caspase-3 inhibitor z-DEVD-fmk significantly blunted reevesioside F-induced loss of ΔΨm and apoptosis, suggesting that caspase-3 activation may further amplify mitochondrial damage and apoptotic signaling cascade. In spite of being a cardiac glycoside, reevesioside F did not increase the intracellular Ca2+ levels. Moreover, CGP-37157 which blocked Na+/Ca2+ exchanger on plasma membrane and mitochondria did not modify reevesioside F-mediated effect. In summary, the data suggest that reevesioside F induces apoptosis through the down-regulation of survivin and Mcl-1, and the formation of pro-apoptotic fragments from Bcl-2 family members. The loss of ΔΨm and mitochondrial damage are responsible for the activation of caspases. Moreover, the amplification of caspase-3-mediated signaling pathway contributes largely to the execution of apoptosis in leukemic cells.
PMCID: PMC4240014  PMID: 24099795
Reevesioside F; Na+/K+-ATPase α3 subunit; Survivin; Mitochondrial damage; Bcl-2 family of protein
25.  Selective potentiation of (α4)3(β2)2 nicotinic acetylcholine receptors augments amplitudes of prefrontal acetylcholine- and nicotine-evoked glutamatergic transients in rats 
Biochemical pharmacology  2013;86(10):1487-1496.
Prefrontal glutamate release evoked through activation of α4β2* nicotinic acetylcholine receptors (nAChRs) situated on thalamic glutamatergic afferents mediates cue detection processes and thus contributes to attentional performance. However, little is known about the respective contributions of the high sensitivity and low sensitivity (LS) stoichiometries of the α4β2 nAChR, (α4)2(β2)3 and (α4)3(β2)2, to these processes. In the present study we employed glutamate-sensitive microelectrodes and the (α4)3(β2)2-selective positive allosteric modulator (PAM) NS9283 to investigate the importance of the LS α4β2 nAChR for glutamate release in the rat medial prefrontal cortex (mPFC). Firstly, the signaling evoked by physiologically relevant ACh concentrations through the (α4)3(β2)2 nAChR in HEK293 cells was potentiated by NS9283, consistent with the classification of NS9238 as a PAM. In urethane-anesthetized rats, intra-prefrontal pressure ejections of NS9283 evoked glutamatergic transients. Importantly, this glutamate release was attenuated by removal of cholinergic projections to the recording area. This finding indicates that the effects of NS9283 depend on endogenous ACh, again consistent with effects of a PAM. We then conducted microdialysis to demonstrate the presence of extracellular ACh in urethane-anesthetized control rats. While detectable, those levels were significantly lower than in awake rats. Finally, the amplitudes of glutamatergic transients evoked by local pressure ejections of a low concentration of nicotine were significantly augmented following systemic administration of NS9283 (3.0 mg/kg). In conclusion, our results indicate that a LS α4β2 nAChR PAMs such as NS9283 may enhance the cholinergic modulation of glutamatergic neurotransmission in the cortex, thereby perhaps alleviating the attentional impairments common to a range of brain disorders.
PMCID: PMC3915712  PMID: 24051136
Nicotinic acetylcholine receptor; α4β2; NS9283; positive allosteric modulator; prefrontal glutamate release

Results 1-25 (628)