PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (48)
 

Clipboard (0)
None

Select a Filter Below

Journals
more »
Year of Publication
more »
Document Types
1.  Role of Magnetic Resonance Imaging, Cerebrospinal Fluid, and Electroencephalogram in Diagnosis of Sporadic Creutzfeldt-Jakob Disease 
Journal of neurology  2012;260(2):498-506.
Sporadic Creutzfeldt-Jakob disease (sCJD) is a rapidly progressive dementia (RPD) that can be difficult to identify ante-mortem, with definitive diagnosis requiring tissue confirmation. We describe the clinical, magnetic resonance imaging (MRI), cerebrospinal fluid (CSF), and electroencephalogram (EEG) measures of a small cohort of 30 patients evaluated for RPD. Clinical and diagnostic measures were cross-sectionally obtained from 17 sCJD patients (15 definite, 2 probable), 13 non-prion rapidly progressive dementia patients (npRPD), and 18 unimpaired controls. In a subset of patients (9 sCJD and 9 npRPD) diffusion tensor imaging (DTI) measures [fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (AD), and radial diffusivity (RD)] were also obtained for the caudate, corpus callosum, posterior limb of the internal capsule, pulvinar, precuneus, and frontal lobe. Differences among groups were assessed by an analysis of variance. Compared to npRPD individuals, sCJD patients had cerebellar dysfunction, significantly higher CSF tau, “positive” CSF 14-3-3, and hyperintensities on diffusion weighted imaging (DWI) that met previously established imaging criteria for sCJD. EEG changes were similar for the two groups. In addition, sCJD patients had significant decreases in DTI measures (MD, AD, RD but not FA) within the caudate and pulvinar compared to either npRPD patients or unimpaired controls. Our results confirm that CSF abnormalities and MRI (especially DWI) can assist in distinguishing sCJD patients from npRPD patients. Future longitudinal studies using multiple measures (including CSF and MRI) are needed for evaluating pathological changes seen in sCJD patients.
doi:10.1007/s00415-012-6664-6
PMCID: PMC3651672  PMID: 22968768
Creutzfeldt-Jakob disease; diffusion magnetic resonance imaging; cerebrospinal fluid
2.  Canceling actions involves a race between basal ganglia pathways 
Nature neuroscience  2013;16(8):1118-1124.
Salient cues can prompt the rapid interruption of planned actions. It has been proposed that fast, reactive behavioral inhibition involves specific basal ganglia pathways, and we tested this by comparing activity in multiple rat basal ganglia structures during performance of a stop-signal task. Subthalamic nucleus (STN) neurons showed low-latency responses to Stop cues, irrespective of whether actions were successfully canceled or not. By contrast, neurons downstream in the substantia nigra pars reticulata (SNr) responded to Stop cues only in trials with successful cancellation. Recordings and simulations together indicate that this sensorimotor gating arises from the relative timing of two distinct inputs to neurons in the SNr dorsolateral “core” subregion: cue-related excitation from STN and movement-related inhibition from striatum. Our results support race models of action cancellation, with successful stopping requiring Stop cue information to be transmitted from STN to SNr before increased striatal input creates a point of no return.
doi:10.1038/nn.3456
PMCID: PMC3733500  PMID: 23852117
4.  Independent Evaluation of Computer Classification of Malignant and Benign Calcifications in Full-Field Digital Mammograms 
Academic radiology  2007;14(3):363-370.
Rationale and Objectives
To evaluate whether a computer-aided diagnosis (CADx) technique can accurately classify breast calcifications in full-field digital mammograms (FFDMs) as malignant or benign. The computer technique was developed previously on screen-film mammograms (SFMs) in which individual calcifications were identified manually. The present study evaluated the computer technique independently on a new database of FFDM images with automatic detection of the individual calcifications.
Materials and Methods
We analyzed 49 consecutive FFDM cases (19 cancers) that showed suspicious calcifications. Four mammography radiologists read softcopy mammograms retrospectively and electronically indicated the region of calcifications in each image. The computer then automatically detected the individual calcifications within the indicated region and analyzed eight features of calcification morphology and distribution to arrive at an estimated likelihood of malignancy. The radiologists entered BI-RADS assessments before and after seeing the computer results. Performance was analyzed using receiver operating characteristic (ROC) analysis.
Results
Despite variability in radiologist-indicated regions of calcifications, the computer achieved consistently high performance taking input from the four radiologists (ROC curve area, Az, of 0.80, 0.80, 0.78, and 0.77; differences not statistically significant). Previous results showed that the computer technique achieved an Az value of 0.80 on SFMs, which improved radiologists’ performance significantly.
Conclusion
The computer technique appears to maintain consistently high performance classifying calcifications in FFDMs as malignant or benign without requiring substantial modification from its initial development on SFMs. The computer performance appears to be robust with respect to variations in radiologists’ input.
doi:10.1016/j.acra.2006.12.012
PMCID: PMC3654797  PMID: 17307670
computer-aided diagnosis; full-field digital mammography; diagnostic mammography; breast calcifications; breast cancer diagnosis
5.  Differential pharmacokinetic analysis of in vivo erythropoietin receptor interaction with erythropoietin and continuous erythropoietin receptor activator in sheep 
The two erythropoiesis stimulating agents (ESAs), short acting recombinant human erythropoietin (EPO) and long acting continuous erythropoietin receptor activator (CERA), have been hypothesized to share an in vivo elimination pathway that involves binding to erythropoietin receptor (EPOR) and subsequent internalization. A physiologically based recirculation model and a pharmacokinetic tracer interaction methodology (TIM) were used to compare the in vivo interaction kinetics with EPOR between the two ESAs in adult sheep. Animals treated with EPO experienced a greater EPOR up-regulation than those treated with CERA, as evidenced by an eightfold-higher initial EPOR normalized production rate constant, ksyn/R0, versus a twofold-larger EPOR degradation rate constant, kdeg. In agreement with in vitro studies, EPO had a lower in vivo equilibrium dissociation constant from EPOR than CERA (KD = 6 versus 88.4 pmol/l, respectively, p < 0.01). The internalization and/or degradation of the EPO–EPOR complex was faster than that of the CERA–EPOR complex (kint = 24 versus 2.41 h−1, respectively, p < 0.01). The adopted model enables a mechanism-based explanation for CERA’s slower elimination and greater erythropoietic activity in vivo. As predicted by the model, the slower elimination of CERA is due to: (1) less EPOR up-regulation induced by CERA administration; (2) slower binding of CERA to EPOR; and (3) reduced internalization and/or degradation rate of surface-bound CERA. Slower CERA/EPOR complex elimination explains the greater in vivo erythropoiesis reported for CERA, despite its lower affinity to EPOR. A sensitivity analysis showed that the model parameters were reliably estimated using the TIM methodology.
doi:10.1002/bdd.757
PMCID: PMC3616385  PMID: 21678432
erythropoietin; erythropoiesis stimulating agent (ESA); CERA; pharmacokinetics; receptor; physiological model; receptor binding; recirculation model
6.  Basal Ganglia Beta Oscillations Accompany Cue Utilization 
Neuron  2012;73(3):523-536.
SUMMARY
Beta oscillations in cortical-basal ganglia (BG) circuits have been implicated in normal movement suppression and motor impairment in Parkinson’s disease. To dissect the functional correlates of these rhythms we compared neural activity during four distinct variants of a cued choice task in rats. Brief beta (~20 Hz) oscillations occurred simultaneously throughout the cortical-BG network, both spontaneously and at precise moments of task performance. Beta phase was rapidly reset in response to salient cues, yet increases in beta power were not rigidly linked to cues, movements, or movement suppression. Rather, beta power was enhanced after cues were used to determine motor output. We suggest that beta oscillations reflect a postdecision stabilized state of cortical-BG networks, which normally reduces interference from alternative potential actions. The abnormally strong beta seen in Parkinson’s Disease may reflect overstabilization of these networks, producing pathological persistence of the current motor state.
doi:10.1016/j.neuron.2011.11.032
PMCID: PMC3463873  PMID: 22325204
7.  Comparison of red blood cell survival in sheep determined using red blood cells labeled with either biotin at multiple densities or [14C]cyanate: validation of a model to study human physiology and disease 
Transfusion  2012;52(5):963-973.
BACKGROUND
Measurement of red blood cell (RBC) survival (RCS) is important for investigating pathophysiology and treatment of anemia. Our objective was to validate the multidensity biotin method for RCS determination in sheep, a commonly used model of RBC physiology. [14C]Cyanate served as the reference method for long-term RCS because the 51Cr method (the reference method for humans) is not reliable in sheep.
STUDY DESIGN AND METHODS
Aliquots of autologous RBCs from eight adult sheep were labeled with [14C]cyanate and four separate densities of biotin (BioRBCs) and reinfused. Short-term RCS was assessed by posttransfusion recovery at 24 hours (PTR24); long-term RCS was assessed by the time to 50% survival (T50) and mean potential life span (MPL).
RESULTS
Values for PTR24 of the four BioRBC densities were not different. Values for RCS as reflected by T50 and MPL were nearly identical for [14C]cyanate and the two intermediate-density BioRBC populations. In contrast, the lowest-density BioRBC population survived slightly longer (p < 0.01), but with a difference of no clinical significance. The highest-density BioRBC population importantly shortened RCS (p < 0.01 compared to the two intermediate densities).
CONCLUSION
This study provides evidence that BioRBCs labeled at four biotin densities can be used to independently and simultaneously measure short-term RCS and that BioRBCs labeled at the three lowest biotin densities can be used to accurately and simultaneously measure long-term RCS. Because the sheep RBC model is comparable to humans, this nonradioactive method has promise for use in RBC kinetic studies in neonates and pregnant women.
doi:10.1111/j.1537-2995.2011.03512.x
PMCID: PMC3564637  PMID: 22229348
8.  Decision support for hospital bed management using adaptable individual length of stay estimations and shared resources 
Background
Elective patient admission and assignment planning is an important task of the strategic and operational management of a hospital and early on became a central topic of clinical operations research. The management of hospital beds is an important subtask. Various approaches have been proposed, involving the computation of efficient assignments with regard to the patients’ condition, the necessity of the treatment, and the patients’ preferences. However, these approaches are mostly based on static, unadaptable estimates of the length of stay and, thus, do not take into account the uncertainty of the patient’s recovery. Furthermore, the effect of aggregated bed capacities have not been investigated in this context. Computer supported bed management, combining an adaptable length of stay estimation with the treatment of shared resources (aggregated bed capacities) has not yet been sufficiently investigated. The aim of our work is: 1) to define a cost function for patient admission taking into account adaptable length of stay estimations and aggregated resources, 2) to define a mathematical program formally modeling the assignment problem and an architecture for decision support, 3) to investigate four algorithmic methodologies addressing the assignment problem and one base-line approach, and 4) to evaluate these methodologies w.r.t. cost outcome, performance, and dismissal ratio.
Methods
The expected free ward capacity is calculated based on individual length of stay estimates, introducing Bernoulli distributed random variables for the ward occupation states and approximating the probability densities. The assignment problem is represented as a binary integer program. Four strategies for solving the problem are applied and compared: an exact approach, using the mixed integer programming solver SCIP; and three heuristic strategies, namely the longest expected processing time, the shortest expected processing time, and random choice. A baseline approach serves to compare these optimization strategies with a simple model of the status quo. All the approaches are evaluated by a realistic discrete event simulation: the outcomes are the ratio of successful assignments and dismissals, the computation time, and the model’s cost factors.
Results
A discrete event simulation of 226,000 cases shows a reduction of the dismissal rate compared to the baseline by more than 30 percentage points (from a mean dismissal ratio of 74.7% to 40.06% comparing the status quo with the optimization strategies). Each of the optimization strategies leads to an improved assignment. The exact approach has only a marginal advantage over the heuristic strategies in the model’s cost factors (≤3%). Moreover,this marginal advantage was only achieved at the price of a computational time fifty times that of the heuristic models (an average computing time of 141 s using the exact method, vs. 2.6 s for the heuristic strategy).
Conclusions
In terms of its performance and the quality of its solution, the heuristic strategy RAND is the preferred method for bed assignment in the case of shared resources. Future research is needed to investigate whether an equally marked improvement can be achieved in a large scale clinical application study, ideally one comprising all the departments involved in admission and assignment planning.
doi:10.1186/1472-6947-13-3
PMCID: PMC3621822  PMID: 23289448
9.  Effect of Insulin and an Erythropoietin-Derived Peptide (ARA290) on Established Neuritic Dystrophy and Neuronopathy in Akita (Ins2Akita) Diabetic Mouse Sympathetic Ganglia 
Experimental neurology  2011;232(2):126-135.
The Akita mouse is a robust model of diabetic autonomic neuropathy which develops severe diabetes following beta cell death, which occurs reproducibly at 3-4 weeks of age, and maintains the diabetic state without therapy for as long as 11 additional months. Neuritic dystrophy and neuronopathy involving prevertebral sympathetic superior mesenteric and celiac ganglia begin to develop within the first two months of onset of diabetes and are progressive with time. We have examined the effect of insulin implants resulting in normoglycemia and injections of ARA290, a small erythropoietin peptide which has no effect on glycemic parameters, on the reversal of established neuritic dystrophy and neuronopathy. We have found that 4 weeks of insulin therapy beginning at 2 months of diabetes resulted in normalization of blood glucose, body weight and HbA1c. Insulin therapy successfully reversed established neuritic dystrophy and neuronopathy to control levels. Numbers of sympathetic neurons were not significantly changed in either 3 month diabetic or insulin treated Akita mice. Treatment with ARA290 for 7 weeks beginning at 4 months of diabetes did not result in altered metabolic severity of diabetes as measured by blood glucose, body weight or HbA1c levels. ARA290 treatment was able to decrease neuritic dystrophy by 55-74% compared to untreated diabetics or in comparison to a separate group of diabetic animals representing the 4 month treatment onset point. Surprisingly, there was no effect of ARA290 on ganglionic neuron number or ongoing neuronopathy (pale/degenerating neurons) in diabetic Akita mice during this time period. The development of neuroprotective EPO-like peptides may provide a possible future therapy for this debilitating complication of diabetes; however, it appears that discrete elements may be differentially targeted by the diabetic state and may require selective therapy.
doi:10.1016/j.expneurol.2011.05.025
PMCID: PMC3202026  PMID: 21872588
diabetes; Akita mouse; neuritic dystrophy; neuronopathy; erythropoietin; insulin; sympathetic ganglia
10.  Ferromagnetic Nanoscale Electron Correlation Promoted by Organic Spin-Dependent Delocalization 
Journal of the American Chemical Society  2009;131(51):18304-18313.
We describe the electronic structure and the origin of ferromagnetic exchange coupling in two new metal complexes, NN-SQ-CoIII(py)2Cat-NN (1) and NN-Ph-SQ-CoIII(py)2Cat-Ph-NN (2) (NN = nitronylnitroxide radical, Ph = 1,4-phenylene, SQ = S = 1/2 semiquinone radical, Cat = S = 0 catecholate, and py = pyridine). Near-IR electronic absorption spectroscopy for 1 and 2 reveals a low energy optical band that has been assigned as a Ψu → Ψg transition involving bonding and antibonding linear combinations of delocalized dioxolene (SQ/Cat) valence frontier molecular orbitals. The ferromagnetic exchange interaction in 1 is so strong that only the high-spin quartet state (ST = 3/2) is thermally populated at temperatures up to 300 K. The temperature-dependent magnetic susceptibility data for 2 reveals that an excited state spin doublet (ST = 1/2) is populated at higher temperatures, indicating that the phenylene spacer modulates the magnitude of the magnetic exchange. The valence delocalization within the dioxolene dyad of 2 results in ferromagnetic alignment of two localized NN radicals separated by over 22 Å. The ferromagnetic exchange in 1 and 2 results from a spin-dependent delocalization (double exchange type) process and the origin of this strong electron correlation has been understood in terms of a valence bond configuration interaction (VBCI) model. We show that ferromagnetic coupling promoted by organic mixed-valency provides keen insight into the ability of single molecules to communicate spin information over nanoscale distances. Furthermore, the strong interaction between the itinerant dioxolene electron and localized NN electron spins impacts our ability to understand the exchange interaction between delocalized electrons and pinned magnetic impurities in technologically important dilute magnetic semiconductor materials. The long correlation length (22 Å) of the itinerant electron that mediates this coupling indicates that high-spin π-delocalized organic molecules could find applications as nanoscale spin-polarized electron injectors and molecular wires.
doi:10.1021/ja904648r
PMCID: PMC3505726  PMID: 19928960
11.  Usp14 Deficiency Increases Tau Phosphorylation without Altering Tau Degradation or Causing Tau-Dependent Deficits 
PLoS ONE  2012;7(10):e47884.
Regulated protein degradation by the proteasome plays an essential role in the enhancement and suppression of signaling pathways in the nervous system. Proteasome-associated factors are pivotal in ensuring appropriate protein degradation, and we have previously demonstrated that alterations in one of these factors, the proteasomal deubiquitinating enzyme ubiquitin-specific protease 14 (Usp14), can lead to proteasome dysfunction and neurological disease. Recent studies in cell culture have shown that Usp14 can also stabilize the expression of over-expressed, disease-associated proteins such as tau and ataxin-3. Using Usp14-deficient axJ mice, we investigated if loss of Usp14 results in decreased levels of endogenous tau and ataxin-3 in the nervous system of mice. Although loss of Usp14 did not alter the overall neuronal levels of tau and ataxin-3, we found increased levels of phosphorylated tau that correlated with the onset of axonal varicosities in the Usp14-deficient mice. These changes in tau phosphorylation were accompanied by increased levels of activated phospho-Akt, phosphorylated MAPKs, and inactivated phospho-GSK3β. However, genetic ablation of tau did not alter any of the neurological deficits in the Usp14-deficient mice, demonstrating that increased levels of phosphorylated tau do not necessarily lead to neurological disease. Due to the widespread activation of intracellular signaling pathways induced by the loss of Usp14, a better understanding of the cellular pathways regulated by the proteasome is required before effective proteasomal-based therapies can be used to treat chronic neurological diseases.
doi:10.1371/journal.pone.0047884
PMCID: PMC3483306  PMID: 23144711
12.  Rituximab-Associated Progressive Multifocal Leukoencephalopathy in Rheumatoid Arthritis 
Archives of neurology  2011;68(9):1156-1164.
Objective
To describe the development of progressive multifocal leukoencephalopathy (PML) in patients with rheumatoid arthritis (RA) treated with rituximab.
Design
Case study.
Setting
Clinical care for patients with rheumatologic diseases. Most were referred to academic centers for care after diagnosis (Washington University, St Louis, Missouri; Karolinska Insitute, Stockholm, Sweden; and Royal Melbourne Hospital, Melbourne, Australia) while one was cared for in a neurology practice in Dallas, Texas, with consultation by an academic neurovirologist from the University of Colorado in Denver.
Patients
Four patients developing PML in the setting of rituximab therapy for RA.
Intervention
Rituximab therapy.
Main Outcome Measures
Clinical and pathological observations.
Results
Four patients from an estimated population of 129 000 exposed to rituximab therapy for RA are reported in whom PML developed after administration of this drug. All were women older than 50 years, commonly with Sjögren syndrome and a history of treatment for joint disease ranging from 3 to 14 years. One case had no prior biologic and minimal immunosuppressive therapy. Progressive multifocal leukoencephalopathy presented as a progressive neurological disorder, with diagnosis confirmed by detection of JC virus DNA in the cerebrospinal fluid or brain biopsy specimen. Two patients died in less than 1 year from PML diagnosis, while 2 remain alive after treatment withdrawal. Magnetic resonance scans and tissue evaluation confirmed the frequent development of inflammatory PML during the course of the disease.
Conclusion
These cases suggest an increased risk, about 1 case per 25 000 individuals, of PML in patients with RA being treated with rituximab. Inflammatory PML may occur in this setting even while CD20 counts remain low.
doi:10.1001/archneurol.2011.103
PMCID: PMC3428054  PMID: 21555606
13.  Cross-frequency phase-phase coupling between theta and gamma oscillations in the hippocampus 
The Journal of Neuroscience  2012;32(2):423-435.
Summary
Neuronal oscillations allow for temporal segmentation of neuronal spikes. Interdependent oscillators can integrate multiple layers of information. We examined phase-phase coupling of theta and gamma oscillators in the CA1 region of rat hippocampus during maze exploration and REM sleep. Hippocampal theta waves were asymmetric, and estimation of the spatial position of the animal was improved by identifying the waveform-based phase of spiking, compared to traditional methods used for phase estimation. Using the waveform-based theta phase, 3 distinct gamma bands were identified: slow gammaS (30-50 Hz), mid-frequency gammaM (50-90 Hz) and fast gammaF (90-150 Hz or epsilon band). The amplitude of each sub-band was modulated by the theta phase. In addition, we found reliable phase-phase coupling between theta and both gammaS and gammaM but not gammaF oscillators. We suggest that cross-frequency phase coupling can support multiple time-scale control of neuronal spikes within and across structures.
doi:10.1523/JNEUROSCI.4122-11.2012
PMCID: PMC3293373  PMID: 22238079
14.  Red blood cell (RBC) survival determined in humans using RBCs labeled at multiple biotin densities 
Transfusion  2010;51(5):1047-1057.
BACKGROUND
Safe, accurate methods permitting simultaneous and/or repeated measurement of red blood cell (RBC) survival (RCS) are important to investigate pathophysiology and therapy of anemia. Methods using chromium 51 (51Cr) -labeled RBCs are unacceptable for infants, children, and pregnant women. We report RCS measured in vivo using RBCs labeled with several densities of biotin (BioRBCs).
STUDY DESIGN AND METHODS
Aliquots of autologous RBCs from eight healthy adult subjects were labeled separately at four discrete biotin densities, mixed, and infused. The proportion of each population of BioRBCs circulating was determined serially by flow cytometry over 20 weeks. For each population, RCS was assessed by the following: 1) post-transfusion BioRBC recovery at 24 hour (PTR24); 2) time to decrease to 50% of the enrichment at 24 hours (T50); and 3) mean potential lifespan (MPL).
RESULTS
Among the four BioRBC densities, no significant differences in PTR24 were observed. T50 and MPL were similar for the two lowest BioRBC densities. In contrast, the two highest BioRBC densities demonstrated progressively decreased T50 and MPL.
CONCLUSION
RBCs labeled at four biotin densities can be used to independently and accurately measure PTR24 and two lowest biotin densities can accurately quantitate long-term RCS. This method provides a tool for investigating anemia in infants, fetuses, and pregnant women with the following advantages over the standard 51Cr method: 1) study subjects are not exposed to radiation; 2) small blood volumes (e.g., 20 μL) are required; and 3) multiple independent RCS measurements can be made simultaneously in the same individual.
doi:10.1111/j.1537-2995.2010.02926.x
PMCID: PMC3089718  PMID: 21062290
15.  Radial Diffusivity Predicts Demyelination in ex-vivo Multiple Sclerosis Spinal Cords 
NeuroImage  2011;55(4):1454-1460.
Objective
Correlation of diffusion tensor imaging (DTI) with histochemical staining for demyelination and axonal damage in multiple sclerosis (MS) ex vivo human cervical spinal cords.
Background
In MS, demyelination, axonal degeneration, and inflammation contribute to disease pathogenesis to variable degrees. Based upon in vivo animal studies with acute injury and histopathologic correlation, we hypothesized that DTI can differentiate between axonal and myelin pathologies within humans.
Methods
DTI was performed at 4.7 Tesla on 9 MS and 5 normal control fixed cervical spinal cord blocks following autopsy. Sections were then stained for Luxol fast blue (LFB), Bielschowsky silver, and hematoxylin and eosin (H&E). Regions of interest (ROIs) were graded semi-quantitatively as normal myelination, mild (<50%) demyelination, or moderate-severe (>50%) demyelination. Corresponding axonal counts were manually determined on Bielschowsky silver. ROIs were mapped to co-registered DTI parameter slices. DTI parameters evaluated included standard quantitative assessments of apparent diffusion coefficient (ADC), relative anisotropy (RA), axial diffusivity and radial diffusivity. Statistical correlations were made between histochemical gradings and DTI parameters using linear mixed models. Results: Within ROIs in MS subjects, increased radial diffusivity distinguished worsening severities of demyelination. Relative anisotropy was decreased in the setting of moderate-severe demyelination compared to normal areas and areas of mild demyelination. Radial diffusivity, ADC, and RA became increasingly altered within quartiles of worsening axonal counts. Axial diffusivity did not correlate with axonal density (p=0.091).
Conclusions
Increased radial diffusivity can serve as a surrogate for demyelination. However, radial diffusivity was also altered with axon injury, suggesting that this measure is not pathologically specific within chronic human MS tissue. We propose that radial diffusivity can serve as a marker of overall tissue integrity within chronic MS lesions. This study provides pathologic foundation for on-going in vivo DTI studies in MS.
doi:10.1016/j.neuroimage.2011.01.007
PMCID: PMC3062747  PMID: 21238597
Multiple Sclerosis; Diffusion Tensor Imaging; Post mortum; Spinal cord
16.  Schwann cell mitochondrial metabolism supports long-term axonal survival and peripheral nerve function 
Mitochondrial dysfunction is a common cause of peripheral neuropathies. While the role of neuron and axonal mitochondria in peripheral nerve disease is well appreciated, whether Schwann cell (SC) mitochondrial deficits contribute to peripheral neuropathies is unclear. Here we examine how SC mitochondrial dysfunction affects axonal survival and contributes to the decline of peripheral nerve function by generating mice with SC-specific mitochondrial deficits. These mice (Tfam-SCKOs) were produced through the tissue-specific deletion of the mitochondrial transcription factor A gene (Tfam), which is essential for mitochondrial DNA (mtDNA) transcription and maintenance. Tfam-SCKOs were viable but, as they aged, they developed a progressive peripheral neuropathy characterized by nerve conduction abnormalities as well as extensive muscle denervation. Morphological examination of Tfam-SCKO nerves revealed early preferential loss of small unmyelinated fibers followed by prominent demyelination and degeneration of larger-caliber axons. Tfam-SCKOs displayed sensory and motor deficits consistent with this pathology. Remarkably, the severe mtDNA depletion and respiratory chain abnormalities in Tfam-SCKO mice did not affect SC proliferation or survival. Mitochondrial function in SCs is therefore essential for maintenance of axonal survival and normal peripheral nerve function, suggesting that SC mitochondrial dysfunction contributes to human peripheral neuropathies.
doi:10.1523/JNEUROSCI.0884-11.2011
PMCID: PMC3147283  PMID: 21752989
TFAM; metabolism; mitochondrial dysfunction; axonal degeneration
17.  Red blood cell volume can be independently determined in vivo in humans using red cells labeled at different densities of biotin 
Transfusion  2011;51(1):148-157.
BACKGROUND
Anemia is a serious problem in critically ill neonates. To investigate the pathophysiology of anemia and responses to red blood cell (RBC) transfusions and erythropoietin therapy, repeated measurement of red cell volume (RCV) and blood volume are useful. To extend our previous sheep study in which RBCs were labeled at four different biotin densities, we assessed the validity of this multidensity method for in vivo measurement of circulating RCV in humans.
STUDY DESIGN AND METHODS
In eight healthy adults, autologous RBCs were biotinylated at each of four biotin densities (6, 18, 54, and 162 µg biotinylation reagent per mL RBC), mixed, and infused intravenously; blood was sampled at 10, 20, and 60 minutes. At each time, RCV was calculated from dilution of individual RBC populations enumerated by flow cytometry. RCV measurements from the population of RBCs biotinylated at 6 µg/mL were chosen as the reference values because this density had been previously validated against the 51Cr method in vitro and in vivo in humans.
RESULTS
Values for RCVs were not significantly different among the four densities of biotinylated RBCs at any of the three time points and did not change over 60 minutes.
CONCLUSION
These studies provide evidence that four densities of biotinylated RBCs can be used in vivo for simultaneous, independent, accurate measurements of RCV in humans. We speculate that this method will also be useful for repeated measurement of RCV and blood volume in infants and other patient populations in whom radioactive labels should be avoided.
doi:10.1111/j.1537-2995.2010.02770.x
PMCID: PMC2974011  PMID: 20630041
18.  Red blood cell volume can be independently determined in vivo in the sheep using ovine red cells labeled at different densities of biotin 
Transfusion  2010;50(12):2553-2564.
BACKGROUND
To investigate the pathophysiology of anemia and responses to RBC transfusions and erythropoietin, repeated measurement of the circulating red cell volume (RCV) would be useful. Ovine erythropoiesis is similar to human erythropoiesis. Accordingly, a method for measuring RCV using either human or sheep RBCs labeled at different biotin densities has been previously validated in vitro. Here preclinical studies validating this method for in vivo measurement of circulating RCV in sheep are reported.
STUDY DESIGN AND METHODS
For each sheep, autologous RBCs were biotinylated were at four discrete densities (12, 24, 48, and 96 µg biotinylation reagent per mL RBC). The densities were mixed and infused intravenously. Blood was sampled five times over one hour beginning at 4 minutes. RCV values were determined based on dilution of each population of biotinylated RBCs and by the 14C-cyanate method.
RESULTS
There was no difference among RCVs measured at all densities through 16 minutes; however, by 60 minutes, RBCs biotinylated at the highest density overestimated RCV by 7.6%. RCV values increased 41% over the hour, consistent with equilibration with a pool of RBCs sequestered in the spleen. RCV by the 14C-cyanate method paralleled results by the biotin method but averaged 8% greater.
CONCLUSION
These studies provide evidence that all four densities of biotinylated RBCs can be used in sheep to simultaneously and independently determine RCV. We speculate that the multidensity biotinylation method will be useful both for multiple simultaneous measurements and for repeated measurement of circulating RCV and blood volume in humans.
doi:10.1111/j.1537-2995.2010.02744.x
PMCID: PMC2974037  PMID: 20561297
circulating red cell volume; blood volume; biotin; multiple densities; sheep; spleen
19.  Presentation of Similar Images as a Reference for Distinction Between Benign and Malignant Masses on Mammograms: Analysis of Initial Observer Study 
Journal of Digital Imaging  2010;23(5):592-602.
The effect of the presentation of similar images for distinction between benign and malignant masses on mammograms was evaluated in the observer performance study. Images of masses were obtained from the Digital Database for Screening Mammography. We selected 50 benign and 50 malignant masses by a stratified randomization method. For each case, similar images were selected based on the size of masses and the similarity measures. Radiologists were shown images with unknown masses and asked to provide their confidence level that the lesions were malignant before and after the presentation of the similar images. Eleven observers, including three attending breast radiologists, three breast imaging fellows, and five residents, participated. The average areas under the receiver operating characteristic curves without and with the presentation of the similar images were almost equivalent. However, there were many cases in which the similar images caused beneficial effects to the observers, whereas there were a small number of cases in which the similar images had detrimental effects. From a detailed analysis of the reasons for these detrimental effects, we found that the similar images would not be useful for diagnosis of rare and very difficult cases, i.e., benign-looking malignant and malignant-looking benign cases. In addition, these cases should not be included in the reference database, because radiologists would be confused by these unusual cases. The results of this study could be very important and useful for the future development and improvement of a computer-aided diagnosis system.
doi:10.1007/s10278-009-9263-z
PMCID: PMC3046675  PMID: 20054606
Similar images; computer-aided diagnosis; breast masses; mammograms
20.  Differentiation between Benign and Malignant Breast Lesions Detected by Bilateral Dynamic Contrast-Enhanced MRI: A Sensitivity and Specificity Study 
The purpose of this study was to apply an empirical mathematical model (EMM) to kinetic data acquired under a clinical protocol to determine if the sensitivity and specificity can be improved compared with qualitative BI-RADS descriptors of kinetics. 3D DCE-MRI data from 100 patients with 34 benign and 79 malignant lesions were selected for review under an Institutional Review Board (IRB)-approved protocol. The sensitivity and specificity of the delayed phase classification were 91% and 18%, respectively. The EMM was able to accurately fit these curves. There was a statistically significant difference between benign and malignant lesions for several model parameters: the uptake rate, initial slope, signal enhancement ratio, and curvature at the peak enhancement (at most P = 0.04). These results demonstrated that EMM analysis provided at least the diagnostic accuracy of the kinetic classifiers described in the BI-RADS lexicon, and offered a few key advantages. It can be used to standardize data from institutions with different dynamic protocols and can provide a more objective classification with continuous variables so that thresholds can be set to achieve desired sensitivity and specificity. This suggests that the EMM may be useful for analysis of routine clinical data.
doi:10.1002/mrm.21530
PMCID: PMC3121098  PMID: 18383287
malignant; breast; DCE-MRI; sensitivity
21.  Loss of Par-1a/MARK3/C-TAK1 Kinase Leads to Reduced Adiposity, Resistance to Hepatic Steatosis, and Defective Gluconeogenesis ▿  
Molecular and Cellular Biology  2010;30(21):5043-5056.
Par-1 is an evolutionarily conserved protein kinase required for polarity in worms, flies, frogs, and mammals. The mammalian Par-1 family consists of four members. Knockout studies of mice implicate Par-1b/MARK2/EMK in regulating fertility, immune homeostasis, learning, and memory as well as adiposity, insulin hypersensitivity, and glucose metabolism. Here, we report phenotypes of mice null for a second family member (Par-1a/MARK3/C-TAK1) that exhibit increased energy expenditure, reduced adiposity with unaltered glucose handling, and normal insulin sensitivity. Knockout mice were protected against high-fat diet-induced obesity and displayed attenuated weight gain, complete resistance to hepatic steatosis, and improved glucose handling with decreased insulin secretion. Overnight starvation led to complete hepatic glycogen depletion, associated hypoketotic hypoglycemia, increased hepatocellular autophagy, and increased glycogen synthase levels in Par-1a−/− but not in control or Par-1b−/− mice. The intercrossing of Par-1a−/− with Par-1b−/− mice revealed that at least one of the four alleles is necessary for embryonic survival. The severity of phenotypes followed a rank order, whereby the loss of one Par-1b allele in Par-1a−/− mice conveyed milder phenotypes than the loss of one Par-1a allele in Par-1b−/− mice. Thus, although Par-1a and Par-1b can compensate for one another during embryogenesis, their individual disruption gives rise to distinct metabolic phenotypes in adult mice.
doi:10.1128/MCB.01472-09
PMCID: PMC2953066  PMID: 20733003
22.  Observer Study for Evaluating Potential Utility of a Super-High-Resolution LCD in the Detection of Clustered Microcalcifications on Digital Mammograms 
We evaluated the potential utility of a newly developed liquid-crystal display (LCD), which used an independent sub-pixel drive (ISD) technique for increasing the spatial resolution of a standard LCD three times in one direction, by use of receiver operating characteristic (ROC) analysis and a two-alternative-forced-choice (2AFC) method to determine improvement in radiologists’ accuracy in the detection of clustered microcalcifications (MCLs) on digital mammograms. We used a standard LCD without and with the ISD technique, which can increase the spatial resolution of the LCD three times in one direction from three mega- to nine megapixels without changes in the size of the display. We used 60 single views of digital mammograms (30 with and 30 without clustered MCLs) for ROC studies and 60 regions of interest (ROIs) with clustered MCLs for 2AFC studies. In the ROC study, seven radiologists attempted to detect clustered MCLs without and with the ISD on the same LCD. In the 2AFC study, the same observer group compared the visibility of MCLs by use of the LCD without and with the ISD. Our institutional review board approved the use of this database and the participation of radiologists in this study. The accuracy in detecting clustered MCLs in the ROC study was improved by use of the LCD with the ISD, but the improvement was not statistically significant (p = 0.08). However, the superiority of the LCD with the ISD was demonstrated as significant (p < 0.001) in the 2AFC study. An LCD with ISD can improve the visibility of clustered MCLs when high-resolution digital mammograms are available.
doi:10.1007/s10278-009-9192-x
PMCID: PMC3043779  PMID: 19277785
Digital mammography; observer performance; display device; receiver operating characteristic curve; digital display
23.  Diffusion Tensor Imaging at 3 Hours after Traumatic Spinal Cord Injury Predicts Long-Term Locomotor Recovery 
Journal of Neurotrauma  2010;27(3):587-598.
Abstract
Accurate diagnosis of spinal cord injury (SCI) severity must be achieved before highly aggressive experimental therapies can be tested responsibly in the early phases after trauma. These studies demonstrate for the first time that axial diffusivity (λ||), derived from diffusion tensor imaging (DTI) within 3 h after SCI, accurately predicts long-term locomotor behavioral recovery in mice. Female C57BL/6 mice underwent sham laminectomy or graded contusive spinal cord injuries at the T9 vertebral level (5 groups, n = 8 for each group). In-vivo DTI examinations were performed immediately after SCI. Longitudinal measurements of hindlimb locomotor recovery were obtained using the Basso mouse scale (BMS). Injured and spared regions of ventrolateral white matter (VLWM) were reliably separated in the hyperacute phase by threshold segmentation. Measurements of λ|| were compared with histology in the hyperacute phase and 14 days after injury. The spared normal VLWM determined by hyperacute λ|| and 14-day histology correlated well (r = 0.95). A strong correlation between hindlimb locomotor function recovery and λ||-determined spared normal VLWM was also observed. The odds of significant locomotor recovery increased by 18% with each 1% increase in normal VLWM measured in the hyperacute phase (odds ratio = 1.18, p = 0.037). The capability of measuring subclinical changes in spinal cord physiology and murine genetic advantages offer an early window into the basic mechanisms of SCI that was not previously possible. Although significant obstacles must still be overcome to derive similar data in human patients, the path to clinical translation is foreseeable and achievable.
doi:10.1089/neu.2009.1063
PMCID: PMC2867549  PMID: 20001686
axial diffusion; diffusion tensor imaging; hyperacute; magnetic resonance imaging; recovery; spinal cord injury
24.  Variably Protease-Sensitive Prionopathy: A New Sporadic Disease of the Prion Protein 
Annals of neurology  2010;68(2):162-172.
Objective
The objective of the study is to report 2 new genotypic forms of protease-sensitive prionopathy (PSPr), a novel prion disease described in 2008, in 11 subjects all homozygous for valine at codon 129 of the prion protein (PrP) gene (129VV). The 2 new PSPr forms affect individuals who are either homozygous for methionine (129MM) or heterozygous for methionine/valine (129MV).
Methods
Fifteen affected subjects with 129MM, 129MV, and 129VV underwent comparative evaluation at the National Prion Disease Pathology Surveillance Center for clinical, histopathologic, immunohistochemical, genotypical, and PrP characteristics.
Results
Disease duration (between 22 and 45 months) was significantly different in the 129VV and 129MV subjects. Most other phenotypic features along with the PrP electrophoretic profile were similar but distinguishable in the 3 129 genotypes. A major difference laid in the sensitivity to protease digestion of the disease-associated PrP, which was high in 129VV but much lower, or altogether lacking, in 129MV and 129MM. This difference prompted the substitution of the original designation with “variably protease-sensitive prionopathy” (VPSPr). None of the subjects had mutations in the PrP gene coding region.
Interpretation
Because all 3 129 genotypes are involved, and are associated with distinguishable phenotypes, VPSPr becomes the second sporadic prion protein disease with this feature after Creutzfeldt-Jakob disease, originally reported in 1920. However, the characteristics of the abnormal prion protein suggest that VPSPr is different from typical prion diseases, and perhaps more akin to subtypes of Gerstmann-Sträussler-Scheinker disease.
doi:10.1002/ana.22094
PMCID: PMC3032610  PMID: 20695009
25.  Characterization and Modulation of the Immunosuppressive Phase of Sepsis▿  
Infection and Immunity  2010;78(4):1582-1592.
Sepsis continues to cause significant morbidity and mortality in critically ill patients. Studies of patients and animal models have revealed that changes in the immune response during sepsis play a decisive role in the outcome. Using a clinically relevant two-hit model of sepsis, i.e., cecal ligation and puncture (CLP) followed by the induction of Pseudomonas aeruginosa pneumonia, we characterized the host immune response. Second, AS101 [ammonium trichloro(dioxoethylene-o,o′)tellurate], a compound that blocks interleukin 10 (IL-10), a key mediator of immunosuppression in sepsis, was tested for its ability to reverse immunoparalysis and improve survival. Mice subjected to pneumonia following CLP had different survival rates depending upon the timing of the secondary injury. Animals challenged with P. aeruginosa at 4 days post-CLP had ∼40% survival, whereas animals challenged at 7 days had 85% survival. This improvement in survival was associated with decreased lymphocyte apoptosis, restoration of innate cell populations, increased proinflammatory cytokines, and restoration of gamma interferon (IFN-γ) production by stimulated splenocytes. These animals also showed significantly less P. aeruginosa growth from blood and bronchoalveolar lavage fluid. Importantly, AS101 improved survival after secondary injury 4 days following CLP. This increased survival was associated with many of the same findings observed in the 7-day group, i.e., restoration of IFN-γ production, increased proinflammatory cytokines, and decreased bacterial growth. Collectively, these studies demonstrate that immunosuppression following initial septic insult increases susceptibility to secondary infection. However, by 7 days post-CLP, the host's immune system has recovered sufficiently to mount an effective immune response. Modulation of the immunosuppressive phase of sepsis may aid in the development of new therapeutic strategies.
doi:10.1128/IAI.01213-09
PMCID: PMC2849407  PMID: 20100863

Results 1-25 (48)