PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-7 (7)
 

Clipboard (0)
None

Select a Filter Below

Journals
Year of Publication
Document Types
1.  The p.A382T TARDBP gene mutation in Sardinian patients affected by Parkinson’s disease and other degenerative parkinsonisms 
Neurogenetics  2013;14(2):161-166.
Background
Based on our previous finding of the p.A382T founder mutation in ALS patients with concomitant parkinsonism in the Sardinian population, we hypothesized that the same variant may underlie PD and/or other forms of degenerative parkinsonism on this Mediterranean island.
Design
We screened a cohort of 611 patients with PD (544 cases) and other forms of degenerative parkinsonism (67 cases), and 604 unrelated controls for the c.1144G>A (p.A382T) missense mutation of the TARDBP gene.
Results
The p.A382T mutation was identified in 9 patients with parkinsonism. Of these, 5 (0.9% of PD patients) presented a typical PD (2 with familiar forms), while 4 patients (6.0% of all other forms of parkinsonism) presented a peculiar clinical presentation quite different from classical atypical parkinsonism with an overlap of extrapyramidal-pyramidal-cognitive clinical signs. The mutation was found in 8 Sardinian controls (1.3%) consistent with a founder mutation in the island population.
Conclusions
Our findings suggest that the clinical presentation of the p.A382T TARDBP gene mutation may include forms of parkinsonism in which the extrapyramidal signs are the crucial core of the disease at onset. These forms can present PSP or CBD-like clinical signs, with bulbar and/or extrabulbar pyramidal signs and cognitive impairment. No evidence of association has been found between TARDBP gene mutation and typical PD.
doi:10.1007/s10048-013-0360-2
PMCID: PMC3661017  PMID: 23546887
TARDBP gene mutation; degenerative parkinsonism; TDP-43 Proteinopathies; Sardinia
2.  C9ORF72 hexanucleotide repeat expansions in the Italian sporadic ALS population 
Neurobiology of Aging  2012;33(8):1848.e15-1848.e20.
It has been recently reported that a large proportion of patients with familial amyotrophic lateral sclerosis (familial ALS) and frontotemporal dementia (FTD) are associated with a hexanucleotide (GGGGCC) repeat expansion in the first intron of C9ORF72. We have assessed 1,757 Italian sporadic ALS cases, 133 from Sardinia, 101 from Sicily, and 1,523 from mainland Italy. Sixty (3.7%) of 1,624 mainland Italians and Sicilians and 9 (6.8%) of the 133 Sardinian sporadic ALS cases carried the pathogenic repeat expansion. None of the 619 regionally-matched control samples (1,238 chromosomes) carried the expansion. Twenty-five cases (36.2%) had behavioral FTD in addition to ALS. FTD or unspecified dementia was also detected in 19 pedigrees (27.5%) in first-degree relatives of ALS patients. Cases carrying the C9ORF72 hexanucleotide expansion survived one year less than cases who did not carry this mutation. In conclusion, we found that C9ORF72 hexanucloetide repeat expansions represents a sizeable proportion of apparent sporadic ALS in the Italian and Sardinian population, representing by far the commonest mutation in Italy and the second more common in Sardinia.
doi:10.1016/j.neurobiolaging.2012.02.011
PMCID: PMC3372681  PMID: 22418734
Amyotrophic lateral sclerosis; C9ORF72; frontotemporal dementia; survival
3.  Clinical characteristics of patients with familial amyotrophic lateral sclerosis carrying the pathogenic GGGGCC hexanucleotide repeat expansion of C9ORF72 
Brain  2012;135(3):784-793.
A large hexanucleotide (GGGGCC) repeat expansion in the first intron of C9ORF72, a gene located on chromosome 9p21, has been recently reported to be responsible for ∼40% of familial amyotrophic lateral sclerosis cases of European ancestry. The aim of the current article was to describe the phenotype of amyotrophic lateral sclerosis cases carrying the expansion by providing a detailed clinical description of affected cases from representative multi-generational kindreds, and by analysing the age of onset, gender ratio and survival in a large cohort of patients with familial amyotrophic lateral sclerosis. We collected DNA and analysed phenotype data for 141 index Italian familial amyotrophic lateral sclerosis cases (21 of Sardinian ancestry) and 41 German index familial amyotrophic lateral sclerosis cases. Pathogenic repeat expansions were detected in 45 (37.5%) patients from mainland Italy, 12 (57.1%) patients of Sardinian ancestry and nine (22.0%) of the 41 German index familial amyotrophic lateral sclerosis cases. The disease was maternally transmitted in 27 (49.1%) pedigrees and paternally transmitted in 28 (50.9%) pedigrees (P = non-significant). On average, children developed disease 7.0 years earlier than their parents [children: 55.8 years (standard deviation 7.9), parents: 62.8 (standard deviation 10.9); P = 0.003]. Parental phenotype influenced the type of clinical symptoms manifested by the child: of the 13 cases where the affected parent had an amyotrophic lateral sclerosis–frontotemporal dementia or frontotemporal dementia, the affected child also developed amyotrophic lateral sclerosis–frontotemporal dementia in nine cases. When compared with patients carrying mutations of other amyotrophic lateral sclerosis-related genes, those with C9ORF72 expansion had commonly a bulbar onset (42.2% compared with 25.0% among non-C9ORF72 expansion cases, P = 0.03) and cognitive impairment (46.7% compared with 9.1% among non-C9ORF72 expansion cases, P = 0.0001). Median survival from symptom onset among cases carrying C9ORF72 repeat expansion was 3.2 years lower than that of patients carrying TARDBP mutations (5.0 years; 95% confidence interval: 3.6–7.2) and longer than those with FUS mutations (1.9 years; 95% confidence interval: 1.7–2.1). We conclude that C9ORF72 hexanucleotide repeat expansions were the most frequent mutation in our large cohort of patients with familial amyotrophic lateral sclerosis of Italian, Sardinian and German ancestry. Together with mutation of SOD1, TARDBP and FUS, mutations of C9ORF72 account for ∼60% of familial amyotrophic lateral sclerosis in Italy. Patients with C9ORF72 hexanucleotide repeat expansions present some phenotypic differences compared with patients with mutations of other genes or with unknown mutations, namely a high incidence of bulbar-onset disease and comorbidity with frontotemporal dementia. Their pedigrees typically display a high frequency of cases with pure frontotemporal dementia, widening the concept of familial amyotrophic lateral sclerosis.
doi:10.1093/brain/awr366
PMCID: PMC3286333  PMID: 22366794
amyotrophic lateral sclerosis; familial ALS, C9ORF72 gene; phenotype–genotype correlation
4.  Amyotrophic Lateral Sclerosis–Frontotemporal Lobar Dementia in 3 Families With p.Ala382Thr TARDBP Mutations 
Archives of neurology  2010;67(8):1002-1009.
Background
TAR DNA-binding protein 43, encoded by the TARDBP gene, has been identified as the major pathological protein of frontotemporal lobar dementia (FTLD) with or without amyotrophic lateral sclerosis (ALS) and sporadic ALS. Subsequently, mutations in the TARDBP gene have been detected in 2% to 3% of patients with ALS (both familial and sporadic ALS). However, to our knowledge, there is only 1 description of 2 patients with FTLD and TARDBP gene mutations who later developed motor neuron disease.
Objective
To describe cognitive abnormalities in 3 Italian families with familial ALS and TARDBP gene mutations.
Design, Setting, and Participants
Genetic, neuropsychological, and neuroimaging analyses in 36 patients with familial non–superoxide dismutase 1 gene (SOD1) ALS and 280 healthy controls.
Main Outcome Measure
We identified 3 index cases of familial ALS carrying the p.Ala382Thr missense mutation of the TARDBP gene and with clinical, neuroimaging, and neuropsychological features of FTLD.
Results
The p.Ala382Thr missense mutation of the TARDBP gene was absent in the 280 controls. It was present in all affected members of the 3 families for whom DNA was available. All affected members of the 3 families developed FTLD after the onset of ALS, confirmed by neuropsychological testing and hypometabolism in frontal associative areas assessed with fludeoxyglucose F 18 positron emission tomography and computed tomography.
Conclusions
Three apparently unrelated families with familial ALS carrying the p.Ala382Thr TARDBP missense mutation developed FTLD. In these families, FTLD co-segregates with ALS. Patients with ALS carrying TARDBP mutations may develop FTLD.
doi:10.1001/archneurol.2010.173
PMCID: PMC3535689  PMID: 20697052
5.  Large proportion of amyotrophic lateral sclerosis cases in Sardinia are due to a single founder mutation of the TARDBP gene 
Archives of neurology  2011;68(5):594-598.
Objective
To perform an extensive screening for mutations of amyotrophic lateral sclerosis (ALS)–related genes in a consecutive cohort of Sardinian patients, a genetic isolate phylogenically distinct from other European populations.
Design
Population-based, prospective cohort study.
Patients
A total of 135 Sardinian patients with ALS and 156 healthy control subjects of Sardinian origin who were age- and sex-matched to patients.
Intervention
Patients underwent mutational analysis for SOD1, FUS, and TARDBP.
Results
Mutational screening of the entire cohort found that 39 patients (28.7%) carried the c.1144G A (p.A382T) missense mutation of the TARDBP gene. Of these, 15 had familial ALS (belonging to 10 distinct pedigrees) and 24 had apparently sporadic ALS. None of the 156 age-, sex-, and ethnicity-matched controls carried the pathogenic variant. Genotype data obtained for 5 ALS cases carrying the p.A382T mutation found that they shared a 94–single-nucleotide polymorphism risk haplotype that spanned 663 Kb across the TARDBP locus on chromosome 1p36.22. Three patients with ALS who carry the p.A382T mutation developed extrapyramidal symptoms several years after their initial presentation with motor weakness.
Conclusions
The TARDBP p.A382T missense mutation accounts for approximately one-third of all ALS cases in this island population. These patients share a large risk haplotype across the TARDBP locus, indicating that they have a common ancestor.
doi:10.1001/archneurol.2010.352
PMCID: PMC3513278  PMID: 21220647
6.  Vitamin D Responsive Elements within the HLA-DRB1 Promoter Region in Sardinian Multiple Sclerosis Associated Alleles 
PLoS ONE  2012;7(7):e41678.
Vitamin D response elements (VDREs) have been found in the promoter region of the MS-associated allele HLA-DRB1*15∶01, suggesting that with low vitamin D availability VDREs are incapable of inducing *15∶01 expression allowing in early life autoreactive T-cells to escape central thymic deletion. The Italian island of Sardinia exhibits a very high frequency of MS and high solar radiation exposure. We test the contribution of VDREs analysing the promoter region of the MS-associated DRB1 *04∶05, *03∶01, *13∶01 and *15∶01 and non-MS-associated *16∶01, *01, *11, *07∶01 alleles in a cohort of Sardinians (44 MS patients and 112 healthy subjects). Sequencing of the DRB1 promoter region revealed a homozygous canonical VDRE in all *15∶01, *16∶01, *11 and in 45/73 *03∶01 and in heterozygous state in 28/73 *03∶01 and all *01 alleles. A new mutated homozygous VDRE was found in all *13∶03, *04∶05 and *07∶01 alleles. Functionality of mutated and canonical VDREs was assessed for its potential to modulate levels of DRB1 gene expression using an in vitro transactivation assay after stimulation with active vitamin D metabolite. Vitamin D failed to increase promoter activity of the *04∶05 and *03∶01 alleles carrying the new mutated VDRE, while the *16∶01 and *03∶01 alleles carrying the canonical VDRE sequence showed significantly increased transcriptional activity. The ability of VDR to bind the mutant VDRE in the DRB1 promoter was evaluated by EMSA. Efficient binding of VDR to the VDRE sequence found in the *16∶01 and in the *15∶01 allele reduced electrophoretic mobility when either an anti-VDR or an anti-RXR monoclonal antibody was added. Conversely, the Sardinian mutated VDRE sample showed very low affinity for the RXR/VDR heterodimer. These data seem to exclude a role of VDREs in the promoter region of the DRB1 gene in susceptibility to MS carried by DRB1* alleles in Sardinian patients.
doi:10.1371/journal.pone.0041678
PMCID: PMC3404969  PMID: 22848563
7.  Parkin Exon Rearrangements and Sequence Variants in LRRK2 Mutations Carriers: Analysis on a Possible Modifier Effect on LRRK2 Penetrance 
Parkinson's Disease  2010;2010:537698.
Mutations in LRRK2 represent the most common causes of Parkinson's disease (PD) identified to date, but their penetrance is incomplete and probably due to the presence of other genetic or environmental factors required for development of the disease. We analyzed the presence of parkin sequence variants (mutations or polymorphisms) and exon rearrangements in LRRK2 mutations carriers (both PD patients and unaffected relatives) in order to detect a possible modifier effect on penetrance. Eight families with nine PD patients with heterozygous LRRK2 mutations (identified within 380 Sardinian PD patients screened for the presence of the five most common LRRK2 mutations) and sixteen additional relatives were genetically investigated for the presence of LRRK2 and parkin mutations. No evidence was found for the presence of pathological parkin mutations or exon rearrangements in patients or not affected family members. Three single-nucleotide polymorphisms (SNPs) were identified both in patients and unaffected relatives but did not significantly differ between the two groups. These data provide no support to the hypothesis whereby such parkin gene mutations may be commonly implicated in possible effect on penetrance in LRRK2 mutation carriers.
doi:10.4061/2010/537698
PMCID: PMC2957242  PMID: 20976090

Results 1-7 (7)