PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (62)
 

Clipboard (0)
None

Select a Filter Below

Journals
more »
Year of Publication
Document Types
1.  Diffusion tensor imaging reveals widespread white matter abnormalities in children and adolescents with myotonic dystrophy type 1 
Journal of neurology  2012;260(4):1122-1131.
Diffusion Tensor Imaging was used to evaluate cerebral white matter in 16 patients (ages 9–18) with myotonic dystrophy type 1 compared to 15 matched controls. Patients with myotonic dystrophy showed abnormalities in mean diffusivity compared to controls in frontal, temporal, parietal, and occipital white matter and in all individual tracts examined. Whole cerebrum mean diffusivity was 8.6% higher overall in patients with myotonic dystrophy compared to controls. Whole cerebrum fractional anisotropy was also abnormal (10.8% low overall) in all regions and tracts except corticospinal tracts. Follow-up analysis of parallel and perpendicular diffusivity suggests possible relative preservation of myelin in corticospinal tracts. Correlations between Wechsler working memory performance and mean diffusivity were strong for all regions. Frontal and temporal fractional anisotropy were correlated with working memory as well. Results are consistent with earlier studies demonstrating that significant white matter disturbances are characteristic in young patients with myotonic dystrophy and that these abnormalities are associated with the degree of working memory impairment seen in this disease.
doi:10.1007/s00415-012-6771-4
PMCID: PMC3609908  PMID: 23192171
Diffusion Tensor Imaging; DTI; Myotonic Dystrophy; Child; MRI
2.  Neuromodulation for Brain Disorders: Challenges and Opportunities 
The field of neuromodulation encompasses a wide spectrum of interventional technologies that modify pathological activity within the nervous system to achieve a therapeutic effect. Therapies including deep brain stimulation (DBS), intracranial cortical stimulation (ICS), transcranial direct current stimulation (tDCS), and transcranial magnetic stimulation (TMS) have all shown promising results across a range of neurological and neuropsychiatric disorders. While the mechanisms of therapeutic action are invariably different amongst these approaches, there are several fundamental neuroengineering challenges that are commonly applicable to improving neuromodulation efficacy. This article reviews the state-of-the-art of neuromodulation for brain disorders and discusses the challenges and opportunities available for clinicians and researchers interested in advancing neuromodulation therapies.
doi:10.1109/TBME.2013.2244890
PMCID: PMC3724171  PMID: 23380851
neuromodulation; neuroengineering; deep brain stimulation; intracranial cortical stimulation; transcranial magnetic stimulation; transcranial direct current stimulation
3.  Magnetic Resonance Field Strength Effects on Diffusion Measures and Brain Connectivity Networks 
Brain Connectivity  2013;3(1):72-86.
Abstract
The quest to map brain connectivity is being pursued worldwide using diffusion imaging, among other techniques. Even so, we know little about how brain connectivity measures depend on the magnetic field strength of the scanner. To investigate this, we scanned 10 healthy subjects at 7 and 3 tesla—using 128-gradient high-angular resolution diffusion imaging. For each subject and scan, whole-brain tractography was used to estimate connectivity between 113 cortical and subcortical regions. We examined how scanner field strength affects (i) the signal-to-noise ratio (SNR) of the non-diffusion-sensitized reference images (b0); (ii) diffusion tensor imaging (DTI)-derived fractional anisotropy (FA), mean, radial, and axial diffusivity (MD/RD/AD), in atlas-defined regions; (iii) whole-brain tractography; (iv) the 113×113 brain connectivity maps; and (v) five commonly used network topology measures. We also assessed effects of the multi-channel reconstruction methods (sum-of-squares, SOS, at 7T; adaptive recombine, AC, at 3T). At 7T with SOS, the b0 images had 18.3% higher SNR than with 3T-AC. FA was similar for most regions of interest (ROIs) derived from an online DTI atlas (ICBM81), but higher at 7T in the cerebral peduncle and internal capsule. MD, AD, and RD were lower at 7T for most ROIs. The apparent fiber density between some subcortical regions was greater at 7T-SOS than 3T-AC, with a consistent connection pattern overall. Suggesting the need for caution, the recovered brain network was apparently more efficient at 7T, which cannot be biologically true as the same subjects were assessed. Care is needed when comparing network measures across studies, and when interpreting apparently discrepant findings.
doi:10.1089/brain.2012.0114
PMCID: PMC3621300  PMID: 23205551
brain network analysis; DTI; fractional anisotropy; graph theory; high-field MRI; high angular resolution diffusion imaging (HARDI); signal-to-noise ratio; tractography
4.  In vivo 1H magnetic resonance spectroscopy in young-adult daily marijuana users☆ 
NeuroImage : clinical  2013;2:581-589.
To date, there has been little work describing the neurochemical profile of young, heavy marijuana users. In this study, we examined 27 young-adult marijuana users and 26 healthy controls using single-voxel magnetic resonance spectroscopy on a 3 T scanner. The voxel was placed in the dorsal striatum, and estimated concentrations of glutamate + glutamine, myo-inositol, taurine + glucose, total choline and total N-acetylaspartate were examined between groups. Therewere no overall group effects, but two metabolites showed group by sex interactions. Lower levels of glutamate + glutamine (scaled to total creatine) were observed in female, but not male, marijuana users compared to controls. Higher levels of myo-inositol were observed in female users compared to female non-users and to males in both groups. Findings are discussed in relation to patterns of corticostriatal connectivity and function, in the context of marijuana abuse.
doi:10.1016/j.nicl.2013.04.011
PMCID: PMC3743264  PMID: 23956957
Cannabis; Glutamate; Basal ganglia; Adolescence
5.  Investigating connectivity between the cerebellum and thalamus in schizophrenia using diffusion tensor tractography: A pilot study 
Psychiatry research  2008;163(3):10.1016/j.pscychresns.2007.10.005.
Connections of the cortical–thalamic–cerebellar–cortical regions provide a framework for studying the neural substrates of schizophrenia. A novel diffusion tensor tractography method was used to evaluate the differences in white matter connectivity between 12 patients with schizophrenia and 10 controls. For the tract tracing, we focused on the connection between the cerebellum and the thalamus. Fractional anisotropy (FA) measures along the fiber tracks were compared between patients and the control sample. Fiber tracts located between the cerebellar white matter and the thalamus exhibit a reduced FA in patients with schizophrenia in comparison with controls. The FA values along the defined fiber tracts were not overall reduced but exhibited a reduction in the anisotropy in the region in the superior cerebellar peduncles projecting towards the red nucleus.
doi:10.1016/j.pscychresns.2007.10.005
PMCID: PMC3847814  PMID: 18656332
Diffusion tensor; Schizophrenia; Tractography
6.  MultiCenter Reliability of Diffusion Tensor Imaging 
Brain Connectivity  2012;2(6):345-355.
Abstract
A number of studies are now collecting diffusion tensor imaging (DTI) data across sites. While the reliability of anatomical images has been established by a number of groups, the reliability of DTI data has not been studied as extensively. In this study, five healthy controls were recruited and imaged at eight imaging centers. Repeated measures were obtained across two imaging protocols allowing intra-subject and inter-site variability to be assessed. Regional measures within white matter were obtained for standard rotationally invariant measures: fractional anisotropy, mean diffusivity, radial diffusivity, and axial diffusivity. Intra-subject coefficient of variation (CV) was typically <1% for all scalars and regions. Inter-site CV increased to ∼1%–3%. Inter-vendor variation was similar to inter-site variability. This variability includes differences in the actual implementation of the sequence.
doi:10.1089/brain.2012.0112
PMCID: PMC3623569  PMID: 23075313
diffusion tensor; fractional anisotropy; magnetic resonance; mean diffusivity; reliability; white matter
7.  Longitudinal Changes in Behavioral Approach System Sensitivity and Brain Structures Involved in Reward Processing during Adolescence 
Developmental psychology  2012;48(5):1488-1500.
Adolescence is a period of radical normative changes and increased risk for substance use, mood disorders, and physical injury. Researchers have proposed that increases in reward sensitivity, i.e., sensitivity of the behavioral approach system (BAS), and/or increases in reactivity to all emotional stimuli (i.e., reward and threat sensitivities) lead to these phenomena. The present study is the first longitudinal investigation of changes in reward (i.e., BAS) sensitivity in 9 to 23-year-olds across a two-year follow-up. We found support for increased reward sensitivity from early to late adolescence and evidence for decline in the early twenties. This decline is combined with a decrease in left nucleus accumbens (Nacc) volume, a key structure for reward processing, from the late teens into the early twenties. Furthermore, we found longitudinal increases in sensitivity to reward to be predicted by individual differences in the Nacc and medial OFC volumes at baseline in this developmental sample. Similarly, increases in sensitivity to threat (i.e., BIS sensitivity) were qualified by sex, with only females experiencing this increase, and predicted by individual differences in lateral OFC volumes at baseline.
doi:10.1037/a0027502
PMCID: PMC3370133  PMID: 22390662
Adolescence; behavioral approach system (BAS); reward sensitivity
8.  Complex biomarker discovery in neuroimaging data: Finding a needle in a haystack☆ 
NeuroImage : Clinical  2013;3:123-131.
Neuropsychiatric disorders such as schizophrenia, bipolar disorder and Alzheimer's disease are major public health problems. However, despite decades of research, we currently have no validated prognostic or diagnostic tests that can be applied at an individual patient level. Many neuropsychiatric diseases are due to a combination of alterations that occur in a human brain rather than the result of localized lesions. While there is hope that newer imaging technologies such as functional and anatomic connectivity MRI or molecular imaging may offer breakthroughs, the single biomarkers that are discovered using these datasets are limited by their inability to capture the heterogeneity and complexity of most multifactorial brain disorders. Recently, complex biomarkers have been explored to address this limitation using neuroimaging data. In this manuscript we consider the nature of complex biomarkers being investigated in the recent literature and present techniques to find such biomarkers that have been developed in related areas of data mining, statistics, machine learning and bioinformatics.
Highlights
•We review data mining approaches for discovering four types of complex biomarkers.•Linear biomarkers capture linear combinations that are related to the phenotype.•Combinatorial biomarkers capture biomarkers for heterogeneous samples in a study.•Pathway biomarkers study the role of known subsystems for a given disorder.•Network biomarkers capture the role of brain network structure in a phenotype.
doi:10.1016/j.nicl.2013.07.004
PMCID: PMC3791294  PMID: 24179856
9.  Function Biomedical Informatics Research Network Recommendations for Prospective Multi-Center Functional Magnetic Resonance Imaging Studies 
This report provides practical recommendations for the design and execution of Multi-Center functional Magnetic Resonance Imaging (MC-fMRI) studies based on the collective experience of the Function Biomedical Informatics Research Network (FBIRN). The paper was inspired by many requests from the fMRI community to FBIRN group members for advice on how to conduct MC-fMRI studies. The introduction briefly discusses the advantages and complexities of MC-fMRI studies. Prerequisites for MC-fMRI studies are addressed before delving into the practical aspects of carefully and efficiently setting up a MC-fMRI study. Practical multi-site aspects include: (1) establishing and verifying scan parameters including scanner types and magnetic fields, (2) establishing and monitoring of a scanner quality program, (3) developing task paradigms and scan session documentation, (4) establishing clinical and scanner training to ensure consistency over time, (5) developing means for uploading, storing, and monitoring of imaging and other data, (6) the use of a traveling fMRI expert and (7) collectively analyzing imaging data and disseminating results. We conclude that when MC-fMRI studies are organized well with careful attention to unification of hardware, software and procedural aspects, the process can be a highly effective means for accessing a desired participant demographics while accelerating scientific discovery.
doi:10.1002/jmri.23572
PMCID: PMC3349791  PMID: 22314879
Functional magnetic resonance imaging; fMRI; multi-center; multi-site; FIRST Biomedica Informatics Research Network; FBIRN
10.  Automated Semantic Indices Related to Cognitive Function and Rate of Cognitive Decline 
Neuropsychologia  2012;50(9):2165-2175.
The objective of our study is to introduce a fully automated, computational linguistic technique to quantify semantic relations between words generated on a standard semantic verbal fluency test and to determine its cognitive and clinical correlates. Cognitive differences between patients with Alzheimer’s disease and mild cognitive impairment are evident in their performance on the semantic verbal fluency test. In addition to the semantic verbal fluency test score, several other performance characteristics sensitive to disease status and predictive of future cognitive decline have been defined in terms of words generated from semantically related categories (clustering) and shifting between categories (switching). However, the traditional assessment of clustering and switching has been performed manually in a qualitative fashion resulting in subjective scoring with limited reproducibility and scalability. Our approach uses word definitions and hierarchical relations between the words in WordNet®, a large electronic lexical database, to quantify the degree of semantic similarity and relatedness between words. We investigated the novel semantic fluency indices of mean cumulative similarity and relatedness between all pairs of words regardless of their order, and mean sequential similarity and relatedness between pairs of adjacent words in a sample of patients with clinically diagnosed probable (n=55) or possible (n=27) Alzheimer’s disease or mild cognitive impairment (n=31). The semantic fluency indices differed significantly between the diagnostic groups, and were strongly associated with neuropsychological tests of executive function, as well as the rate of global cognitive decline. Our results suggest that word meanings and relations between words shared across individuals and computationally modeled via WordNet and large text corpora provide the necessary context to account for the variability in language-based behavior and relate it to cognitive dysfunction observed in mild cognitive impairment and Alzheimer’s disease.
doi:10.1016/j.neuropsychologia.2012.05.016
PMCID: PMC3404821  PMID: 22659109
semantic verbal fluency; Alzheimer’s disease; mild cognitive impairment; semantic similarity; semantic relatedness; computational semantics
11.  Test–Retest and Between-Site Reliability in a Multicenter fMRI Study 
Human brain mapping  2008;29(8):958-972.
In the present report, estimates of test–retest and between-site reliability of fMRI assessments were produced in the context of a multicenter fMRI reliability study (FBIRN Phase 1, www.nbirn.net). Five subjects were scanned on 10 MRI scanners on two occasions. The fMRI task was a simple block design sensorimotor task. The impulse response functions to the stimulation block were derived using an FIR-deconvolution analysis with FMRISTAT. Six functionally-derived ROIs covering the visual, auditory and motor cortices, created from a prior analysis, were used. Two dependent variables were compared: percent signal change and contrast-to-noise-ratio. Reliability was assessed with intraclass correlation coefficients derived from a variance components analysis. Test–retest reliability was high, but initially, between-site reliability was low, indicating a strong contribution from site and site-by-subject variance. However, a number of factors that can markedly improve between-site reliability were uncovered, including increasing the size of the ROIs, adjusting for smoothness differences, and inclusion of additional runs. By employing multiple steps, between-site reliability for 3T scanners was increased by 123%. Dropping one site at a time and assessing reliability can be a useful method of assessing the sensitivity of the results to particular sites. These findings should provide guidance to others on the best practices for future multicenter studies.
doi:10.1002/hbm.20440
PMCID: PMC3670112  PMID: 17636563
test–retest; reproducibility; intraclass correlation coefficient; multicenter; FMRI
12.  Functional Connectivity in the Cognitive Control Network and the Default Mode Network in Late-life Depression 
Journal of Affective Disorders  2012;139(1):56-65.
Background
Abnormalities have been identified in the Cognitive Control Network (CCN) and the default mode network (DMN) during episodes of late-life depression. This study examined whether functional connectivity at rest (FC) within these networks characterize late-life depression and predict antidepressant response.
Methods
26 non-demented, non-MCI older adults were studied. Of these, 16 had major depression and 10 had no psychopathology. Depressed patients were treated with escitalopram (target dose 20 mg) for 12 weeks after a 2-week placebo phase. Resting state timeseries was determined prior to treatment. FC within the CCN was determined by placing seeds in the dACC and the DLPFC bilaterally. FC within the DMN was assessed from a seed placed in the posterior cingulate.
Results
Low resting state FC within the CCN and high FC within the DMN distinguished depressed from normal elderly subjects. Beyond this “double dissociation”, low resting state FC within the CCN predicted low remission rate and persistence of depressive symptoms and signs, apathy, and dysexecutive behavior after treatment with escitalopram. In contrast, resting state FC within the DMN was correlated with pessimism but did not predict treatment response.
Conclusions
If confirmed, these findings may serve as a signature of the brain’s functional topography characterizing late-life depression and sustaining its symptoms. By identifying the network abnormalities underlying biologically meaningful characteristics (apathy, dysexecutive behavior, pessimism) and sustaining late-life depression, these findings can provide a novel target on which new somatic and psychosocial treatments can be tested.
doi:10.1016/j.jad.2011.12.002
PMCID: PMC3340472  PMID: 22425432
13.  Cerebral and Muscle MRI Abnormalities in Myotonic Dystrophy 
Neuromuscular Disorders  2012;22(6):483-491.
Pathophysiological mechanisms underlying the clinically devastating CNS features of myotonic dystrophy (DM) remain more enigmatic and controversial than do the muscle abnormalities of this common form of muscular dystrophy. To better define CNS and cranial muscle changes in DM, we used quantitative volumetric and diffusion tensor MRI methods to measure cerebral and masticatory muscle differences between controls (n=5) and adults with either congenital (n=5) or adult onset (n=5) myotonic dystrophy type 1, myotonic dystrophy type 2 (n=5). Muscle volumes were diminished in DM1 and strongly correlated with reduced white matter integrity and gray matter volume. Moreover, correlation of reduced fractional anisotropy (white matter integrity) and gray matter volume in both DM1 and DM2 suggests that these abnormalities may share a common underlying pathophysiological mechanism. Further quantitative temporal and spatial characterization of these features will help delineate developmental and progressive neurological components of DM, and help determine the causative molecular and cellular mechanisms.
doi:10.1016/j.nmd.2012.01.003
PMCID: PMC3350604  PMID: 22290140
Myotonic dystrophy; DM; DM1; DM2; diffusion tensor imaging; magnetic resonance imaging; MRI; cerebral white matter; cerebral gray matter; craniofacial muscle; pterygoid; temporalis; masseter
14.  In vivo 1H magnetic resonance spectroscopy in young-adult daily marijuana users☆ 
NeuroImage : Clinical  2013;2:581-589.
To date, there has been little work describing the neurochemical profile of young, heavy marijuana users. In this study, we examined 27 young-adult marijuana users and 26 healthy controls using single-voxel magnetic resonance spectroscopy on a 3 T scanner. The voxel was placed in the dorsal striatum, and estimated concentrations of glutamate + glutamine, myo-inositol, taurine + glucose, total choline and total N-acetylaspartate were examined between groups. There were no overall group effects, but two metabolites showed group by sex interactions. Lower levels of glutamate + glutamine (scaled to total creatine) were observed in female, but not male, marijuana users compared to controls. Higher levels of myo-inositol were observed in female users compared to female non-users and to males in both groups. Findings are discussed in relation to patterns of corticostriatal connectivity and function, in the context of marijuana abuse.
Highlights
•The neurochemical profile of the basal ganglia was examined in young marijuana users.•Glutamate/glutamine levels were lower in female users versus male users and controls.•Higher myo-inositol levels were observed in female users as compared to other groups.•Neurochemical impacts of marijuana may be particularly pronounced in females.
doi:10.1016/j.nicl.2013.04.011
PMCID: PMC3743264  PMID: 23956957
Cannabis; Glutamate; Basal ganglia; Adolescence
15.  Altered Resting State Complexity in Schizophrenia 
Neuroimage  2011;59(3):2196-2207.
The complexity of the human brain’s activity and connectivity varies over temporal scales and is altered in disease states such as schizophrenia. Using a multi-level analysis of spontaneous low-frequency fMRI data stretching from the activity of individual brain regions to the coordinated connectivity pattern of the whole brain, we investigate the role of brain signal complexity in schizophrenia. Specifically, we quantitatively characterize the univariate wavelet entropy of regional activity, the bivariate pairwise functional connectivity between regions, and the multivariate network organization of connectivity patterns. Our results indicate that univariate measures of complexity are less sensitive to disease state than higher level bivariate and multivariate measures. While wavelet entropy is unaffected by disease state, the magnitude of pairwise functional connectivity is significantly decreased in schizophrenia and the variance is increased. Furthermore, by considering the network structure as a function of correlation strength, we find that network organization specifically of weak connections is strongly correlated with attention, memory, and negative symptom scores and displays potential as a clinical biomarker, providing up to 75% classification accuracy and 85% sensitivity. We also develop a general statistical framework for the testing of group differences in network properties, which is broadly applicable to studies where changes in network organization are crucial to the understanding of brain function.
doi:10.1016/j.neuroimage.2011.10.002
PMCID: PMC3254701  PMID: 22008374
schizophrenia; functional connectivity; network analysis; graph theory; resting state
16.  HOW DO SPATIAL AND ANGULAR RESOLUTION AFFECT BRAIN CONNECTIVITY MAPS FROM DIFFUSION MRI? 
Diffusion tensor imaging (DTI) is sensitive to the directionally- constrained flow of water, which diffuses preferentially along axons. Tractography programs may be used to infer matrices of connectivity (anatomical networks) between pairs of brain regions. Little is known about how these computed connectivity measures depend on the scans’ spatial and angular resolutions. To determine this, we scanned 8 young adults with DTI at 2.5 and 3 mm resolutions, and an additional subject at 4 resolutions between 2–4 mm. We computed 70×70 connectivity matrices, using whole-brain tractography to measure fiber density between all pairs of 70 cortical and subcortical regions. Spatial and angular resolution affected the computed connectivity for narrower tracts (internal capsule and cerebellum), but also for the corticospinal tract. Data resolution affected the apparent role of some key structures in cortical anatomic networks. Care is needed when comparing network data across studies, and interpreting apparent disagreements among findings.
doi:10.1109/ISBI.2012.6235469
PMCID: PMC3420957  PMID: 22903027
Connectivity; diffusion imaging; tractography; networks; MRI; brain
17.  Ecology of aging human brain 
Archives of neurology  2011;68(8):1049-1056.
OBJECTIVE
Alzheimer’s disease (AD), cerebral vascular brain injury (VBI), and isocortical Lewy body (LB) disease (LBD) are the major contributors to dementia in community- or population-based studies: Adult Changes in Thought (ACT) study, Honolulu-Asia Aging Study (HAAS), Nun Study (NS), and Oregon Brain Aging Study (OBAS). However, the prevalence of clinically silent forms of these diseases in cognitively normal (CN) adults is less clear.
DESIGN and SETTING
We evaluated 1672 brain autopsies from ACT, HAAS, NS, and OBAS of which 424 met criteria for CN.
MAIN OUTCOME MEASURES
Of these, 336 cases had a comprehensive neuropathologic examination of neuritic plaque (NP) density, Braak stage for neurofibrillary tangles (NFTs), Lewy body (LB) distribution, and number of cerebral microinfarcts (CMIs).
RESULTS
47% of CN cases had moderate or frequent NP density; of these 6% also had Braak stage V or VI for NFTs. 15% of CN cases had medullary LBD; 8% also had nigral and 4% isocortical LBD. The presence of any CMIs was identified in 33% and high level CMIs in 10% of CN individuals. Overall burden of lesions in each individual and their co-morbidity varied widely within each study but were similar among studies.
CONCLUSIONS
These data show an individually varying complex convergence of subclinical diseases in the brain of older CN adults. Appreciating this ecology should help guide future biomarker or neuroimaging studies as well as clinical trials that focus on community- or population-based cohorts.
doi:10.1001/archneurol.2011.157
PMCID: PMC3218566  PMID: 21825242
Alzheimer’s disease; vascular brain injury; Lewy body disease; cognitive aging
18.  Frontal Hyperconnectivity Related to Discounting and Reversal Learning in Cocaine Subjects 
Biological psychiatry  2011;69(11):1117-1123.
BACKGROUND
Functional neuroimaging studies suggest that chronic cocaine use is associated with frontal lobe abnormalities. Functional connectivity (FC) alterations of cocaine dependent individuals (CD), however, are not yet clear. This is the first study to our knowledge that examines resting FC of anterior cingulate cortex (ACC) in CD. Because ACC is known to integrate inputs from different brain regions to regulate behavior, we hypothesize that CD will have connectivity abnormalities in ACC networks. In addition, we hypothesized that abnormalities would be associated with poor performance in delayed discounting and reversal learning tasks.
METHODS
Resting functional magnetic resonance imaging data were collected to look for FC differences between twenty-seven cocaine dependent individuals (CD) (5 females, age: M=39.73, SD=6.14) and twenty-four controls (5 females, age: M=39.76, SD = 7.09). Participants were assessed with delayed discounting and reversal learning tasks. Using seed-based FC measures, we examined FC in CD and controls within five ACC connectivity networks with seeds in subgenual, caudal, dorsal, rostral, and perigenual ACC.
RESULTS
CD showed increased FC within the perigenual ACC network in left middle frontal gyrus, ACC and middle temporal gyrus when compared to controls. FC abnormalities were significantly positively correlated with task performance in delayed discounting and reversal learning tasks in CD.
CONCLUSIONS
The present study shows that participants with chronic cocaine-dependency have hyperconnectivity within an ACC network known to be involved in social processing and mentalizing. In addition, FC abnormalities found in CD were associated with difficulties with delay rewards and slower adaptive learning.
doi:10.1016/j.biopsych.2011.01.008
PMCID: PMC3090521  PMID: 21371689
cocaine; functional connectivity; anterior cingulate; delayed discount; reversal learning; frontal
19.  Altered Functional and Anatomical Connectivity in Schizophrenia 
Schizophrenia Bulletin  2009;37(3):640-650.
Background: Schizophrenia is characterized by a lack of integration between thought, emotion, and behavior. A disruption in the connectivity between brain processes may underlie this schism. Functional magnetic resonance imaging (fMRI) and diffusion tensor imaging (DTI) were used to evaluate functional and anatomical brain connectivity in schizophrenia. Methods: In all, 29 chronic schizophrenia patients (11 females, age: mean = 41.3, SD = 9.28) and 29 controls (11 females, age: mean = 41.1, SD = 10.6) were recruited. Schizophrenia patients were assessed for severity of negative and positive symptoms and general cognitive abilities of attention/concentration and memory. Participants underwent a resting-fMRI scan and a DTI scan. For fMRI data, a hybrid independent components analysis was used to extract the group default mode network (DMN) and accompanying time-courses. Voxel-wise whole-brain multiple regressions with corresponding DMN time-courses was conducted for each subject. A t-test was conducted on resulting DMN correlation maps to look between-group differences. For DTI data, voxel-wise statistical analysis of the fractional anisotropy data was carried out to look for between-group differences. Voxel-wise correlations were conducted to investigate the relationship between brain connectivity and behavioral measures. Results: Results revealed altered functional and anatomical connectivity in medial frontal and anterior cingulate gyri of schizophrenia patients. In addition, frontal connectivity in schizophrenia patients was positively associated with symptoms as well as with general cognitive ability measures. Discussion: The present study shows convergent fMRI and DTI findings that are consistent with the disconnection hypothesis in schizophrenia, particularly in medial frontal regions, while adding some insight of the relationship between brain disconnectivity and behavior.
doi:10.1093/schbul/sbp131
PMCID: PMC3080691  PMID: 19920062
fMRI; DTI; default mode network; medial frontal; behavioral correlates
20.  Inter-hemispheric functional connectivity disruption in children with prenatal alcohol exposure 
Background
MRI studies, including recent diffusion tensor imaging (DTI) studies, have shown corpus callosum abnormalities in children prenatally exposed to alcohol, especially in the posterior regions. These abnormalities appear across the range of Fetal Alcohol Spectrum Disorders (FASD). Several studies have demonstrated cognitive correlates of callosal abnormalities in FASD including deficits in visual-motor skill, verbal learning, and executive functioning. The goal of this study was to determine if inter-hemispheric structural connectivity abnormalities in FASD are associated with disrupted inter-hemispheric functional connectivity and disrupted cognition.
Methods
Twenty-one children with FASD and 23 matched controls underwent a six minute resting-state functional MRI scan as well as anatomical imaging and DTI. Using a semiautomated method, we parsed the corpus callosum and delineated seven inter-hemispheric white matter tracts with DTI tractography. Cortical regions of interest (ROIs) at the distal ends of these tracts were identified. Right-left correlations in resting fMRI signal were computed for these sets of ROIs and group comparisons were done. Correlations with facial dysmorphology, cognition, and DTI measures were computed.
Results
A significant group difference in inter-hemispheric functional connectivity was seen in a posterior set of ROIs, the para-central region. Children with FASD had functional connectivity that was 12% lower than controls in this region. Sub-group analyses were not possible due to small sample size, but the data suggest that there were effects across the FASD spectrum. No significant association with facial dysmorphology was found. Para-central functional connectivity was significantly correlated with DTI mean diffusivity, a measure of microstructural integrity, in posterior callosal tracts in controls but not in FASD. Significant correlations were seen between these structural and functional measures and Wechsler perceptual reasoning ability.
Conclusions
Inter-hemispheric functional connectivity disturbances were observed in children with FASD relative to controls. The disruption was measured in medial parietal regions (para-central) that are connected by posterior callosal fiber projections. We have previously shown microstructural abnormalities in these same posterior callosal regions and the current study suggests a possible relationship between the two. These measures have clinical relevance as they are associated with cognitive functioning.
doi:10.1111/j.1530-0277.2010.01415.x
PMCID: PMC3083458  PMID: 21303384
Fetal alcohol (FAS, FASD); Brain; functional MRI (fMRI); resting-state, connectivity; neuropsychological
21.  Associations Between Cortical Thickness and Verbal Fluency in Childhood, Adolescence, and Young Adulthood 
NeuroImage  2011;55(4):1865-1877.
Neuroimaging studies of normative human brain development indicate that the brain matures at differing rates across time and brain regions, with some areas maturing into young adulthood. In particular, changes in cortical thickness may index maturational progressions from an overabundance of neuropil toward efficiently pruned neural networks. Developmental changes in structural MRI measures have rarely been examined in relation to discrete neuropsychological functions. In this study, healthy right-handed adolescents completed MRI scanning and the Controlled Oral Word Association Test (COWAT). Associations of task performance and cortical thickness were assessed with cortical-surface-based analyses. Significant correlations between increasing COWAT performances and decreasing cortical thickness were found in left hemisphere language regions, including perisylvian regions surrounding Wernicke’s and Broca’s areas. Task performance was also correlated with regions associated with effortful verbal processing, working memory, and performance monitoring. Structure–function associations were not significantly different between older and younger subjects. Decreases in cortical thicknesses in regions that comprise the language network likely reflect maturation toward adult-like cortical organization and processing efficiency. The changes in cortical thicknesses that support verbal fluency are apparent by middle childhood, but with regionally separate developmental trajectories for males and females, consistent with other studies of adolescent development.
doi:10.1016/j.neuroimage.2011.01.018
PMCID: PMC3063407  PMID: 21255662
22.  Cigarette Smoking and White Matter Microstructure in Schizophrenia 
Psychiatry Research  2012;201(2):152-158.
The majority of patients with schizophrenia smoke cigarettes. Both nicotine use and schizophrenia have been associated with alterations in brain white matter microstructure as measured by diffusion tensor imaging (DTI). The purpose of this study was to examine fractional anisotropy (FA) in smoking and non-smoking patients with schizophrenia and in healthy volunteers. A total of 43 patients (28 smoking and 15 non-smoking) with schizophrenia and 40 healthy, non-smoking participants underwent DTI. Mean FA was calculated in four global regions of interest (ROIs) (whole brain, cerebellum, brainstem, and total cortical) as well as in four regional ROIs (frontal, temporal, parietal and occipital lobes). The non-smoking patient group had a significantly higher IQ compared to the patients who smoked and our results depended on whether IQ was included as a covariate. Without IQ correction, significant between-group effects for FA were found in four ROIs: total brain, total cortical, frontal lobe and the occipital lobe. In all cases the FA was lower among the smoking patient group, and highest in the control group. Smoking patients differed significantly from non-smoking patients in the frontal lobe ROI. However, these differences were no longer significant after IQ correction. FA differences between non-smoking patients and controls were not significant. Among smoking and non-smoking patients with schizophrenia but not healthy controls, FA was correlated with IQ. In conclusion, group effects of smoking on FA in schizophrenia might be mediated by IQ. Further, low FA in specific brain areas may be a neural marker for complex pathophysiology and risk for diverse problems such as schizophrenia, low IQ, and nicotine addiction.
doi:10.1016/j.pscychresns.2011.08.010
PMCID: PMC3319200  PMID: 22386966
Diffusion Tensor Imaging; Nicotine; Fractional Anisotropy
23.  Visual inspection of independent components: Defining a procedure for artifact removal from fMRI data 
Journal of Neuroscience Methods  2010;189(2):233-245.
Artifacts in fMRI data, primarily those related to motion and physiological sources, negatively impact the functional signal-to-noise ratio in fMRI studies, even after conventional fMRI preprocessing. Independent component analysis’ demonstrated capacity to separate sources of neural signal, structured noise, and random noise into separate components might be utilized in improved procedures to remove artifacts from fMRI data. Such procedures require a method for labeling independent components (ICs) as representing artifacts to be removed or neural signals of interest to be spared. Visual inspection is often considered an accurate method for such labeling as well as a standard to which automated labeling methods are compared. However, detailed descriptions of methods for visual inspection of ICs are lacking in the literature. Here we describe the details of, and the rationale for, an operationalized fMRI data denoising procedure that involves visual inspection of ICs (96% inter-rater agreement). We estimate that dozens of subjects/sessions can be processed within a few hours using the described method of visual inspection. Our hope is that continued scientific discussion of and testing of visual inspection methods will lead to the development of improved, cost-effective fMRI denoising procedures.
doi:10.1016/j.jneumeth.2010.03.028
PMCID: PMC3299198  PMID: 20381530
fMRI; independent component analysis (ICA); denoising; visual inspection; artifacts; structured noise; independent component (IC) labeling
24.  Fractional anisotropy (FA) changes after several weeks of daily left high frequency rTMS of the prefrontal cortex to treat major depression 
The journal of ECT  2011;27(1):5-10.
Objectives
As part of a sham controlled treatment trial using daily left rTMS, brain changes associated with four to six weeks of treatment were examined using diffusion tensor imaging (DTI) in order to non-invasively evaluate prefrontal white matter microstructure. A decrease in fractional anisotropy (FA) values of the left prefrontal white matter could indicate damage to the region.
Methods
DTI was performed prior to and after 4–6 weeks of daily rTMS treatments. Mean FA levels associated with active rTMS and sham rTMS for the right and left prefrontal white matter (LPF-WM) were assessed.
Results
Adequate images were acquired for eight participants (active n=4, sham n=4) before and after rTMS. A mean increase was found for the LPF-WM. The mixed model revealed a trend toward a significant Treatment Group × Region interaction effect (p=0.11). Further, simple Region effects (left prefrontal WM vs. right prefrontal WM) were at a trend toward significance for difference after treatment within the active rTMS group (p=.07), but not within the sham rTMS group (p=.88).
Conclusions
RTMS resulted in no evidence of damage to WM on the side of stimulation. DTI may offer a unique modality to increase our understanding of mechanisms of action for rTMS.
doi:10.1097/YCT.0b013e3181e6317d
PMCID: PMC2975808  PMID: 20559144
Diffusion Tensor Imaging (DTI); Transcranial Magnetic Stimulation; rTMS; depression; mixed linear model analysis of repeated measures
25.  White matter abnormalities and neurocognitive correlates in children and adolescents with myotonic dystrophy type 1: A diffusion tensor imaging study 
Neuromuscular disorders : NMD  2010;21(2):89-96.
Diffusion Tensor Imaging was used to evaluate cerebral white matter in eight patients (ages 10–17) with myotonic dystrophy type 1 (3 congenital-onset, 5 juvenile-onset) compared to eight controls matched for age and sex. Four regions of interest were examined: inferior frontal, superior frontal, supracallosal, and occipital. The myotonic dystrophy group showed white matter abnormalities compared to controls in all regions. All indices of white matter integrity were abnormal: fractional anisotropy, mean diffusivity, axial diffusivity, and radial diffusivity. With no evidence of regional variation, correlations between whole cerebrum white matter fractional anisotropy and neurocognitive functioning were examined in the patients. Strong correlations were observed between whole cerebrum fractional anisotropy and full-scale intelligence and a measure of executive functioning. Results indicate that significant white matter abnormality is characteristic of young patients with myotonic dystrophy type 1 and that the white matter abnormality seen with neuroimaging has implications for cognitive functioning.
doi:10.1016/j.nmd.2010.11.013
PMCID: PMC3026055  PMID: 21169018

Results 1-25 (62)