Search tips
Search criteria

Results 1-25 (103)

Clipboard (0)

Select a Filter Below

more »
Year of Publication
1.  The neuroanatomy of pure apraxia of speech in stroke 
Brain and language  2014;129:43-46.
The left insula or Broca’s area have been proposed as the neuroanatomical correlate for apraxia of speech (AOS) based on studies of patients with both AOS and aphasia due to stroke. Studies of neurodegenerative AOS suggest the premotor area and the supplementary motor areas as the anatomical correlates. The study objective was to determine the common infarction area in patients with pure AOS due to stroke. Patients with AOS and no or equivocal aphasia due to ischemic stroke were identified through a pre-existing database. Seven subjects were identified. Five had pure AOS, and two had equivocal aphasia. MRI lesion analysis revealed maximal overlap spanning the left premotor and motor cortices. While both neurodegenerative AOS and stroke induced pure AOS involve the premotor cortex, further studies are needed to establish whether stroke-induced AOS and neurodegenerative AOS share a common anatomic substrate.
PMCID: PMC4004427  PMID: 24556336
Apraxia of speech; stroke; aphemia; premotor cortex
2.  Microbleeds in the logopenic variant of primary progressive aphasia 
Microbleeds have been associated with Alzheimer’s disease (AD), although it is unclear whether they occur in atypical presentations of AD, such as the logopenic variant of primary progressive aphasia (lvPPA). We aimed to assess the presence and clinical correlates of microbleeds in lvPPA.
Thirteen lvPPA subjects underwent 3T T2*-weighted and fluid-attenuated inversion recovery MRI and Pittsburgh Compound B (PiB) PET imaging. Microbleeds were identified on manual review and assigned a regional location. Total and regional white matter hyperintensity (WMH) burden was measured.
Microbleeds were observed in four lvPPA subjects (31%); most common in frontal lobe. Subjects with microbleeds were older, more likely female, and had a greater burden of WMH than those without microbleeds. The regional distribution of microbleeds did not match the regional distribution of WMH. All cases were PiB-positive.
Microbleeds occur in approximately 1/3 subjects with lvPPA, with older women at the highest risk.
PMCID: PMC3706560  PMID: 23562427
Logopenic variant of primary progressive aphasia; Alzheimer’s disease; microbleeds; white matter hyperintensities
3.  Neurocognitive speed associates with frontotemporal lobar degeneration TDP-43 subtypes 
Frontotemporal lobar degeneration (FTLD) is pathologically heterogeneous with TAR DNA binding protein 43 kDa (TDP-43) proteinopathy the most common substrate. Previous work has identified atrophy patterns across TDP-43 subtypes with Type A showing greater frontotemporal and parietal atrophy, Type C predominantly anterior temporal, and Type B predominantly posterior frontal. Despite neuroanatomical correlates of involvement, neuropsychological findings have been inconsistent. The current study utilized broader neurocognitive domains based on aggregated neuropsychological measures to distinguish between subtypes. We hypothesized that patterns of neurocognitive domain impairments would predict FTLD–TDP-43 subtype. Fifty-one patients, aged 38–87, were identified post mortem with pathologically confirmed FTLD with TDP-43. Participants were classified into subtypes A, B, or C. Patients had completed neuropsychological assessments as part of their clinical evaluation. Six cognitive domains were created: Language; Cognitive Speed; Memory; Learning; Visuoperception; and Fluency. Binary logistic regression was conducted. All but three patients could be classified as FTLD–TDP Types A, B, or C: 26 as Type A; nine as Type B; and 13 as Type C. Cognitive Speed scores were associated with Types A and C (p < 0.001 and p = 0.003, respectively). Impaired performances on the Trail Making Test differentiated Types A and C. Worse Boston Naming Test and Logical Memory (Immediate) (p < 0.05) scores also increased the likelihood of Type C phenotype. Findings suggest Cognitive Speed associates with TDP-43 subtypes. Type C also demonstrated language-specific involvement. Differences between TDP-43 subtypes further supports the notion of differences in pathophysiology or topography across these types.
PMCID: PMC3825760  PMID: 24012243
Cognitive speed; Dementia; Frontotemporal lobar degeneration; Neuropathology; Neuropsychology; TDP-43
4.  Aphasia with left occipitotemporal hypometabolism: A novel presentation of posterior cortical atrophy? 
Alzheimer’s disease is a common neurodegenerative disease often characterized by initial episodic memory loss. Atypical focal cortical presentations have been described, including the logopenic variant of primary progressive aphasia (lvPPA) which presents with language impairment, and posterior cortical atrophy (PCA) which presents with prominent visuospatial deficits. Both lvPPA and PCA are characterized by specific patterns of hypometabolism: left temporoparietal in lvPPA and bilateral parietoccipital in PCA. However, not every patient fits neatly into these categories. We retrospectively identified two patients with progressive aphasia and visuospatial deficits from a speech and language based disorders study. The patients were further characterized by MRI, fluorodeoxyglucose F18 and Pittsburgh Compound B (PiB) positron emission tomography. Two women, ages 62 and 69, presented with a history of a few years of progressive aphasia characterized by fluent output with normal grammar and syntax, anomia without loss of word meaning, and relatively spared repetition. They demonstrated striking deficits in visuospatial function for which they were lacking insight. Prominent hypometabolism was noted in the left occipitotemporal region and diffuse retention of PiB was noted. Posterior cortical atrophy may present focally with left occipitotemporal metabolism characterized clinically with a progressive fluent aphasia and prominent ventral visuospatial deficits with loss of insight.
PMCID: PMC4217166  PMID: 23850398
Alzheimer dementia; Aphasia; Functional Neuroimaging; Neuropsychology; Visual agnosia
5.  Quantitative neurofibrillary tangle density and brain volumetric MRI analyses in Alzheimer’s disease presenting as logopenic progressive aphasia 
Brain and language  2013;127(2):10.1016/j.bandl.2013.02.003.
Neurofibrillary tangles (NFTs) are one of the key histological lesions of Alzheimer’s disease (AD) and are associated with brain atrophy. We assessed regional NFT density in 30 patients with AD, 10 of which presented as the logopenic variant of primary progressive aphasia (lvPPA) and 20 that presented as dementia of the Alzheimer’s type (DAT). Regional grey matter volumes were measured using antemortem MRI. NFT density was significantly higher in left temporoparietal cortices in lvPPA compared to DAT, with no differences observed in hippocampus. There was a trend for the ratio of temporoparietal-to-hippocampal NFT density to be higher in lvPPA. The imaging findings mirrored the pathological findings, with smaller left temporoparietal volumes observed in lvPPA compared to DAT, and no differences observed in hippocampal volume. This study demonstrates that lvPPA is associated with a phenomenon of enhanced temporoparietal neurodegeneration, a finding that improves our understanding of the biological basis of lvPPA.
PMCID: PMC3840097  PMID: 23541297
Primary progressive aphasia; Logopenic variant of primary progressive aphasia; Alzheimer’s disease; Neurofibrillary tangles; Hippocampus; MRI; Apolipoprotein E; TDP-43; Voxel-based morphometry; Alzheimer’s dementia
6.  Identification of an atypical variant of logopenic progressive aphasia 
Brain and language  2013;127(2):10.1016/j.bandl.2013.02.007.
The purpose of this study was to examine the association between aphasia severity and neurocognitive function, disease duration and temporoparietal atrophy in 21 individuals with the logopenic variant of primary progressive aphasia (lvPPA). We found significant correlations between aphasia severity and neurocognitive severity as well as temporoparietal atrophy; but not disease duration. Cluster analysis identified three variants of lvPPA: (1) subjects with mild aphasia and short disease duration (mild typical lvPPA); (2) subjects with mild aphasia and long disease duration (mild atypical lvPPA); and, (3) subjects with severe aphasia and relatively long disease duration (severe typical lvPPA). All three variants showed temporoparietal atrophy, with the mild atypical group showing the least atrophy despite the longest disease duration. The mild atypical group also showed mild neuropsychological impairment. The subjects with mild aphasia and neuropsychological impairment despite long disease duration may represent a slowly progressive variant of lvPPA.
PMCID: PMC3725183  PMID: 23566690
Primary progressive aphasia; Logopenic aphasia; Neurocognitive impairment; Temporoparietal atrophy; Voxel-based morphometry
7.  Primary Progressive Aphasia and Apraxia of Speech 
Seminars in neurology  2013;33(4):342-347.
Primary progressive aphasia is a neurodegenerative syndrome characterized by progressive language dysfunction. The majority of primary progressive aphasia cases can be classified into three subtypes: non-fluent/agrammatic, semantic, and logopenic variants of primary progressive aphasia. Each variant presents with unique clinical features, and is associated with distinctive underlying pathology and neuroimaging findings. Unlike primary progressive aphasia, apraxia of speech is a disorder that involves inaccurate production of sounds secondary to impaired planning or programming of speech movements. Primary progressive apraxia of speech is a neurodegenerative form of apraxia of speech, and it should be distinguished from primary progressive aphasia given its discrete clinicopathological presentation. Recently, there have been substantial advances in our understanding of these speech and language disorders. Here, we review clinical, neuroimaging, and histopathological features of primary progressive aphasia and apraxia of speech. The distinctions among these disorders will be crucial since accurate diagnosis will be important from a prognostic and therapeutic standpoint.
PMCID: PMC4215934  PMID: 24234355
Dementia; Primary progressive aphasia; Apraxia of speech
8.  Midbrain atrophy is not a biomarker of PSP pathology 
Midbrain atrophy is a characteristic feature of progressive supranuclear palsy (PSP), although it is unclear whether it is associated with the PSP syndrome (PSPS) or PSP pathology. We aimed to determine whether midbrain atrophy is a useful biomarker of PSP pathology, or whether it is only associated with typical PSPS.
We identified all autopsy-confirmed subjects with the PSP clinical phenotype (i.e. PSPS) or PSP pathology and a volumetric MRI. Of 24 subjects with PSP pathology, 11 had a clinical diagnosis of PSPS (PSP-PSPS), and 13 had a non-PSPS clinical diagnosis (PSP-other). Three subjects had PSPS and corticobasal degeneration pathology (CBD-PSPS). Healthy control and disease control groups (i.e. a group without PSPS or PSP pathology) and a group with CBD pathology and corticobasal syndrome (CBD-CBS) were selected. Midbrain area was measured in all subjects.
Midbrain area was reduced in each group with clinical PSPS (with and without PSP pathology). The group with PSP pathology and non-PSPS clinical syndromes did not show reduced midbrain area. Midbrain area was smaller in the subjects with PSPS compared to those without PSPS (p<0.0001), with an area under the receiver-operator-curve of 0.99 (0.88,0.99). A midbrain area cut-point of 92 mm2 provided optimum sensitivity (93%) and specificity (89%) for differentiation.
Midbrain atrophy is associated with the clinical presentation of PSPS, but not with the pathological diagnosis of PSP in the absence of the PSPS clinical syndrome. This finding has important implications for the utility of midbrain measurements as diagnostic biomarkers for PSP pathology.
PMCID: PMC3773014  PMID: 23746093
Progressive supranuclear palsy; tau; neuropathology; MRI; midbrain
9.  Associations of repeat sizes with clinical and pathological characteristics in C9ORF72 expansion carriers (Xpansize-72): a cross-sectional cohort study 
Lancet neurology  2013;12(10):10.1016/S1474-4422(13)70210-2.
Hexanucleotide repeat expansions in chromosome 9 open reading frame 72 (C9ORF72) are currently the major genetic cause of frontotemporal dementia (FTD) and motor neuron disease (MND). Presently, it is unknown whether expansion size affects disease severity or phenotypes.
We performed a cross-sectional Southern blot characterization study (Xpansize-72) in a cohort of subjects obtained at the Mayo Clinic and Banner Sun Health Research Institute. All subjects carried GGGGCC repeat expansions in C9ORF72, and high quality DNA was available from the frontal cortex, cerebellum and/or blood. Southern blotting techniques and densitometry were employed to estimate the repeat size of the most abundant expansion species. Comparisons of repeat sizes between tissues were made using Wilcoxon rank sum and Wilcoxon signed rank tests, and between disease subgroups using Kruskal-Wallis rank sum tests. The association of repeat size with age at onset and age at collection was evaluated using a Spearman’s test of correlation; whereas the association between repeat size and survival after disease onset was examined using Cox proportional hazards regression models.
Our cohort consisted of 84 C9ORF72 expansion carriers, including FTD patients (n=35), FTD/MND patients (n=16), MND patients (n=30), and unaffected subjects (n=3). We focused our analysis on three major tissue subgroups: frontal cortex (41 subjects [21 FTD, 11 FTD/MND, 9 MND]), cerebellum (40 subjects [20 FTD, 12 FTD/MND, 8 MND]), and blood (50 subjects [15 FTD, 9 FTD/MND, 23 MND, 3 unaffected expansion carriers]). Repeat lengths in the cerebellum were significantly smaller (median 12·3 kb [~1667 repeat units], IQR 11·1–14·3) than in the frontal cortex (median 33·8 kb [~5250 repeat units], IQR 23·5–44·9, p<0·0001), or in blood (median 18·6 kb [~2717 repeat units], IQR 13·9–28·1, p=0·0002). Within these tissues, there was no significant difference in repeat length between disease subgroups (cerebellum p=0·96, frontal cortex p=0·27, blood p=0·10). In the frontal cortex of FTD patients, repeat length correlated with age at onset (r=0·63, p=0·003) and age at collection (r=0·58, p=0·006); this correlation was not detected in the cerebellum or blood. Finally, only in the cerebellum, survival after disease onset was poorer in patients from our overall cohort with repeat lengths greater than 1467 repeat units (25th percentile, HR 3·27, 95% CI 1·34–7·95, p=0·009): the median survival was 4·8 years (IQR 3·0–7·4) in the group with longer expansions versus 7·4 years (IQR 6·3–10·9) in the group with smaller expansions.
Substantial variation in repeat size is observed between cerebellum, frontal cortex, and blood; relatively long repeat sizes in the cerebellum confer an important survival disadvantage. Our findings indicate that expansion size does affect disease severity, which could be relevant for genetic counseling.
PMCID: PMC3879782  PMID: 24011653
10.  Parkinsonian features in hereditary diffuse leukoencephalopathy with spheroids (HDLS) and CSF1R mutations 
Parkinsonism & related disorders  2013;19(10):869-877.
Atypical Parkinsonism associated with white matter pathology has been described in cerebrovascular diseases, mitochondrial cytopathies, osmotic demyelinating disorders, leukoencephalopathies including leukodystrophies, and others. Hereditary diffuse leukoencephalopathy with spheroids (HDLS) is an autosomal dominant disorder with symptomatic onset in midlife and death within a few years after symptom onset. Neuroimaging reveals cerebral white matter lesions that are pathologically characterized by non-inflammatory myelin loss, reactive astrocytosis, and axonal spheroids. Most cases are caused by mutations in the colony-stimulating factor 1 receptor (CSF1R) gene.
We studied neuropathologically verified HDLS patients with CSF1R mutations to assess Parkinsonian features. Ten families were evaluated with 16 affected individuals. During the course of the illness, all patients had at least some degree of bradykinesia. Fifteen patients had postural instability, and seven had rigidity. Two patients initially presented with Parkinsonian gait and asymmetrical bradykinesia. These two patients and two others exhibited bradykinesia, rigidity, postural instability, and tremor (two with resting) early in the course of the illness. Levodopa/carbidopa therapy in these four patients provided no benefit, and the remaining 12 patients were not treated. The mean age of onset for all patients was about 45 years (range, 18-71) and the mean disease duration was approximately six years (range, 3-11).
We also reviewed HDLS patients published prior to the CSF1R discovery for the presence of Parkinsonian features. Out of 50 patients, 37 had gait impairments, 8 rigidity, 7 bradykinesia, and 5 resting tremor. Our report emphasizes the presence of atypical Parkinsonism in HDLS due to CSF1R mutations.
PMCID: PMC3977389  PMID: 23787135
HDLS; CSF1R mutation; Parkinsonism; Autosomal dominant; White matter disorders
11.  Genetic modifiers in carriers of repeat expansions in the C9ORF72 gene 
Hexanucleotide repeat expansions in chromosome 9 open reading frame 72 (C9ORF72) are causative for frontotemporal dementia (FTD) and motor neuron disease (MND). Substantial phenotypic heterogeneity has been described in patients with these expansions. We set out to identify genetic modifiers of disease risk, age at onset, and survival after onset that may contribute to this clinical variability.
We examined a cohort of 330 C9ORF72 expansion carriers and 374 controls. In these individuals, we assessed variants previously implicated in FTD and/or MND; 36 variants were included in our analysis. After adjustment for multiple testing, our analysis revealed three variants significantly associated with age at onset (rs7018487 [UBAP1; p-value = 0.003], rs6052771 [PRNP; p-value = 0.003], and rs7403881 [MT-Ie; p-value = 0.003]), and six variants significantly associated with survival after onset (rs5848 [GRN; p-value = 0.001], rs7403881 [MT-Ie; p-value = 0.001], rs13268953 [ELP3; p-value = 0.003], the epsilon 4 allele [APOE; p-value = 0.004], rs12608932 [UNC13A; p-value = 0.003], and rs1800435 [ALAD; p-value = 0.003]).
Variants identified through this study were previously reported to be involved in FTD and/or MND, but we are the first to describe their effects as potential disease modifiers in the presence of a clear pathogenic mutation (i.e. C9ORF72 repeat expansion). Although validation of our findings is necessary, these variants highlight the importance of protein degradation, antioxidant defense and RNA-processing pathways, and additionally, they are promising targets for the development of therapeutic strategies and prognostic tests.
Electronic supplementary material
The online version of this article (doi:10.1186/1750-1326-9-38) contains supplementary material, which is available to authorized users.
PMCID: PMC4190282  PMID: 25239657
C9ORF72; Frontotemporal dementia; Motor neuron disease; Genetic modifier; Repeat expansion
12.  Profilin-1 mutations are rare in patients with amyotrophic lateral sclerosis and frontotemporal dementia 
Mutations in profilin-1 (PFN1) have recently been identified in patients with amyotrophic lateral sclerosis (ALS). Because of the considerable overlap between ALS and the common subtype of frontotemporal dementia, which is characterized by transactive response DNA-binding protein 43 pathology (FTLD-TDP), we tested cohorts of ALS and FTLD-TDP patients for PFN1 mutations.
DNA was obtained from 342 ALS patients and 141 FTLD-TDP patients at our outpatient clinic and brain bank for neurodegenerative diseases at the Mayo Clinic Florida, Jacksonville, USA. We screened these patients for mutations in coding regions of PFN1 by Sanger sequencing. Subsequently, we used TaqMan genotyping assays to investigate the identified variant in 1167 control subjects.
One variant, p.E117G, was detected in 1 ALS patient, 1 FTLD-TDP patient, and 2 control subjects. The mutation frequency of patients versus control subjects was not significantly different (p-value = 0.36). Moreover, PFN1 and TDP-43 staining of autopsy material did not differ between patients with or without this variant.
The p.E117G variant appears to represent a benign polymorphism. PFN1 mutations, in general, are rare in ALS and FTLD-TDP patients.
PMCID: PMC3923463  PMID: 23634771
Amyotrophic lateral sclerosis; frontotemporal dementia; profilin-1; TDP-43; genetics
13.  Mutations in protein N-arginine methyltransferases are not the cause of FTLD-FUS 
Neurobiology of aging  2013;34(9):2235.e11-2235.e13.
The nuclear protein fused in sarcoma (FUS) is found in cytoplasmic inclusions in a subset of patients with the neurodegenerative disorder frontotemporal lobar degeneration (FTLD-FUS). FUS contains a methylated arginine-glycine-glycine domain which is required for transport into the nucleus. Recent findings have shown that this domain is hypomethylated in patients with FTLD-FUS. To determine if the cause of hypomethylation is the result of mutations in protein N-arginine methyltransferases (PRMTs), we selected 3 candidate genes (PRMT1, PRMT3 and PRMT8) and performed complete sequencing analysis and real-time PCR mRNA expression analysis in 20 FTLD-FUS cases. No mutations or statistically significant changes in expression were observed in our patient samples, suggesting that defects in PRMTs are not the cause of FTLD-FUS.
PMCID: PMC3683824  PMID: 23635657
14.  Improved DTI registration allows voxel-based analysis that outperforms Tract-Based Spatial Statistics 
NeuroImage  2014;94:65-78.
Tract-Based Spatial Statistics (TBSS) is a popular software pipeline to coregister sets of diffusion tensor Fractional Anisotropy (FA) images for performing voxel-wise comparisons. It is primarily defined by its skeleton projection step intended to reduce effects of local misregistration. A white matter “skeleton” is computed by morphological thinning of the inter-subject mean FA, and then all voxels are projected to the nearest location on this skeleton. Here we investigate several enhancements to the TBSS pipeline based on recent advances in registration for other modalities, principally based on groupwise registration with the ANTS-SyN algorithm. We validate these enhancements using simulation experiments with synthetically-modified images. When used with these enhancements, we discover that TBSS's skeleton projection step actually reduces algorithm accuracy, as the improved registration leaves fewer errors to warrant correction, and the effects of this projection's compromises become stronger than those of its benefits. In our experiments, our proposed pipeline without skeleton projection is more sensitive for detecting true changes and has greater specificity in resisting false positives from misregistration. We also present comparative results of the proposed and traditional methods, both with and without the skeleton projection step, on three real-life datasets: two comparing differing populations of Alzheimer's disease patients to matched controls, and one comparing progressive supranuclear palsy patients to matched controls. The proposed pipeline produces more plausible results according to each disease's pathophysiology.
PMCID: PMC4137565  PMID: 24650605
DTI; Fractional Anisotropy; Voxel-based analysis; VBM; TBSS; Registration
15.  Syndromes dominated by apraxia of speech show distinct characteristics from agrammatic PPA 
Neurology  2013;81(4):337-345.
We assessed whether clinical and imaging features of subjects with apraxia of speech (AOS) more severe than aphasia (dominant AOS) are more similar to agrammatic primary progressive aphasia (agPPA) or to primary progressive AOS (PPAOS).
Sixty-seven subjects (PPAOS = 18, dominant AOS = 10, agPPA = 9, age-matched controls = 30) who all had volumetric MRI, diffusion tensor imaging, F18-fluorodeoxyglucose and C11-labeled Pittsburgh compound B (PiB)-PET scanning, as well as neurologic and speech and language assessments, were included in this case-control study. AOS was classified as either type 1, predominated by sound distortions and distorted sound substitutions, or type 2, predominated by syllabically segmented prosodic speech patterns.
The dominant AOS subjects most often had AOS type 2, similar to PPAOS. In contrast, agPPA subjects most often had type 1 (p = 0.01). Both dominant AOS and PPAOS showed focal imaging abnormalities in premotor cortex, whereas agPPA showed widespread involvement affecting premotor, prefrontal, temporal and parietal lobes, caudate, and insula. Only the dominant AOS and PPAOS groups showed midbrain atrophy compared with controls. No differences were observed in PiB binding across all 3 groups, with the majority being PiB negative.
These results suggest that dominant AOS is more similar to PPAOS than agPPA, with dominant AOS and PPAOS exhibiting a clinically distinguishable subtype of progressive AOS compared with agPPA.
PMCID: PMC3772832  PMID: 23803320
16.  The Alien Limb Phenomenon 
Journal of neurology  2013;260(7):1880-1888.
Alien limb phenomenon refers to involuntary motor activity of a limb in conjunction with the feeling of estrangement from that limb. Alien limb serves as a diagnostic feature of corticobasal syndrome.
Our objective was to determine the differential diagnoses of alien limb and to determine the features in a large group of patients with the alien limb with different underlying etiologies.
We searched the Mayo Clinic Medical Records Linkage system to identify patients with the diagnosis of alien limb seen between January 1, 1996, and July 11, 2011.
One hundred fifty patients with alien limb were identified. Twenty two were followed in the Alzheimer’s Disease Research Center. Etiologies of alien limb included corticobasal syndrome (n=108), stroke (n=14), Creutzfeldt Jacob disease (n=9), Hereditary diffuse leukoencephalopathy with spheroids (n=5), tumor (n=4), progressive multifocal leukoencephalopathy(n=2), demyelinating disease (n=2), progressive dementia not otherwise specified (n=2), posterior reversible encephalopathy syndrome (n=1), corpus callosotomy (n=1), intracerebral hemorrhage (n=1) and thalamic dementia (n=1). Ten of fourteen cerebrovascular cases were right hemisphere in origin. All cases involved the parietal lobe. Of the 44 patients with corticobasal syndrome from the Alzheimer’s Disease Research Center cohort, 22 had alien limb, and 73% had the alien limb affecting the left extremities. Left sided corticobasal syndrome was significantly associated with the presence of alien limb (p=0.004).
These findings support the notion that the alien limb phenomenon is partially related to damage underlying the parietal cortex, especially the right parietal, disconnecting it from other cortical areas.
PMCID: PMC3914666  PMID: 23572346
Alien limb; corticobasal syndrome
17.  Distinct regional anatomic and functional correlates of neurodegenerative apraxia of speech and aphasia: an MRI and FDG-PET study 
Brain and language  2013;125(3):245-252.
Progressive apraxia of speech (AOS) can result from neurodegenerative disease and can occur in isolation or in the presence of agrammatic aphasia. We aimed to determine the neuroanatomical and metabolic correlates of progressive AOS and aphasia. Thirty-six prospectively recruited subjects with progressive AOS or agrammatic aphasia, or both, underwent the Western Aphasia Battery (WAB) and Token Test to assess aphasia, an AOS rating scale (ASRS), 3T MRI and 18-F fluorodeoxyglucose (FDG) PET. Correlations between clinical measures and imaging were assessed. The only region that correlated to ASRS was left superior premotor volume. In contrast, WAB and Token Test correlated with hypometabolism and volume of a network of left hemisphere regions, including pars triangularis, pars opercularis, pars orbitalis, middle frontal gyrus, superior temporal gyrus, precentral gyrus and inferior parietal lobe. Progressive agrammatic aphasia and AOS have non-overlapping regional correlations, suggesting that these are dissociable clinical features that have different neuroanatomical underpinnings.
PMCID: PMC3660445  PMID: 23542727
apraxia of speech; aphasia; atrophy; Broca’s area; premotor cortex; hypometabolism
18.  Ideomotor Apraxia in Agrammatic and Logopenic Variants of Primary Progressive Aphasia 
Journal of neurology  2013;260(6):1594-1600.
There are few studies examining praxis in subjects with primary progressive aphasia. The aim of this study was to examine the pattern and severity of ideomotor apraxia in subjects with logopenic and agrammatic variants of primary progressive aphasia and to determine if the presence of ideomotor apraxia correlated with specific neuroanatomical structural abnormalities. Subjects with primary progressive aphasia were prospectively recruited and classified according to published criteria. Using the apraxia subtest of the Western Aphasia Battery, pattern and severity of ideomotor apraxia was examined in all subjects diagnosed with agrammatic and logopenic variants of primary progressive aphasia. The study included 47 subjects, 21 diagnosed with agrammatic variant of primary progressive aphasia and 26 with logopenic variant primary progressive aphasia. Subjects with agrammatic aphasia were older at onset than the logopenic variant (67.2 versus 61.7 years, p=0.02), but there was no difference in illness duration prior to evaluation. Those with logopenic aphasia showed more cognitive impairment on the Mini-Mental Status Examination (agrammatic=26.7/30, logopenic=22/30, p=0.002), and a trend for more severe language impairment as measured by Western Aphasia Battery-Aphasia Quotient (agrammatic=82.3, logopenic=75.2, p=0.11). Strong correlations were found between Western Aphasia Battery-Aphasia Quotient and total apraxia, instrumental apraxia, and complex apraxia, while average correlation were seen with upper limb apraxia and modest correlation with facial apraxia. After adjusting for age, mental status performance, and Western Aphasia Battery-Aphasia Quotient score, those with agrammatic aphasia had a higher degree of total apraxia (p=0.004), facial apraxia (p=0.03), instrumental apraxia (p=0.0006), and complex apraxia (p=0.0006) than those with logopenic aphasia. The agrammatic variant of primary progressive aphasia was associated with greater praxis deficits but less cognitive impairment than the logopenic variant. The presence of ideomotor apraxia was associated with grey matter loss in the left lateral premotor cortex with extension into the motor cortex. These findings suggest that although some affected areas in the agrammatic and logopenic variants of primary progressive aphasia overlap, there exists an area that is more affected in the agrammatic variant than the logopenic variant that accounts for the greater association of agrammatic aphasia with apraxia.
PMCID: PMC3676701  PMID: 23358624
Primary progressive aphasia; Agrammatic; Logopenic; Apraxia; Ideomotor; Cortical atrophy
19.  Neuroimaging comparison of Primary Progressive Apraxia of Speech & Progressive Supranuclear Palsy 
Primary progressive apraxia of speech, a motor speech disorder of planning and programming is a tauopathy that has overlapping histological features with progressive supranuclear palsy. We aimed to compare, for the first time, atrophy patterns, as well as white matter tract degeneration, between these two syndromes.
Sixteen primary progressive apraxia of speech subjects were age and gender-matched to 16 progressive supranuclear palsy subjects and 20 controls. All subjects were prospectively recruited, underwent neurological and speech evaluations, and 3.0 Tesla magnetic resonance imaging. Grey and white matter atrophy was assessed using voxel-based morphometry and atlas-based parcellation, and white matter tract degeneration was assessed using diffusion tensor imaging.
All progressive supranuclear palsy subjects had typical occulomotor/gait impairments but none had speech apraxia. Both syndromes showed grey matter loss in supplementary motor area, white matter loss in posterior frontal lobes and degeneration of the body of the corpus callosum. While lateral grey matter loss was focal, involving superior premotor cortex, in primary progressive apraxia of speech, loss was less focal extending into prefrontal cortex in progressive supranuclear palsy. Caudate volume loss and tract degeneration of superior cerebellar peduncles was also observed in progressive supranuclear palsy. Interestingly, area of the midbrain was reduced in both syndromes compared to controls, although this was greater in progressive supranuclear palsy.
Although neuroanatomical differences were identified between these distinctive clinical syndromes, substantial overlap was also observed, including midbrain atrophy, suggesting these two syndromes may have common pathophysiological underpinnings.
PMCID: PMC3556348  PMID: 23078273
Progressive supranuclear palsy; apraxia of speech; voxel-based morphometry; diffusion tensor imaging; midbrain
20.  Dopamine agonists and Othello's syndrome 
Parkinsonism & related disorders  2010;16(10):680-682.
Othello's syndrome (OS) is a delusion of infidelity. We describe seven cases of OS in Parkinson's disease (iPD) patients using dopamine agonists.
We searched the Mayo Clinic Medical Records System to identify all patients with OS. Clinical data abstracted include sex, age of onset of iPD, age of onset of OS, medications, effect of discontinuing the dopamine agonist, neuroimaging, and comorbidities.
Seven non-demented iPD patients with dopamine agonist implementation time locked to the development and resolution of OS are reported. The average age of iPD onset was 46.6 years (Standard deviation: 5.0 years), and OS onset was 53.7 years (7.1 years). All seven patients had significant marital conflict as a result of the delusions.
OS can be associated with dopamine agonist use and can lead to serious consequences. Dopamine agonist cessation eliminates the delusion of infidelity and should be the first treatment option.
PMCID: PMC3929397  PMID: 20829092
Dopamine; Othello's syndrome; Parkinson's disease; Delusion
21.  Occupational differences between Alzheimer’s and aphasic dementias: implication for teachers 
We aimed to determine if there is an association between teaching and the development of progressive speech and language disorders (SLDs). Occupation was compared between 100 patients with a progressive SLD, 404 Alzheimer’s dementia patients, and the 2008 US census. In SLDs the most common occupation was teacher (22%), versus 8% in Alzheimer’s dementia. The odds ratio of being a teacher in SLDs compared to Alzheimer’s dementia was 3.4 (95% CI=1.87, 6.17). No differences were observed in the frequency of other occupations. The frequency of teachers was higher in SLDs compared to the US census; odds ratio of 6.9 (95% CI=4.3, 11.1). Farming, forestry and fishing occupations were more frequent in SLDs compared to the US census. We identified an association between progressive SLDs and the occupation of teaching. Since teaching is a communication demanding occupation, teachers may be more sensitive to the development of speech and language impairments.
PMCID: PMC3920458  PMID: 23838322
Alzheimer’s; dementia; aphasia; teacher; occupation
22.  Elevated occipital β-amyloid deposition is associated with widespread cognitive impairment in logopenic progressive aphasia 
Most subjects with logopenic primary progressive aphasia (lvPPA) have beta-amyloid (Aβ) deposition on Pittsburgh Compound B PET (PiB-PET), usually affecting prefrontal and temporoparietal cortices, with less occipital involvement.
To assess clinical and imaging features in lvPPA subjects with unusual topographic patterns of Aβ deposition with highest uptake in occipital lobe.
Thirty-three lvPPA subjects with Aβ deposition on PiB-PET were included in this case-control study. Line-plots of regional PiB uptake were created, including frontal, temporal, parietal and occipital regions, for each subject. Subjects in which the line sloped downwards in occipital lobe (lvPPA-low), representing low uptake, were separated from those where the line sloped upwards in occipital lobe (lvPPA-high), representing unusually high occipital uptake compared to other regions. Clinical variables, atrophy on MRI, hypometabolism on F18-fluorodeoxyglucose PET, and presence and distribution of microbleeds and white matter hyperintensities (WMH) were assessed.
Seventeen subjects (52%) were classified as lvPPA-high. Mean occipital PiB uptake in lvPPA-high was higher than all other regions, and higher than all regions in lvPPA-low. The lvPPA-high subjects performed more poorly on cognitive testing, including executive and visuospatial testing, but the two groups did not differ in aphasia severity. Proportion of microbleeds and WMH was higher in lvPPA-high than lvPPA-low. Parietal hypometabolism was greater in lvPPA-high than lvPPA-low.
Unusually high occipital Aβ deposition is associated with widespread cognitive impairment and different imaging findings in lvPPA. These findings help explain clinical heterogeneity in lvPPA, and suggest that Aβ influences severity of overall cognitive impairment but not aphasia.
PMCID: PMC3920541  PMID: 23946416
23.  Globular glial tauopathies (GGT): consensus recommendations 
Acta neuropathologica  2013;126(4):537-544.
Rrecent studies have highlighted a group of 4-repeat (4R) tauopathies that are characterised neuropathologically by widespread, globular glial inclusions (GGIs). Tau immunohistochemistry reveals 4R immunore-active globular oligodendroglial and astrocytic inclusions and the latter are predominantly negative for Gallyas silver staining. These cases are associated with a range of clinical presentations, which correlate with the severity and distribution of underlying tau pathology and neurodegeneration. Their heterogeneous clinicopathological features combined with their rarity and under-recognition have led to cases characterised by GGIs being described in the literature using various and redundant terminologies. In this report, a group of neuropathologists form a consensus on the terminology and classification of cases with GGIs. After studying microscopic images from previously reported cases with suspected GGIs (n = 22), this panel of neuropathologists with extensive experience in the diagnosis of neurodegenerative diseases and a documented record of previous experience with at least one case with GGIs, agreed that (1) GGIs were present in all the cases reviewed; (2) the morphology of globular astrocytic inclusions was different to tufted astrocytes and finally that (3) the cases represented a number of different neuropathological subtypes. They also agreed that the different morphological subtypes are likely to be part of a spectrum of a distinct disease entity, for which they recommend that the overarching term globular glial tauopathy (GGT) should be used. Type I cases typically present with frontotemporal dementia, which correlates with the fronto-temporal distribution of pathology. Type II cases are characterised by pyramidal features reflecting motor cortex involvement and corticospinal tract degeneration. Type III cases can present with a combination of frontotemporal dementia and motor neuron disease with fronto-temporal cortex, motor cortex and corticospinal tract being severely affected. extrapyramidal features can be present in Type II and III cases and significant degeneration of the white matter is a feature of all GGT subtypes. Improved detection and classification will be necessary for the establishment of neuropathological and clinical diagnostic research criteria in the future.
PMCID: PMC3914659  PMID: 23995422
24.  Frontal asymmetry in behavioral variant FTD: clinicoimaging & pathogenetic correlates 
Neurobiology of aging  2012;34(2):636-639.
We aimed to assess associations between clinical, imaging, pathological and genetic features and frontal lobe asymmetry in behavioral variant frontotemporal dementia (bvFTD). Volumes of the left and right dorsolateral, medial and orbital frontal lobes were measured in 80 bvFTD subjects and subjects were classified into three groups according to the degree of asymmetry (asymmetric left, asymmetric right, symmetric) using cluster analysis. The majority of subjects were symmetric (65%), with 20% asymmetric left and 15% asymmetric right. There were no clinical differences across groups, although there was a trend for greater behavioral dyscontrol in right asymmetric compared to left asymmetric subjects. More widespread atrophy involving the parietal lobe was observed in the symmetric group. Genetic features differed across groups with symmetric frontal lobes associated with C9ORF72 and tau mutations, while asymmetric frontal lobes were associated with progranulin mutations. These findings therefore suggest that neuroanatomical patterns of frontal lobe atrophy in bvFTD are influenced by specific gene mutations.
PMCID: PMC3404265  PMID: 22502999
Frontotemporal dementia; frontal lobes; MRI; asymmetry; microtubule associated protein tau; progranulin; C9ORF72; pathology
25.  Corticospinal tract degeneration associated with TDP-43 type C pathology and semantic dementia 
Brain  2013;136(2):455-470.
Four subtypes of frontotemporal lobar degeneration with TDP-43 immunoreactive inclusions have been described (types A–D). Of these four subtypes, motor neuron disease is more commonly associated with type B pathology, but has also been reported with type A pathology. We have noted, however, the unusual occurrence of cases of type C pathology having corticospinal tract degeneration. We aimed to assess the severity of corticospinal tract degeneration in a large cohort of cases with type C (n = 31). Pathological analysis included semi-quantitation of myelin loss of fibres of the corticospinal tract and associated macrophage burden, as well as axonal loss, at the level of the medullary pyramids. We also assessed for motor cortex degeneration and fibre loss of the medial lemniscus/olivocerebellar tract. All cases were subdivided into three groups based on the degree of corticospinal tract degeneration: (i) no corticospinal tract degeneration; (ii) equivocal corticospinal tract degeneration; and (iii) moderate to very severe corticospinal tract degeneration. Clinical, genetic, pathological and imaging comparisons were performed across groups. Eight cases had no corticospinal tract degeneration, and 14 cases had equivocal to mild corticospinal tract degeneration. Nine cases, however, had moderate to very severe corticospinal tract degeneration with myelin and axonal loss. In these nine cases, there was degeneration of the motor cortex without lower motor neuron degeneration or involvement of other brainstem tracts. These cases most commonly presented as semantic dementia, and they had longer disease duration (mean: 15.3 years) compared with the other two groups (10.8 and 9.9 years; P = 0.03). After adjusting for disease duration, severity of corticospinal tract degeneration remained significantly different across groups. Only one case, without corticospinal tract degeneration, was found to have a hexanucleotide repeat expansion in the C9ORF72 gene. All three groups were associated with anterior temporal lobe atrophy on MRI; however, the cases with moderate to severe corticospinal tract degeneration showed right-sided temporal lobe asymmetry and greater involvement of the right temporal lobe and superior motor cortices than the other groups. In contrast, the cases with no or equivocal corticospinal tract degeneration were more likely to show left-sided temporal lobe asymmetry. For comparison, the corticospinal tract was assessed in 86 type A and B cases, and only two cases showed evidence of corticospinal tract degeneration without lower motor neuron degeneration. These findings confirm that there exists a unique association between frontotemporal lobar degeneration with type C pathology and corticospinal tract degeneration, with this entity showing a predilection to involve the right temporal lobe.
PMCID: PMC3572926  PMID: 23358603
TDP-43 type C; corticospinal tract; MRI; semantic dementia; right temporal lobe

Results 1-25 (103)