PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-24 (24)
 

Clipboard (0)
None

Select a Filter Below

Journals
more »
Year of Publication
Document Types
1.  Parkinson Disease is not associated with C9ORF72 repeat expansions 
Neurobiology of aging  2012;34(5):1519.e1-1519.e2.
Hexanucleotide expansions in the C9ORF72 gene are frequently found in patients with amyotrophic lateral sclerosis and/or frontotemporal dementia, some of whom exhibit concurrent extrapyramidal symptoms. To determine if repeat expansions are a cause of Parkinson Disease (PD), we used repeat-primed PCR to investigate the frequency of C9ORF72 repeat expansions in cohort of 478 patients with PD and 662 control subjects. While 3 control subjects were found to be expansion carriers, no expansions were found among patients, suggesting that C9ORF72 expansions are not a common cause of PD.
doi:10.1016/j.neurobiolaging.2012.10.001
PMCID: PMC3566343  PMID: 23116878
Parkinson Disease; genetics; C9ORF72; hexanucleotide repeat
2.  GWAS of cerebrospinal fluid tau levels identifies novel risk variants for Alzheimer’s disease 
Neuron  2013;78(2):256-268.
Cerebrospinal fluid (CSF) tau, tau phosphorylated at threonine 181 (ptau) and Aβ42 are established biomarkers for Alzheimer’s Disease (AD), and have been used as quantitative traits for genetic analyses. We performed the largest genome-wide association study for cerebrospinal fluid (CSF) tau/ptau levels published to date (n=1,269), identifying three novel genome-wide significant loci for CSF tau and ptau: rs9877502 (P=4.89×10−9 for tau) located at 3q28 between GEMC1 and OSTN, rs514716 (P=1.07×10−8 and P=3.22×10−9 for tau and ptau respectively), located at 9p24.2 within GLIS3 and rs6922617 (P = 3.58×10−8 for CSF ptau) at 6p21.1 within the TREM gene cluster, a region recently reported to harbor rare variants that increase AD risk. In independent datasets rs9877502 showed a strong association with risk for AD, tangle pathology and global cognitive decline (P=2.67×10−4, 0.039, 4.86×10−5 respectively) illustrating how this endophenotype-based approach can be used to identify new AD risk loci.
doi:10.1016/j.neuron.2013.02.026
PMCID: PMC3664945  PMID: 23562540
3.  C9ORF72 hexanucleotide repeat expansions in clinical Alzheimer’s disease 
JAMA neurology  2013;70(6):736-741.
Objective
Hexanucleotide repeat expansions in C9ORF72 underlie a significant fraction of frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS). This study investigates the frequency of C9ORF72 repeat expansions in clinically diagnosed late-onset Alzheimer’s disease (AD).
Design, setting and patients
This case-control study genotyped the C9ORF72 repeat expansion in 872 unrelated familial AD cases and 888 controls recruited as part of the NIA-LOAD cohort, a multi-site collaboration studying 1000 families with two or more individuals clinically diagnosed with late-onset-AD.
Main Outcome Measure
We determined the presence or absence of the C9ORF72 repeat expansion by repeat-primed PCR, the length of the longest non-expanded allele, segregation of the genotype with disease, and clinical features of repeat expansion carriers.
Results
Three families showed large C9ORF72 hexanucleotide repeat expansions. Two additional families carried more than 30 repeats. Segregation with disease could be demonstrated in 3 families. One affected expansion carrier had neuropathology compatible with AD. In the NIA-LOAD series, the C9ORF72 repeat expansions constituted the second most common pathogenic mutation, just behind the PSEN1 A79V mutation, highlighting the heterogeneity of clinical presentations associated with repeat expansions.
Interpretation
C9ORF72 repeat expansions explain a small proportion of patients with a clinical presentation indistinguishable from AD, and highlight the necessity of screening “FTD genes” in clinical AD cases with strong family history.
doi:10.1001/2013.jamaneurol.537
PMCID: PMC3681841  PMID: 23588422
4.  Cerebrospinal fluid APOE levels: an endophenotype for genetic studies for Alzheimer's disease 
Human Molecular Genetics  2012;21(20):4558-4571.
The apolipoprotein E (APOE) genotype is the major genetic risk factor for Alzheimer's disease (AD). We have access to cerebrospinal fluid (CSF) and plasma APOE protein levels from 641 individuals and genome-wide genotyped data from 570 of these samples. The aim of this study was to test whether CSF or plasma APOE levels could be a useful endophenotype for AD and to identify genetic variants associated with APOE levels. We found that CSF (P = 8.15 × 10−4) but not plasma (P = 0.071) APOE protein levels are significantly associated with CSF Aβ42 levels. We used Mendelian randomization and genetic variants as instrumental variables to confirm that the association of CSF APOE with CSF Aβ42 levels and clinical dementia rating (CDR) is not because of a reverse causation or confounding effect. In addition the association of CSF APOE with Aβ42 levels was independent of the APOE ɛ4 genotype, suggesting that APOE levels in CSF may be a useful endophenotype for AD. We performed a genome-wide association study to identify genetic variants associated with CSF APOE levels: the APOE ɛ4 genotype was the strongest single-genetic factor associated with CSF APOE protein levels (P = 6.9 × 10−13). In aggregate, the Illumina chip single nucleotide polymorphisms explain 72% of the variability in CSF APOE protein levels, whereas the APOE ɛ4 genotype alone explains 8% of the variability. No other genetic variant reached the genome-wide significance threshold, but nine additional variants exhibited a P-value <10−6. Pathway mining analysis indicated that these nine additional loci are involved in lipid metabolism (P = 4.49 × 10−9).
doi:10.1093/hmg/dds296
PMCID: PMC3459471  PMID: 22821396
5.  Characterizing the Role of Brain Derived Neurotrophic Factor Genetic Variation in Alzheimer’s Disease Neurodegeneration 
PLoS ONE  2013;8(9):e76001.
There is accumulating evidence that neurotrophins, like brain-derived neurotrophic factor (BDNF), may impact aging and Alzheimer’s Disease. However, traditional genetic association studies have not found a clear relationship between BDNF and AD. Our goal was to test whether BDNF single nucleotide polymorphisms (SNPs) impact Alzheimer’s Disease-related brain imaging and cognitive markers of disease. We completed an imaging genetics study on 645 Alzheimer’s Disease Neuroimaging Initiative participants (ND=175, MCI=316, AD=154) who had cognitive, brain imaging, and genetics data at baseline and a subset of those with brain imaging data at two years. Samples were genotyped using the Illumina Human610-Quad BeadChip. 13 SNPs in BDNF were identified in the dataset following quality control measures (rs6265(Val66Met), rs12273363, rs11030094, rs925946, rs1050187, rs2203877, rs11030104, rs11030108, rs10835211, rs7934165, rs908867, rs1491850, rs1157459). We analyzed a subgroup of 8 SNPs that were in low linkage disequilibrium with each other. Automated brain morphometric measures were available through ADNI investigators, and we analyzed baseline cognitive scores, hippocampal and whole brain volumes, and rates of hippocampal and whole brain atrophy and rates of change in the ADAS-Cog over one and two years. Three out of eight BDNF SNPs analyzed were significantly associated with measures of cognitive decline (rs1157659, rs11030094, rs11030108). No SNPs were significantly associated with baseline brain volume measures, however six SNPs were significantly associated with hippocampal and/or whole brain atrophy over two years (rs908867, rs11030094, rs6265, rs10501087, rs1157659, rs1491850). We also found an interaction between the BDNF Val66Met SNP and age with whole brain volume. Our imaging-genetics analysis in a large dataset suggests that while BDNF genetic variation is not specifically associated with a diagnosis of AD, it appears to play a role in AD-related brain neurodegeneration.
doi:10.1371/journal.pone.0076001
PMCID: PMC3784423  PMID: 24086677
6.  The PSEN1, p.E318G Variant Increases the Risk of Alzheimer's Disease in APOE-ε4 Carriers 
PLoS Genetics  2013;9(8):e1003685.
The primary constituents of plaques (Aβ42/Aβ40) and neurofibrillary tangles (tau and phosphorylated forms of tau [ptau]) are the current leading diagnostic and prognostic cerebrospinal fluid (CSF) biomarkers for AD. In this study, we performed deep sequencing of APP, PSEN1, PSEN2, GRN, APOE and MAPT genes in individuals with extreme CSF Aβ42, tau, or ptau levels. One known pathogenic mutation (PSEN1 p.A426P), four high-risk variants for AD (APOE p.L46P, MAPT p.A152T, PSEN2 p.R62H and p.R71W) and nine novel variants were identified. Surprisingly, a coding variant in PSEN1, p.E318G (rs17125721-G) exhibited a significant association with high CSF tau (p = 9.2×10−4) and ptau (p = 1.8×10−3) levels. The association of the p.E318G variant with Aβ deposition was observed in APOE-ε4 allele carriers. Furthermore, we found that in a large case-control series (n = 5,161) individuals who are APOE-ε4 carriers and carry the p.E318G variant are at a risk of developing AD (OR = 10.7, 95% CI = 4.7–24.6) that is similar to APOE-ε4 homozygous (OR = 9.9, 95% CI = 7.2.9–13.6), and double the risk for APOE-ε4 carriers that do not carry p.E318G (OR = 3.9, 95% CI = 3.4–4.4). The p.E318G variant is present in 5.3% (n = 30) of the families from a large clinical series of LOAD families (n = 565) and exhibited a higher frequency in familial LOAD (MAF = 2.5%) than in sporadic LOAD (MAF = 1.6%) (p = 0.02). Additionally, we found that in the presence of at least one APOE-ε4 allele, p.E318G is associated with more Aβ plaques and faster cognitive decline. We demonstrate that the effect of PSEN1, p.E318G on AD susceptibility is largely dependent on an interaction with APOE-ε4 and mediated by an increased burden of Aβ deposition.
Author Summary
Alzheimer's disease (AD) is the most common neurodegenerative disease affecting more than 5.3 million people in the US. AD-causing mutations have been identified in APP, PSEN1 and PSEN2 genes. Heterozygous carriers of APOE-ε4 allele exhibit a 3-fold increased risk for developing AD, while homozygous carriers show a 10-fold greater risk than non-carriers. Here, we sequenced individuals with extreme levels of well-established AD cerebrospinal fluid (CSF) biomarkers in order to identify variants in APOE, APP, PSEN1, PSEN2, GRN and MAPT genes associated with AD risk. This approach allowed us to identify known pathogenic variants, additional AD risk genetic factors and identify a low frequency variant in PSEN1, p.E318G (rs17125721-G) that increases risk for AD in a gene-gene interaction with APOE. These findings were replicated in three large (>4,000 individuals) and independent datasets. This finding is particularly important because we demonstrated that a currently considered non-pathogenic variant is associated with higher levels of neuronal degeneration, and with Aβ deposition, more Aβ plaques and faster cognitive decline in an APOE-ε4-dependent fashion. APOE-ε4 heterozygous individuals who carry this variant are at similar AD risk as APOE-ε4 homozygous individuals.
doi:10.1371/journal.pgen.1003685
PMCID: PMC3750021  PMID: 23990795
7.  TREM2 Variants in Alzheimer's Disease 
The New England journal of medicine  2012;368(2):117-127.
BACKGROUND
Homozygous loss-of-function mutations in TREM2, encoding the triggering receptor expressed on myeloid cells 2 protein, have previously been associated with an autosomal recessive form of early-onset dementia.
METHODS
We used genome, exome, and Sanger sequencing to analyze the genetic variability in TREM2 in a series of 1092 patients with Alzheimer's disease and 1107 controls (the discovery set). We then performed a meta-analysis on imputed data for the TREM2 variant rs75932628 (predicted to cause a R47H substitution) from three genomewide association studies of Alzheimer's disease and tested for the association of the variant with disease. We genotyped the R47H variant in an additional 1887 cases and 4061 controls. We then assayed the expression of TREM2 across different regions of the human brain and identified genes that are differentially expressed in a mouse model of Alzheimer's disease and in control mice.
RESULTS
We found significantly more variants in exon 2 of TREM2 in patients with Alzheimer's disease than in controls in the discovery set (P = 0.02). There were 22 variant alleles in 1092 patients with Alzheimer's disease and 5 variant alleles in 1107 controls (P<0.001). The most commonly associated variant, rs75932628 (encoding R47H), showed highly significant association with Alzheimer's disease (P<0.001). Meta-analysis of rs75932628 genotypes imputed from genomewide association studies confirmed this association (P = 0.002), as did direct genotyping of an additional series of 1887 patients with Alzheimer's disease and 4061 controls (P<0.001). Trem2 expression differed between control mice and a mouse model of Alzheimer's disease.
CONCLUSIONS
Heterozygous rare variants in TREM2 are associated with a significant increase in the risk of Alzheimer's disease. (Funded by Alzheimer's Research UK and others.)
doi:10.1056/NEJMoa1211851
PMCID: PMC3631573  PMID: 23150934
8.  Expression of Novel Alzheimer’s Disease Risk Genes in Control and Alzheimer’s Disease Brains 
PLoS ONE  2012;7(11):e50976.
Late onset Alzheimer’s disease (LOAD) etiology is influenced by complex interactions between genetic and environmental risk factors. Large-scale genome wide association studies (GWAS) for LOAD have identified 10 novel risk genes: ABCA7, BIN1, CD2AP, CD33, CLU, CR1, EPHA1, MS4A6A, MS4A6E, and PICALM. We sought to measure the influence of GWAS single nucleotide polymorphisms (SNPs) and gene expression levels on clinical and pathological measures of AD in brain tissue from the parietal lobe of AD cases and age-matched, cognitively normal controls. We found that ABCA7, CD33, and CR1 expression levels were associated with clinical dementia rating (CDR), with higher expression being associated with more advanced cognitive decline. BIN1 expression levels were associated with disease progression, where higher expression was associated with a delayed age at onset. CD33, CLU, and CR1 expression levels were associated with disease status, where elevated expression levels were associated with AD. Additionally, MS4A6A expression levels were associated with Braak tangle and Braak plaque scores, with elevated expression levels being associated with more advanced brain pathology. We failed to detect an association between GWAS SNPs and gene expression levels in our brain series. The minor allele of rs3764650 in ABCA7 is associated with age at onset and disease duration, and the minor allele of rs670139 in MS4A6E was associated with Braak tangle and Braak plaque score. These findings suggest that expression of some GWAS genes, namely ABCA7, BIN1, CD33, CLU, CR1 and the MS4A family, are altered in AD brains.
doi:10.1371/journal.pone.0050976
PMCID: PMC3511432  PMID: 23226438
9.  Pooled-DNA sequencing identifies novel causative variants in PSEN1, GRN and MAPT in a clinical early-onset and familial Alzheimer's disease Ibero-American cohort 
Introduction
Some familial Alzheimer's disease (AD) cases are caused by rare and highly-penetrant mutations in APP, PSEN1, and PSEN2. Mutations in GRN and MAPT, two genes associated with frontotemporal dementia (FTD), have been found in clinically diagnosed AD cases. Due to the dramatic developments in next-generation sequencing (NGS), high-throughput sequencing of targeted genomic regions of the human genome in many individuals in a single run is now cheap and feasible. Recent findings favor the rare variant-common disease hypothesis by which the combination effects of rare variants could explain a large proportion of the heritability. We utilized NGS to identify rare and pathogenic variants in APP, PSEN1, PSEN2, GRN, and MAPT in an Ibero-American cohort.
Methods
We performed pooled-DNA sequencing of each exon and flanking sequences in APP, PSEN1, PSEN2, MAPT and GRN in 167 clinical and 5 autopsy-confirmed AD cases (15 familial early-onset, 136 sporadic early-onset and 16 familial late-onset) from Spain and Uruguay using NGS. Follow-up genotyping was used to validate variants. After genotyping additional controls, we performed segregation and functional analyses to determine the pathogenicity of validated variants.
Results
We identified a novel G to T transition (g.38816G>T) in exon 6 of PSEN1 in a sporadic early-onset AD case, resulting in a previously described pathogenic p.L173F mutation. A pathogenic p.L392V mutation in exon 11 was found in one familial early-onset AD case. We also identified a novel CC insertion (g.10974_10975insCC) in exon 8 of GRN, which introduced a premature stop codon, resulting in nonsense-mediated mRNA decay. This GRN mutation was associated with lower GRN plasma levels, as previously reported for other GRN pathogenic mutations. We found two variants in MAPT (p.A152T, p.S318L) present only in three AD cases but not controls, suggesting that these variants could be risk factors for the disease.
Conclusions
We found pathogenic mutations in PSEN1, GRN and MAPT in 2.33% of the screened cases. This study suggests that pathogenic mutations or risk variants in MAPT and in GRN are as frequent in clinical AD cases as mutations in APP, PSEN1 and PSEN2, highlighting that pleiotropy of MAPT or GRN mutations can influence both FTD and AD phenotypic traits.
doi:10.1186/alzrt137
PMCID: PMC3506948  PMID: 22906081
10.  Palmitoylation-induced Aggregation of Cysteine-string Protein Mutants That Cause Neuronal Ceroid Lipofuscinosis* 
The Journal of Biological Chemistry  2012;287(44):37330-37339.
Background: Specific mutations in the chaperone protein CSPα cause adult-onset neuronal ceroid lipofuscinosis.
Results: These mutants form SDS-resistant aggregates in a palmitoylation-dependent manner in cell lines and brain samples from mutation carriers.
Conclusion: Palmitoylation induces disease-causing CSPα mutants to form SDS-resistant aggregates.
Significance: Formation of SDS-resistant CSPα aggregates may underlie development of adult-onset neuronal ceroid lipofuscinosis.
Recently, mutations in the DNAJC5 gene encoding cysteine-string protein α (CSPα) were identified to cause the neurodegenerative disorder adult-onset neuronal ceroid lipofuscinosis. The disease-causing mutations (L115R or ΔL116) occur within the cysteine-string domain, a region of the protein that is post-translationally modified by extensive palmitoylation. Here we demonstrate that L115R and ΔL116 mutant proteins are mistargeted in neuroendocrine cells and form SDS-resistant aggregates, concordant with the properties of other mutant proteins linked to neurodegenerative disorders. The mutant aggregates are membrane-associated and incorporate palmitate. Indeed, co-expression of palmitoyltransferase enzymes promoted the aggregation of the CSPα mutants, and chemical depalmitoylation solubilized the aggregates, demonstrating that aggregation is induced and maintained by palmitoylation. In agreement with these observations, SDS-resistant CSPα aggregates were present in brain samples from patients carrying the L115R mutation and were depleted by chemical depalmitoylation. In summary, this study identifies a novel interplay between genetic mutations and palmitoylation in driving aggregation of CSPα mutant proteins. We propose that this palmitoylation-induced aggregation of mutant CSPα proteins may underlie the development of adult-onset neuronal ceroid lipofuscinosis in affected families.
doi:10.1074/jbc.M112.389098
PMCID: PMC3481330  PMID: 22902780
Exocytosis; Membrane Trafficking; Protein Acylation; Protein Aggregation; Protein Palmitoylation
11.  Association and Expression analyses with SNPs in TOMM40 in Alzheimer’s Disease 
Archives of neurology  2011;68(8):1013-1019.
Objectives
Apolipoprotein E (APOE) is the most statistically significant genetic risk factor for late-onset Alzheimer’s disease (LOAD). The linkage disequilibrium pattern around the APOE gene has made it difficult to determine whether all of the association signal is derived from APOE or if there is an independent signal from a nearby gene. In this study we attempted to replicate a recently reported association of APOE 3-TOMM40 haplotypes with risk and age at onset.
Design
We used standard techniques to genotype several polymorphisms in the APOE-TOMM40 region in a large case-control series, in a series with cerebrospinal fluid biomarker data and in brain tissue.
Results
We failed to replicate the previously reported association of the polyT polymorphism (rs10524523) with risk and age at onset. We found a significant association between rs10524523 and risk for LOAD among APOE 33 homozygotes but in the opposite direction to the previously reported association (the very-long allele was underrepresented in cases compared to controls in our study (allele frequency: 0.41 vs. 0.48 respectively; p=0.004)). We found no association between rs10524523 and CSF tau or Aβ42 levels or TOMM40 or APOE gene expression.
Conclusions
Although we were not able to replicate the earlier association between the APOE 3-TOMM40 haplotypes and age at onset, we did observe that the polyT polymorphism is associated with risk for LOAD among APOE 33 homozygotes in a large case-control series, but in the opposite direction to the previous report. Additional studies in very large samples will be needed to confirm this association.
doi:10.1001/archneurol.2011.155
PMCID: PMC3204798  PMID: 21825236
12.  Human apoE isoforms differentially regulate brain amyloid-β peptide clearance 
Science translational medicine  2011;3(89):89ra57.
The apolipoprotein E (APOE) ε4 allele is the strongest genetic risk factor for late-onset, sporadic Alzheimer’s disease (AD). The APOE ε4 allele dramatically increases AD risk and decreases age of onset, likely through its strong effect on the accumulation of amyloid-β (Aβ) peptide. In contrast, the APOE ε2 allele appears to decrease AD risk. Most rare, early-onset forms of familial AD are caused by autosomal dominant mutations that often lead to overproduction of Aβ42 peptide. However, the mechanism by which APOE alleles differentially modulate Aβ accumulation in sporadic, late-onset AD is less clear. In a cohort of cognitively normal individuals, we report that reliable molecular and neuroimaging biomarkers of cerebral Aβ deposition vary in an apoE isoform-dependent manner. We hypothesized that human apoE isoforms differentially affect Aβ clearance or synthesis in vivo, resulting in an apoE isoform-dependent pattern of Aβ accumulation later in life. Performing in vivo microdialysis in a mouse model of β-amyloidosis expressing human apoE isoforms (PDAPP/TRE), we find that the concentration and clearance of soluble Aβ in the brain interstitial fluid depends on the isoform of apoE expressed. This pattern parallels the extent of Aβ deposition observed in aged PDAPP/TRE mice. Importantly, apoE isoform-dependent differences in soluble Aβ metabolism are observed not only in aged PDAPP/TRE mice but also in young PDAPP/TRE mice, well before the onset of Aβ deposition in amyloid plaques. Additionally, amyloidogenic processing of amyloid precursor protein and Aβ synthesis, as assessed by in vivo stable isotopic labeling kinetics, do not vary according to apoE isoform in young PDAPP/TRE mice. Our results suggest that APOE alleles contribute to AD risk by differentially regulating clearance of Aβ from the brain, suggesting that Aβ clearance pathways may be useful therapeutic targets for AD prevention.
doi:10.1126/scitranslmed.3002156
PMCID: PMC3192364  PMID: 21715678
14.  TMEM106B gene polymorphism is associated with age at onset in granulin mutation carriers and plasma granulin protein levels 
Archives of neurology  2011;68(5):581-586.
Objective
A recent genome-wide association study for frontotemporal lobar degeneration with TAR DNA-binding protein inclusions (FTLD-TDP), identified rs1990622 (TMEM106B) as a risk factor for FTLD-TDP. In this study we tested whether rs1990622 is associated with age at onset (AAO) in granulin (GRN) mutation carriers and with plasma GRN levels in mutation carriers and healthy elderly individuals.
Design
Rs1990622 was genotyped in GRN mutation carriers and tested for association with AAO using the Kaplan-Meier and a Cox proportional hazards model.
Subjects
We analyzed 50 affected and unaffected GRN mutation carriers from four previously reported FTLD-TDP families (HDDD1, FD1, HDDD2 and the Karolinska family). GRN plasma levels were also measured in 73 healthy, elderly individuals.
Results
The risk allele of rs1990622 is associated with a mean decrease of the age at onset of thirteen years (p=9.9×10−7), with lower plasma granulin levels in both healthy older adults (p = 4×10−4) and GRN mutation carriers (p=0.0027). Analysis of the HAPMAP database identified a non-synonymous single nucleotide polymorphism, rs3173615 (T185S) in perfect linkage disequilibrium with rs1990622.
Conclusions
The association of rs1990622 with AAO explains, in part, the wide range in the age at onset of disease among GRN mutation carriers. We hypothesize that rs1990622 or another variant in linkage disequilibrium could act in a manner similar to APOE in Alzheimer’s disease, increasing risk for disease in the general population and modifying AAO in mutation carriers. Our results also suggest that genetic variation in TMEM106B may influence risk for FTLD-TDP by modulating secreted levels of GRN.
doi:10.1001/archneurol.2010.350
PMCID: PMC3090529  PMID: 21220649
15.  Rare Variants in APP, PSEN1 and PSEN2 Increase Risk for AD in Late-Onset Alzheimer's Disease Families 
PLoS ONE  2012;7(2):e31039.
Pathogenic mutations in APP, PSEN1, PSEN2, MAPT and GRN have previously been linked to familial early onset forms of dementia. Mutation screening in these genes has been performed in either very small series or in single families with late onset AD (LOAD). Similarly, studies in single families have reported mutations in MAPT and GRN associated with clinical AD but no systematic screen of a large dataset has been performed to determine how frequently this occurs. We report sequence data for 439 probands from late-onset AD families with a history of four or more affected individuals. Sixty sequenced individuals (13.7%) carried a novel or pathogenic mutation. Eight pathogenic variants, (one each in APP and MAPT, two in PSEN1 and four in GRN) three of which are novel, were found in 14 samples. Thirteen additional variants, present in 23 families, did not segregate with disease, but the frequency of these variants is higher in AD cases than controls, indicating that these variants may also modify risk for disease. The frequency of rare variants in these genes in this series is significantly higher than in the 1,000 genome project (p = 5.09×10−5; OR = 2.21; 95%CI = 1.49–3.28) or an unselected population of 12,481 samples (p = 6.82×10−5; OR = 2.19; 95%CI = 1.347–3.26). Rare coding variants in APP, PSEN1 and PSEN2, increase risk for or cause late onset AD. The presence of variants in these genes in LOAD and early-onset AD demonstrates that factors other than the mutation can impact the age at onset and penetrance of at least some variants associated with AD. MAPT and GRN mutations can be found in clinical series of AD most likely due to misdiagnosis. This study clearly demonstrates that rare variants in these genes could explain an important proportion of genetic heritability of AD, which is not detected by GWAS.
doi:10.1371/journal.pone.0031039
PMCID: PMC3270040  PMID: 22312439
16.  Exome-Sequencing Confirms DNAJC5 Mutations as Cause of Adult Neuronal Ceroid-Lipofuscinosis 
PLoS ONE  2011;6(11):e26741.
We performed whole-exome sequencing in two autopsy-confirmed cases and an elderly unaffected control from a multigenerational family with autosomal dominant neuronal ceroid lipofuscinosis (ANCL). A novel single-nucleotide variation (c.344T>G) in the DNAJC5 gene was identified. Mutational screening in an independent family with autosomal dominant ANCL found an in-frame single codon deletion (c.346_348 delCTC) resulting in a deletion of p.Leu116del. These variants fulfill all genetic criteria for disease-causing mutations: they are found in unrelated families with the same disease, exhibit complete segregation between the mutation and the disease, and are absent in healthy controls. In addition, the associated amino acid substitutions are located in evolutionarily highly conserved residues and are predicted to functionally affect the encoded protein (CSPα). The mutations are located in a cysteine-string domain, which is required for membrane targeting/binding, palmitoylation, and oligomerization of CSPα. We performed a comprehensive in silico analysis of the functional and structural impact of both mutations on CSPα. We found that these mutations dramatically decrease the affinity of CSPα for the membrane. We did not identify any significant effect on palmitoylation status of CSPα. However, a reduction of CSPα membrane affinity may change its palmitoylation and affect proper intracellular sorting. We confirm that CSPα has a strong intrinsic aggregation propensity; however, it is not modified by the mutations. A complementary disease-network analysis suggests a potential interaction with other NCLs genes/pathways. This is the first replication study of the identification of DNAJC5 as the disease-causing gene for autosomal dominant ANCL. The identification of the novel gene in ANCL will allow us to gain a better understanding of the pathological mechanism of ANCLs and constitutes a great advance toward the development of new molecular diagnostic tests and may lead to the development of potential therapies.
doi:10.1371/journal.pone.0026741
PMCID: PMC3208569  PMID: 22073189
17.  Common variants in MS4A4/MS4A6E, CD2uAP, CD33, and EPHA1 are associated with late-onset Alzheimer’s disease 
Naj, Adam C | Jun, Gyungah | Beecham, Gary W | Wang, Li-San | Vardarajan, Badri Narayan | Buros, Jacqueline | Gallins, Paul J | Buxbaum, Joseph D | Jarvik, Gail P | Crane, Paul K | Larson, Eric B | Bird, Thomas D | Boeve, Bradley F | Graff-Radford, Neill R | De Jager, Philip L | Evans, Denis | Schneider, Julie A | Carrasquillo, Minerva M | Ertekin-Taner, Nilufer | Younkin, Steven G | Cruchaga, Carlos | Kauwe, John SK | Nowotny, Petra | Kramer, Patricia | Hardy, John | Huentelman, Matthew J | Myers, Amanda J | Barmada, Michael M | Demirci, F. Yesim | Baldwin, Clinton T | Green, Robert C | Rogaeva, Ekaterina | St George-Hyslop, Peter | Arnold, Steven E | Barber, Robert | Beach, Thomas | Bigio, Eileen H | Bowen, James D | Boxer, Adam | Burke, James R | Cairns, Nigel J | Carlson, Chris S | Carney, Regina M | Carroll, Steven L | Chui, Helena C | Clark, David G | Corneveaux, Jason | Cotman, Carl W | Cummings, Jeffrey L | DeCarli, Charles | DeKosky, Steven T | Diaz-Arrastia, Ramon | Dick, Malcolm | Dickson, Dennis W | Ellis, William G | Faber, Kelley M | Fallon, Kenneth B | Farlow, Martin R | Ferris, Steven | Frosch, Matthew P | Galasko, Douglas R | Ganguli, Mary | Gearing, Marla | Geschwind, Daniel H | Ghetti, Bernardino | Gilbert, John R | Gilman, Sid | Giordani, Bruno | Glass, Jonathan D | Growdon, John H | Hamilton, Ronald L | Harrell, Lindy E | Head, Elizabeth | Honig, Lawrence S | Hulette, Christine M | Hyman, Bradley T | Jicha, Gregory A | Jin, Lee-Way | Johnson, Nancy | Karlawish, Jason | Karydas, Anna | Kaye, Jeffrey A | Kim, Ronald | Koo, Edward H | Kowall, Neil W | Lah, James J | Levey, Allan I | Lieberman, Andrew P | Lopez, Oscar L | Mack, Wendy J | Marson, Daniel C | Martiniuk, Frank | Mash, Deborah C | Masliah, Eliezer | McCormick, Wayne C | McCurry, Susan M | McDavid, Andrew N | McKee, Ann C | Mesulam, Marsel | Miller, Bruce L | Miller, Carol A | Miller, Joshua W | Parisi, Joseph E | Perl, Daniel P | Peskind, Elaine | Petersen, Ronald C | Poon, Wayne W | Quinn, Joseph F | Rajbhandary, Ruchita A | Raskind, Murray | Reisberg, Barry | Ringman, John M | Roberson, Erik D | Rosenberg, Roger N | Sano, Mary | Schneider, Lon S | Seeley, William | Shelanski, Michael L | Slifer, Michael A | Smith, Charles D | Sonnen, Joshua A | Spina, Salvatore | Stern, Robert A | Tanzi, Rudolph E | Trojanowski, John Q | Troncoso, Juan C | Deerlin, Vivianna M Van | Vinters, Harry V | Vonsattel, Jean Paul | Weintraub, Sandra | Welsh-Bohmer, Kathleen A | Williamson, Jennifer | Woltjer, Randall L | Cantwell, Laura B | Dombroski, Beth A | Beekly, Duane | Lunetta, Kathryn L | Martin, Eden R | Kamboh, M. Ilyas | Saykin, Andrew J | Reiman, Eric M | Bennett, David A | Morris, John C | Montine, Thomas J | Goate, Alison M | Blacker, Deborah | Tsuang, Debby W | Hakonarson, Hakon | Kukull, Walter A | Foroud, Tatiana M | Haines, Jonathan L | Mayeux, Richard | Pericak-Vance, Margaret A | Farrer, Lindsay A | Schellenberg, Gerard D
Nature genetics  2011;43(5):436-441.
The Alzheimer Disease Genetics Consortium (ADGC) performed a genome-wide association study (GWAS) of late-onset Alzheimer disease (LOAD) using a 3 stage design consisting of a discovery stage (Stage 1) and two replication stages (Stages 2 and 3). Both joint and meta-analysis analysis approaches were used. We obtained genome-wide significant results at MS4A4A [rs4938933; Stages 1+2, meta-analysis (PM) = 1.7 × 10−9, joint analysis (PJ) = 1.7 × 10−9; Stages 1–3, PM = 8.2 × 10−12], CD2AP (rs9349407; Stages 1–3, PM = 8.6 × 10−9), EPHA1 (rs11767557; Stages 1–3 PM = 6.0 × 10−10), and CD33 (rs3865444; Stages 1–3, PM = 1.6 × 10−9). We confirmed that CR1 (rs6701713; PM = 4.6×10−10, PJ = 5.2×10−11), CLU (rs1532278; PM = 8.3 × 10−8, PJ = 1.9×10−8), BIN1 (rs7561528; PM = 4.0×10−14; PJ = 5.2×10−14), and PICALM (rs561655; PM = 7.0 × 10−11, PJ = 1.0×10−10) but not EXOC3L2 are LOAD risk loci1–3.
doi:10.1038/ng.801
PMCID: PMC3090745  PMID: 21460841
18.  Pathogenic Cysteine Mutations Affect Progranulin Function and Production of Mature Granulins 
Journal of neurochemistry  2009;112(5):1305-1315.
Frontotemporal dementia with ubiquitin-positive inclusions (FTLD-U) can be caused by mutations in the progranulin gene (GRN). Progranulin (PGRN) is a cysteine-rich growth factor, which is proteolytically cleaved by elastase to produce several granulins (GRNs). All FTLD-U mutations in GRN characterized to date result in reduced secreted PGRN protein. We recently reported a Spanish family with progressive nonfluent aphasia and dementia in which a novel C521Y mutation segregates with disease. A second cysteine mutation (C139R) has also been reported to be disease specific. Allele-specific mRNA expression assays in brain reveal that the C521Y mutant allele is expressed at similar levels to the wild-type allele. Furthermore, plasma PGRN levels in C521Y carriers are comparable to non-carrier family relatives, suggesting that the mutation does not affect PGRN protein expression and secretion in vivo. Despite normal PGRN levels C521Y and C139R mutant GRNs show reduced neurite growth stimulating activity in vitro. Further study revealed that these mutations also cause impaired cleavage of PGRN by elastase. Our data suggest that these mutations affect the function of full-length PGRN as well as elastase cleavage of PGRN into GRNs, leading to neurodegeneration.
doi:10.1111/j.1471-4159.2009.06546.x
PMCID: PMC2819556  PMID: 20028451
progranulin; granulin; FTD; elastase; neurite outgrowth; neuronal survival
19.  Fine Mapping of Genetic Variants in BIN1, CLU, CR1 and PICALM for Association with Cerebrospinal Fluid Biomarkers for Alzheimer's Disease 
PLoS ONE  2011;6(2):e15918.
Recent genome-wide association studies of Alzheimer's disease (AD) have identified variants in BIN1, CLU, CR1 and PICALM that show replicable association with risk for disease. We have thoroughly sampled common variation in these genes, genotyping 355 variants in over 600 individuals for whom measurements of two AD biomarkers, cerebrospinal fluid (CSF) 42 amino acid amyloid beta fragments (Aβ42) and tau phosphorylated at threonine 181 (ptau181), have been obtained. Association analyses were performed to determine whether variants in BIN1, CLU, CR1 or PICALM are associated with changes in the CSF levels of these biomarkers. Despite adequate power to detect effects as small as a 1.05 fold difference, we have failed to detect evidence for association between SNPs in these genes and CSF Aβ42 or ptau181 levels in our sample. Our results suggest that these variants do not affect risk via a mechanism that results in a strong additive effect on CSF levels of Aβ42 or ptau181.
doi:10.1371/journal.pone.0015918
PMCID: PMC3036586  PMID: 21347408
20.  Validating predicted biological effects of Alzheimer’s disease associated SNPs using CSF biomarker levels 
Recent large-scale genetic studies of late-onset Alzheimer’s disease (LOAD) have identified risk variants in CALHM1, GAB2 and SORL1. The mechanisms by which these genes might modulate risk are not definitively known. CALHM1 and SORL1 may alter amyloid-beta (Aβ) levels and GAB2 may influence phosphorylation of the tau protein. In this study we have analyzed disease associated genetic variants in each of these genes for association with cerebrospinal fluid (CSF) Aβ or tau levels in 602 samples from two independent CSF series. We failed to detect association between CSF Aβ42 levels and SNPs in SORL1 despite substantial statistical power to detect association. While we also failed to detect association between variants in GAB2 and CSF tau levels, power to detect this association was limited. Finally, our data suggest that the minor allele of rs2986017, in CALHM1, is marginally associated with CSF Aβ42 levels. This association is consistent with previous reports that this non-synonymous coding substitution results in increased Aβ levels in vitro and provides support for an Aβ-related mechanism for modulating risk for AD.
doi:10.3233/JAD-2010-091711
PMCID: PMC3032214  PMID: 20634593
Alzheimer’s disease; genetics; association; endophenotypes; amyloid; tau; CALHM1; SORL1; GAB2
21.  TARDBP 3′-UTR variant in autopsy-confirmed frontotemporal lobar degeneration with TDP-43 proteinopathy 
Acta Neuropathologica  2009;118(5):633-645.
Pathogenic mutations in the gene encoding TDP-43, TARDBP, have been reported in familial amyotrophic lateral sclerosis (FALS) and, more recently, in families with a heterogeneous clinical phenotype including both ALS and frontotemporal lobar degeneration (FTLD). In our previous study, sequencing analyses identified one variant in the 3′-untranslated region (3′-UTR) of the TARDBP gene in two affected members of one family with bvFTD and ALS and in one unrelated clinically assessed case of FALS. Since that study, brain tissue has become available and provides autopsy confirmation of FTLD-TDP in the proband and ALS in the brother of the bvFTD-ALS family and the neuropathology of those two cases is reported here. The 3′-UTR variant was not found in 982 control subjects (1,964 alleles). To determine the functional significance of this variant, we undertook quantitative gene expression analysis. Allele-specific amplification showed a significant increase of 22% (P < 0.05) in disease-specific allele expression with a twofold increase in total TARDBP mRNA. The segregation of this variant in a family with clinical bvFTD and ALS adds to the spectrum of clinical phenotypes previously associated with TARDBP variants. In summary, TARDBP variants may result in clinically and neuropathologically heterogeneous phenotypes linked by a common molecular pathology called TDP-43 proteinopathy.
doi:10.1007/s00401-009-0571-7
PMCID: PMC2783457  PMID: 19618195
Frontotemporal lobar degeneration; Frontotemporal dementia; Motor neuron disease; Amyotrophic lateral sclerosis; TDP-43; TARDBP; 3′-Untranslated region
22.  SNPs Associated with Cerebrospinal Fluid Phospho-Tau Levels Influence Rate of Decline in Alzheimer's Disease 
PLoS Genetics  2010;6(9):e1001101.
Alzheimer's Disease (AD) is a complex and multifactorial disease. While large genome-wide association studies have had some success in identifying novel genetic risk factors for AD, case-control studies are less likely to uncover genetic factors that influence progression of disease. An alternative approach to identifying genetic risk for AD is the use of quantitative traits or endophenotypes. The use of endophenotypes has proven to be an effective strategy, implicating genetic risk factors in several diseases, including anemia, osteoporosis and heart disease. In this study we identify a genetic factor associated with the rate of decline in AD patients and present a methodology for identification of other such factors. We have used an established biomarker for AD, cerebrospinal fluid (CSF) tau phosphorylated at threonine 181 (ptau181) levels as an endophenotype for AD, identifying a SNP, rs1868402, in the gene encoding the regulatory sub-unit of protein phosphatase B, associated with CSF ptau181 levels in two independent CSF series . We show no association of rs1868402 with risk for AD or age at onset, but detected a very significant association with rate of progression of disease that is consistent in two independent series . Our analyses suggest that genetic variants associated with CSF ptau181 levels may have a greater impact on rate of progression, while genetic variants such as APOE4, that are associated with CSF Aβ42 levels influence risk and onset but not the rate of progression. Our results also suggest that drugs that inhibit or decrease tau phosphorylation may slow cognitive decline in individuals with very mild dementia or delay the appearance of memory problems in elderly individuals with low CSF Aβ42 levels. Finally, we believe genome-wide association studies of CSF tau/ptau181 levels should identify novel genetic variants which will likely influence rate of progression of AD.
Author Summary
Alzheimer's disease (AD) is the most common neurodegenerative disease affecting more than 4.5 million people in the US. Genetic studies of AD have previously identified pathogenic mutations in three genes (APP, PSEN1 and PSEN2) and polymorphisms in APOE as risk factors. These findings have led to a better understanding of the underlying disease mechanisms. However, half of all AD cases have no known genetic risk factors for disease. Most studies are designed to identify variants associated with risk or age at onset, but rarely cover other important facets of AD, such as disease progression or duration. In this study we have used an established AD biomarker (cerebrospinal fluid tau phosphorylated at threonine 181, ptau181) to find genetic variants that influence levels of ptau181 in the cerebrospinal fluid. This novel and powerful approach has allowed us to identify a genetic factor located in the regulatory subunit of the calcineurin that is also strongly associated with rate of progression of AD. This study is important because it defines a strategy to find novel genetic factors influencing different facets of AD pathobiology including risk, onset and progression.
doi:10.1371/journal.pgen.1001101
PMCID: PMC2940763  PMID: 20862329
23.  Risk for nicotine dependence and lung cancer is conferred by mRNA expression levels and amino acid change in CHRNA5 
Human Molecular Genetics  2009;18(16):3125-3135.
Nicotine dependence risk and lung cancer risk are associated with variants in a region of chromosome 15 encompassing genes encoding the nicotinic receptor subunits CHRNA5, CHRNA3 and CHRNB4. To identify potential biological mechanisms that underlie this risk, we tested for cis-acting eQTLs for CHRNA5, CHRNA3 and CHRNB4 in human brain. Using gene expression and disease association studies, we provide evidence that both nicotine-dependence risk and lung cancer risk are influenced by functional variation in CHRNA5. We demonstrated that the risk allele of rs16969968 primarily occurs on the low mRNA expression allele of CHRNA5. The non-risk allele at rs16969968 occurs on both high and low expression alleles tagged by rs588765 within CHRNA5. When the non-risk allele occurs on the background of low mRNA expression of CHRNA5, the risk for nicotine dependence and lung cancer is significantly lower compared to those with the higher mRNA expression. Together, these variants identify three levels of risk associated with CHRNA5. We conclude that there are at least two distinct mechanisms conferring risk for nicotine dependence and lung cancer: altered receptor function caused by a D398N amino acid variant in CHRNA5 (rs16969968) and variability in CHRNA5 mRNA expression.
doi:10.1093/hmg/ddp231
PMCID: PMC2714722  PMID: 19443489
24.  Rs5848 variant influences GRN mRNA levels in brain and peripheral mononuclear cells in patients with Alzheimer's disease 
Mutations in the progranulin gene (GRN) are causative for Frontotemporal Lobar Degeneration with ubiquitin-immunoreactive neuronal inclusions (FTLD-U). However, additional studies have demonstrated that these variants could be associated with Alzheimer's disease (AD). The influence of GRN genetic variability on susceptibility to AD and on expression levels in a series of neuropathologically-confirmed AD patients as well as in Peripheral Mononuclear Cells (PBMC) and in cells isolated from cerebrospinal fluid (CSF) was investigated. An association study of rs9897526 and rs5848 was carried out in an Italian population and in a replication population of European American patients and controls.
None of the variants tested act as unequivocal susceptibility factor in both populations although a tendency to an increased frequency of rs5848T allele was observed in the Italian group of AD patients. Furthermore, rs9897526 anticipated the onset of the disease in the Italian population. GRN expression in the parietal lobe of AD cases showed a 0.76-fold decrease compared with controls (1.31±0.07 versus 1.73±0.12, P=0.0025). Patients carrying the rs5848 TT genotype had the lowest GRN expression levels (0.96±0.12, P=0.014). Despite no significant differences were found in the relative PBMC and CSF GRN expression in patients compared to controls, stratifying patients according to the presence of rs5848 T allele, a 0.57-fold decrease in GRN mRNA levels over C carriers was found in PBMC (1.22±0.23 versus 0.70±0.12, P=0.04). Similarly to data obtained in brain samples, patients carrying the TT genotype showed the lowest GRN mRNA levels (TT= 0.46±0.14, CC=1.22±0.23; P=0.013). These data argue against a direct role of GRN as a susceptibility factor for sporadic AD but support a role of GRN as a disease-modifying gene, possibly contributing to the failure of neuronal survival.
doi:10.3233/JAD-2009-1170
PMCID: PMC2842455  PMID: 19625741
Alzheimer's Disease (AD); Progranulin (GRN); Single Nucleotide Polymorphism (SNP); Cerebrospinal Fluid (CSF); Peripheral Mononuclear Cells (PBMC)

Results 1-24 (24)