PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (27)
 

Clipboard (0)
None

Select a Filter Below

Journals
more »
Year of Publication
more »
Document Types
1.  Genome-Wide Association Study of CSF Levels of 59 Alzheimer's Disease Candidate Proteins: Significant Associations with Proteins Involved in Amyloid Processing and Inflammation 
PLoS Genetics  2014;10(10):e1004758.
Cerebrospinal fluid (CSF) 42 amino acid species of amyloid beta (Aβ42) and tau levels are strongly correlated with the presence of Alzheimer's disease (AD) neuropathology including amyloid plaques and neurodegeneration and have been successfully used as endophenotypes for genetic studies of AD. Additional CSF analytes may also serve as useful endophenotypes that capture other aspects of AD pathophysiology. Here we have conducted a genome-wide association study of CSF levels of 59 AD-related analytes. All analytes were measured using the Rules Based Medicine Human DiscoveryMAP Panel, which includes analytes relevant to several disease-related processes. Data from two independently collected and measured datasets, the Knight Alzheimer's Disease Research Center (ADRC) and Alzheimer's Disease Neuroimaging Initiative (ADNI), were analyzed separately, and combined results were obtained using meta-analysis. We identified genetic associations with CSF levels of 5 proteins (Angiotensin-converting enzyme (ACE), Chemokine (C-C motif) ligand 2 (CCL2), Chemokine (C-C motif) ligand 4 (CCL4), Interleukin 6 receptor (IL6R) and Matrix metalloproteinase-3 (MMP3)) with study-wide significant p-values (p<1.46×10−10) and significant, consistent evidence for association in both the Knight ADRC and the ADNI samples. These proteins are involved in amyloid processing and pro-inflammatory signaling. SNPs associated with ACE, IL6R and MMP3 protein levels are located within the coding regions of the corresponding structural gene. The SNPs associated with CSF levels of CCL4 and CCL2 are located in known chemokine binding proteins. The genetic associations reported here are novel and suggest mechanisms for genetic control of CSF and plasma levels of these disease-related proteins. Significant SNPs in ACE and MMP3 also showed association with AD risk. Our findings suggest that these proteins/pathways may be valuable therapeutic targets for AD. Robust associations in cognitively normal individuals suggest that these SNPs also influence regulation of these proteins more generally and may therefore be relevant to other diseases.
Author Summary
The use of quantitative endophenotypes from cerebrospinal fluid has led to the identification of several genetic variants that alter risk or rate of progression of Alzheimer's disease. Here we have analyzed the levels of 58 disease-related proteins in the cerebrospinal fluid for association with millions of variants across the human genome. We have identified significant, replicable associations with 5 analytes, Angiotensin-converting enzyme, Chemokine (C-C motif) ligand 2, Chemokine (C-C motif) ligand 4, Interleukin 6 receptor and Matrix metalloproteinase-3. Our results suggest that these variants play a regulatory role in the respective protein levels and are relevant to the inflammatory and amyloid processing pathways. Variants in associated with ACE and those associated with MMP3 levels also show association with risk for Alzheimer's disease in the expected directions. These associations are consistent in cerebrospinal fluid and plasma and in samples with only cognitively normal individuals suggesting that they are relevant in the regulation of these protein levels beyond the context of Alzheimer's disease.
doi:10.1371/journal.pgen.1004758
PMCID: PMC4207667  PMID: 25340798
2.  A meta-analysis of two genome-wide association studies to identify novel loci for maximum number of alcoholic drinks 
Human genetics  2013;132(10):1141-1151.
Maximum number of alcoholic drinks consumed in a 24-h period (maxdrinks) is a heritable (> 50%) trait and is strongly correlated with vulnerability to excessive alcohol consumption and subsequent alcohol dependence (AD). Several genome-wide association studies (GWAS) have studied alcohol dependence, but few have concentrated on excessive alcohol consumption. We performed two GWAS using maxdrinks as an excessive alcohol consumption phenotype: one in 118 extended families (N=2322) selected from the Collaborative Study on the Genetics of Alcoholism (COGA), and the other in a case-control sample (N=2593) derived from the Study of Addiction: Genes and Environment (SAGE). The strongest association in the COGA families was detected with rs9523562 (p = 2.1×10−6) located in an intergenic region on chromosome 13q31.1; the strongest association in the SAGE dataset was with rs67666182 (p = 7.1×10−7), located in an intergenic region on chromosome 8. We also performed a meta-analysis with these two GWAS and demonstrated evidence of association in both datasets for the LMO1 (p = 7.2×10−7) and PLCL1 genes (p = 4.1×10−6) with increased maxdrinks. A variant in AUTS2 and variants in INADL, C15orf32 and HIP1 that were associated with measures of alcohol consumption in a meta-analysis of GWAS studies and a GWAS of alcohol consumption factor score also showed nominal association in the current meta-analysis. The present study has identified several loci that warrant further examination in independent samples. Among the top SNPs in each of the dataset (p≤10−4) far more showed the same direction of effect in the other dataset than would be expected by chance (p = 2×10−3, 3×10−6), suggesting that there are true signals among these top SNPs, even though no SNP reached genome-wide levels of significance.
doi:10.1007/s00439-013-1318-z
PMCID: PMC3776011  PMID: 23743675
Alcohol consumption; maximum number of alcoholic drinks; GWAS; COGA; SAGE
3.  Rare coding variants in Phospholipase D3 (PLD3) confer risk for Alzheimer's disease 
Nature  2013;505(7484):550-554.
Genome-wide association studies (GWAS) have identified several risk variants for late-onset Alzheimer's disease (LOAD)1,2. These common variants have replicable but small effects on LOAD risk and generally do not have obvious functional effects. Low-frequency coding variants, not detected by GWAS, are predicted to include functional variants with larger effects on risk. To identify low frequency coding variants with large effects on LOAD risk, we performed whole exome-sequencing (WES) in 14 large LOAD families and follow-up analyses of the candidate variants in several large case-control datasets. A rare variant in PLD3 (phospholipase-D family, member 3, rs145999145; V232M) segregated with disease status in two independent families and doubled risk for AD in seven independent case-control series (V232M meta-analysis; OR= 2.10, CI=1.47-2.99; p= 2.93×10-5, 11,354 cases and controls of European-descent). Gene-based burden analyses in 4,387 cases and controls of European-descent and 302 African American cases and controls, with complete sequence data for PLD3, indicate that several variants in this gene increase risk for AD in both populations (EA: OR= 2.75, CI=2.05-3.68; p=1.44×10-11, AA: OR= 5.48, CI=1.77-16.92; p=1.40×10-3). PLD3 is highly expressed in brain regions vulnerable to AD pathology, including hippocampus and cortex, and is expressed at lower levels in neurons from AD brains compared to control brains (p=8.10×10-10). Over-expression of PLD3 leads to a significant decrease in intracellular APP and extracellular Aβ42 and Aβ40, while knock-down of PLD3 leads to a significant increase in extracellular Aβ42 and Aβ40. Together, our genetic and functional data indicate that carriers of PLD3 coding variants have a two-fold increased risk for LOAD and that PLD3 influences APP processing. This study provides an example of how densely affected families may be used to identify rare variants with large effects on risk for disease or other complex traits.
doi:10.1038/nature12825
PMCID: PMC4050701  PMID: 24336208
4.  A genome wide association study of alcohol dependence symptom counts in extended pedigrees identifies C15orf53 
Molecular psychiatry  2012;18(11):10.1038/mp.2012.143.
Several studies have identified genes associated with alcohol use disorders, but the variation in each of these genes explains only a small portion of the genetic vulnerability. The goal of the present study was to perform a genome-wide association study (GWAS) in extended families from the Collaborative Study on the Genetics of Alcoholism (COGA) to identify novel genes affecting risk for alcohol dependence. To maximize the power of the extended family design we used a quantitative endophenotype, measured in all individuals: number of alcohol dependence symptoms endorsed (symptom count). Secondary analyses were performed to determine if the single nucleotide polymorphisms (SNPs) associated with symptom count were also associated with the dichotomous phenotype, DSM-IV alcohol dependence. This family-based GWAS identified SNPs in C15orf53 that are strongly associated with DSM-IV alcohol (p=4.5×10−8, inflation corrected p=9.4×10−7). Results with DSM-IV alcohol dependence in the regions of interest support our findings with symptom count, though the associations were less significant. Attempted replications of the most promising association results were conducted in two independent samples: non-overlapping subjects from the Study of Addiction: Genes and Environment (SAGE) and the Australian twin-family study of alcohol use disorders (OZALC). Nominal association of C15orf53 with symptom count was observed in SAGE. The variant that showed strongest association with symptom count, rs12912251 and its highly correlated variants (D′=1, r2≥ 0.95), has previously been associated with risk for bipolar disorder.
doi:10.1038/mp.2012.143
PMCID: PMC3752321  PMID: 23089632
DSM-IV alcohol dependence symptoms; Family-based GWAS; C15orf53; Quantitative traits
5.  GWAS of cerebrospinal fluid tau levels identifies novel risk variants for Alzheimer’s disease 
Neuron  2013;78(2):256-268.
Cerebrospinal fluid (CSF) tau, tau phosphorylated at threonine 181 (ptau) and Aβ42 are established biomarkers for Alzheimer’s Disease (AD), and have been used as quantitative traits for genetic analyses. We performed the largest genome-wide association study for cerebrospinal fluid (CSF) tau/ptau levels published to date (n=1,269), identifying three novel genome-wide significant loci for CSF tau and ptau: rs9877502 (P=4.89×10−9 for tau) located at 3q28 between GEMC1 and OSTN, rs514716 (P=1.07×10−8 and P=3.22×10−9 for tau and ptau respectively), located at 9p24.2 within GLIS3 and rs6922617 (P = 3.58×10−8 for CSF ptau) at 6p21.1 within the TREM gene cluster, a region recently reported to harbor rare variants that increase AD risk. In independent datasets rs9877502 showed a strong association with risk for AD, tangle pathology and global cognitive decline (P=2.67×10−4, 0.039, 4.86×10−5 respectively) illustrating how this endophenotype-based approach can be used to identify new AD risk loci.
doi:10.1016/j.neuron.2013.02.026
PMCID: PMC3664945  PMID: 23562540
6.  Cis-Regulatory Variants Affect CHRNA5 mRNA Expression in Populations of African and European Ancestry 
PLoS ONE  2013;8(11):e80204.
Variants within the gene cluster encoding α3, α5, and β4 nicotinic receptor subunits are major risk factors for substance dependence. The strongest impact on risk is associated with variation in the CHRNA5 gene, where at least two mechanisms are at work: amino acid variation and altered mRNA expression levels. The risk allele of the non-synonymous variant (rs16969968; D398N) primarily occurs on the haplotype containing the low mRNA expression allele. In populations of European ancestry, there are approximately 50 highly correlated variants in the CHRNA5-CHRNA3-CHRNB4 gene cluster and the adjacent PSMA4 gene region that are associated with CHRNA5 mRNA levels. It is not clear which of these variants contribute to the changes in CHRNA5 transcript level. Because populations of African ancestry have reduced linkage disequilibrium among variants spanning this gene cluster, eQTL mapping in subjects of African ancestry could potentially aid in defining the functional variants that affect CHRNA5 mRNA levels. We performed quantitative allele specific gene expression using frontal cortices derived from 49 subjects of African ancestry and 111 subjects of European ancestry. This method measures allele-specific transcript levels in the same individual, which eliminates other biological variation that occurs when comparing expression levels between different samples. This analysis confirmed that substance dependence associated variants have a direct cis-regulatory effect on CHRNA5 transcript levels in human frontal cortices of African and European ancestry and identified 10 highly correlated variants, located in a 9 kb region, that are potential functional variants modifying CHRNA5 mRNA expression levels.
doi:10.1371/journal.pone.0080204
PMCID: PMC3841173  PMID: 24303001
7.  A Systematic SNP Screen to Fine-Map Alcohol Dependence Genes on Chromosome 7 Identifies Association with a Novel Susceptibility Gene ACN9 
Biological psychiatry  2007;63(11):10.1016/j.biopsych.2007.11.005.
Background
Chromosome 7 has shown consistent evidence of linkage with a variety of phenotypes related to alcohol dependence in the Collaborative Study on the Genetics of Alcoholism (COGA) project. Using a sample of 262 densely affected families, a peak lod score for alcohol dependence of 2.9 was observed at D7S1799 (Wang et al., 2004, Hum Mol Genet). The lod score in the region increased to 4.1 when a subset of the sample was genotyped with the Illumina Linkage III panel for the Genetic Analysis Workshop 14 (GAW14; Dunn et al., 2005, BMC Genetics). To follow-up on this linkage region, we systematically screened SNPs across a 2 LOD support interval surrounding the alcohol dependence peak.
Methods
SNPs were selected from the HapMap Phase I CEPH data to tag linkage disequilibrium bins across the region. 1340 across the 18Mb region, genotyped by the Center for Inherited Disease Research (CIDR), were analyzed. Family-based association analyses were performed on a sample of 1172 individuals from 217 Caucasian families. Results: Eight SNPs showed association with alcohol dependence at p<0.01. Four of the eight most significant SNPs were located in or very near the ACN9 gene. We conducted additional genotyping across ACN9 and identified multiple variants with significant evidence of association with alcohol dependence.
Conclusions
These analyses suggest that ACN9 is involved in the predisposition to alcohol dependence. Data from yeast suggest that ACN9 is involved in gluconeogenesis and the assimilation of ethanol or acetate into carbohydrate.
doi:10.1016/j.biopsych.2007.11.005
PMCID: PMC3823371  PMID: 18163977
genetics; association; linkage disequilibrium; alcohol dependence; ACN9
8.  Cerebrospinal fluid APOE levels: an endophenotype for genetic studies for Alzheimer's disease 
Human Molecular Genetics  2012;21(20):4558-4571.
The apolipoprotein E (APOE) genotype is the major genetic risk factor for Alzheimer's disease (AD). We have access to cerebrospinal fluid (CSF) and plasma APOE protein levels from 641 individuals and genome-wide genotyped data from 570 of these samples. The aim of this study was to test whether CSF or plasma APOE levels could be a useful endophenotype for AD and to identify genetic variants associated with APOE levels. We found that CSF (P = 8.15 × 10−4) but not plasma (P = 0.071) APOE protein levels are significantly associated with CSF Aβ42 levels. We used Mendelian randomization and genetic variants as instrumental variables to confirm that the association of CSF APOE with CSF Aβ42 levels and clinical dementia rating (CDR) is not because of a reverse causation or confounding effect. In addition the association of CSF APOE with Aβ42 levels was independent of the APOE ɛ4 genotype, suggesting that APOE levels in CSF may be a useful endophenotype for AD. We performed a genome-wide association study to identify genetic variants associated with CSF APOE levels: the APOE ɛ4 genotype was the strongest single-genetic factor associated with CSF APOE protein levels (P = 6.9 × 10−13). In aggregate, the Illumina chip single nucleotide polymorphisms explain 72% of the variability in CSF APOE protein levels, whereas the APOE ɛ4 genotype alone explains 8% of the variability. No other genetic variant reached the genome-wide significance threshold, but nine additional variants exhibited a P-value <10−6. Pathway mining analysis indicated that these nine additional loci are involved in lipid metabolism (P = 4.49 × 10−9).
doi:10.1093/hmg/dds296
PMCID: PMC3459471  PMID: 22821396
9.  The PSEN1, p.E318G Variant Increases the Risk of Alzheimer's Disease in APOE-ε4 Carriers 
PLoS Genetics  2013;9(8):e1003685.
The primary constituents of plaques (Aβ42/Aβ40) and neurofibrillary tangles (tau and phosphorylated forms of tau [ptau]) are the current leading diagnostic and prognostic cerebrospinal fluid (CSF) biomarkers for AD. In this study, we performed deep sequencing of APP, PSEN1, PSEN2, GRN, APOE and MAPT genes in individuals with extreme CSF Aβ42, tau, or ptau levels. One known pathogenic mutation (PSEN1 p.A426P), four high-risk variants for AD (APOE p.L46P, MAPT p.A152T, PSEN2 p.R62H and p.R71W) and nine novel variants were identified. Surprisingly, a coding variant in PSEN1, p.E318G (rs17125721-G) exhibited a significant association with high CSF tau (p = 9.2×10−4) and ptau (p = 1.8×10−3) levels. The association of the p.E318G variant with Aβ deposition was observed in APOE-ε4 allele carriers. Furthermore, we found that in a large case-control series (n = 5,161) individuals who are APOE-ε4 carriers and carry the p.E318G variant are at a risk of developing AD (OR = 10.7, 95% CI = 4.7–24.6) that is similar to APOE-ε4 homozygous (OR = 9.9, 95% CI = 7.2.9–13.6), and double the risk for APOE-ε4 carriers that do not carry p.E318G (OR = 3.9, 95% CI = 3.4–4.4). The p.E318G variant is present in 5.3% (n = 30) of the families from a large clinical series of LOAD families (n = 565) and exhibited a higher frequency in familial LOAD (MAF = 2.5%) than in sporadic LOAD (MAF = 1.6%) (p = 0.02). Additionally, we found that in the presence of at least one APOE-ε4 allele, p.E318G is associated with more Aβ plaques and faster cognitive decline. We demonstrate that the effect of PSEN1, p.E318G on AD susceptibility is largely dependent on an interaction with APOE-ε4 and mediated by an increased burden of Aβ deposition.
Author Summary
Alzheimer's disease (AD) is the most common neurodegenerative disease affecting more than 5.3 million people in the US. AD-causing mutations have been identified in APP, PSEN1 and PSEN2 genes. Heterozygous carriers of APOE-ε4 allele exhibit a 3-fold increased risk for developing AD, while homozygous carriers show a 10-fold greater risk than non-carriers. Here, we sequenced individuals with extreme levels of well-established AD cerebrospinal fluid (CSF) biomarkers in order to identify variants in APOE, APP, PSEN1, PSEN2, GRN and MAPT genes associated with AD risk. This approach allowed us to identify known pathogenic variants, additional AD risk genetic factors and identify a low frequency variant in PSEN1, p.E318G (rs17125721-G) that increases risk for AD in a gene-gene interaction with APOE. These findings were replicated in three large (>4,000 individuals) and independent datasets. This finding is particularly important because we demonstrated that a currently considered non-pathogenic variant is associated with higher levels of neuronal degeneration, and with Aβ deposition, more Aβ plaques and faster cognitive decline in an APOE-ε4-dependent fashion. APOE-ε4 heterozygous individuals who carry this variant are at similar AD risk as APOE-ε4 homozygous individuals.
doi:10.1371/journal.pgen.1003685
PMCID: PMC3750021  PMID: 23990795
10.  ADH1B is associated with alcohol dependence and alcohol consumption in populations of European and African ancestry 
Molecular Psychiatry  2011;17(4):445-450.
A coding variant in ADH1B (rs1229984) that leads to the replacement of Arg48 with His48 is common in Asian populations and reduces their risk for alcoholism, but because of very low allele frequencies the effects in European or African populations have been difficult to detect. We genotyped and analyzed this variant in three large European and African-American case-control studies in which alcohol dependence was defined by DSM-IV criteria, and demonstrated a strong protective effect of the His48 variant (odds ratio of 0.34, 95% confidence interval 0.24, 0.48) for alcohol dependence, with genome-wide significance (6.6 × 10−10). The hypothesized mechanism of action involves an increased aversive reaction to alcohol; in keeping with this hypothesis, the same allele is strongly associated with a lower maximum number of drinks in a 24 hour period (lifetime), with p = 3×10−13. We also tested the effects of this allele on the development of alcoholism in adolescents and young adults and demonstrated a significant protective effect. This variant has the strongest effect on risk for alcohol dependence of any tested in European populations.
doi:10.1038/mp.2011.124
PMCID: PMC3252425  PMID: 21968928
alcohol dependence; ADH1B; alcohol dehydrogenase; protective allele; genetics; association study
11.  Association and Expression analyses with SNPs in TOMM40 in Alzheimer’s Disease 
Archives of neurology  2011;68(8):1013-1019.
Objectives
Apolipoprotein E (APOE) is the most statistically significant genetic risk factor for late-onset Alzheimer’s disease (LOAD). The linkage disequilibrium pattern around the APOE gene has made it difficult to determine whether all of the association signal is derived from APOE or if there is an independent signal from a nearby gene. In this study we attempted to replicate a recently reported association of APOE 3-TOMM40 haplotypes with risk and age at onset.
Design
We used standard techniques to genotype several polymorphisms in the APOE-TOMM40 region in a large case-control series, in a series with cerebrospinal fluid biomarker data and in brain tissue.
Results
We failed to replicate the previously reported association of the polyT polymorphism (rs10524523) with risk and age at onset. We found a significant association between rs10524523 and risk for LOAD among APOE 33 homozygotes but in the opposite direction to the previously reported association (the very-long allele was underrepresented in cases compared to controls in our study (allele frequency: 0.41 vs. 0.48 respectively; p=0.004)). We found no association between rs10524523 and CSF tau or Aβ42 levels or TOMM40 or APOE gene expression.
Conclusions
Although we were not able to replicate the earlier association between the APOE 3-TOMM40 haplotypes and age at onset, we did observe that the polyT polymorphism is associated with risk for LOAD among APOE 33 homozygotes in a large case-control series, but in the opposite direction to the previous report. Additional studies in very large samples will be needed to confirm this association.
doi:10.1001/archneurol.2011.155
PMCID: PMC3204798  PMID: 21825236
12.  TMEM106B gene polymorphism is associated with age at onset in granulin mutation carriers and plasma granulin protein levels 
Archives of neurology  2011;68(5):581-586.
Objective
A recent genome-wide association study for frontotemporal lobar degeneration with TAR DNA-binding protein inclusions (FTLD-TDP), identified rs1990622 (TMEM106B) as a risk factor for FTLD-TDP. In this study we tested whether rs1990622 is associated with age at onset (AAO) in granulin (GRN) mutation carriers and with plasma GRN levels in mutation carriers and healthy elderly individuals.
Design
Rs1990622 was genotyped in GRN mutation carriers and tested for association with AAO using the Kaplan-Meier and a Cox proportional hazards model.
Subjects
We analyzed 50 affected and unaffected GRN mutation carriers from four previously reported FTLD-TDP families (HDDD1, FD1, HDDD2 and the Karolinska family). GRN plasma levels were also measured in 73 healthy, elderly individuals.
Results
The risk allele of rs1990622 is associated with a mean decrease of the age at onset of thirteen years (p=9.9×10−7), with lower plasma granulin levels in both healthy older adults (p = 4×10−4) and GRN mutation carriers (p=0.0027). Analysis of the HAPMAP database identified a non-synonymous single nucleotide polymorphism, rs3173615 (T185S) in perfect linkage disequilibrium with rs1990622.
Conclusions
The association of rs1990622 with AAO explains, in part, the wide range in the age at onset of disease among GRN mutation carriers. We hypothesize that rs1990622 or another variant in linkage disequilibrium could act in a manner similar to APOE in Alzheimer’s disease, increasing risk for disease in the general population and modifying AAO in mutation carriers. Our results also suggest that genetic variation in TMEM106B may influence risk for FTLD-TDP by modulating secreted levels of GRN.
doi:10.1001/archneurol.2010.350
PMCID: PMC3090529  PMID: 21220649
13.  Variants Located Upstream of CHRNB4 on Chromosome 15q25.1 Are Associated with Age at Onset of Daily Smoking and Habitual Smoking 
PLoS ONE  2012;7(3):e33513.
Several genome-wide association and candidate gene studies have linked chromosome 15q24–q25.1 (a region including the CHRNA5-CHRNA3-CHRNB4 gene cluster) with alcohol dependence, nicotine dependence and smoking-related illnesses such as lung cancer and chronic obstructive pulmonary disease. To further examine the impact of these genes on the development of substance use disorders, we tested whether variants within and flanking the CHRNA5-CHRNA3-CHRNB4 gene cluster affect the transition to daily smoking (individuals who smoked cigarettes 4 or more days per week) in a cross sectional sample of adolescents and young adults from the COGA (Collaborative Study of the Genetics of Alcoholism) families. Subjects were recruited from families affected with alcoholism (either as a first or second degree relative) and the comparison families. Participants completed the SSAGA interview, a comprehensive assessment of alcohol and other substance use and related behaviors. Using the Quantitative trait disequilibrium test (QTDT) significant association was detected between age at onset of daily smoking and variants located upstream of CHRNB4. Multivariate analysis using a Cox proportional hazards model further revealed that these variants significantly predict the age at onset of habitual smoking among daily smokers. These variants were not in high linkage disequilibrium (0.28
doi:10.1371/journal.pone.0033513
PMCID: PMC3306405  PMID: 22438940
Recent large-scale genetic studies of late-onset Alzheimer’s disease (LOAD) have identified risk variants in CALHM1, GAB2 and SORL1. The mechanisms by which these genes might modulate risk are not definitively known. CALHM1 and SORL1 may alter amyloid-beta (Aβ) levels and GAB2 may influence phosphorylation of the tau protein. In this study we have analyzed disease associated genetic variants in each of these genes for association with cerebrospinal fluid (CSF) Aβ or tau levels in 602 samples from two independent CSF series. We failed to detect association between CSF Aβ42 levels and SNPs in SORL1 despite substantial statistical power to detect association. While we also failed to detect association between variants in GAB2 and CSF tau levels, power to detect this association was limited. Finally, our data suggest that the minor allele of rs2986017, in CALHM1, is marginally associated with CSF Aβ42 levels. This association is consistent with previous reports that this non-synonymous coding substitution results in increased Aβ levels in vitro and provides support for an Aβ-related mechanism for modulating risk for AD.
doi:10.3233/JAD-2010-091711
PMCID: PMC3032214  PMID: 20634593
Alzheimer’s disease; genetics; association; endophenotypes; amyloid; tau; CALHM1; SORL1; GAB2
PLoS Genetics  2010;6(9):e1001101.
Alzheimer's Disease (AD) is a complex and multifactorial disease. While large genome-wide association studies have had some success in identifying novel genetic risk factors for AD, case-control studies are less likely to uncover genetic factors that influence progression of disease. An alternative approach to identifying genetic risk for AD is the use of quantitative traits or endophenotypes. The use of endophenotypes has proven to be an effective strategy, implicating genetic risk factors in several diseases, including anemia, osteoporosis and heart disease. In this study we identify a genetic factor associated with the rate of decline in AD patients and present a methodology for identification of other such factors. We have used an established biomarker for AD, cerebrospinal fluid (CSF) tau phosphorylated at threonine 181 (ptau181) levels as an endophenotype for AD, identifying a SNP, rs1868402, in the gene encoding the regulatory sub-unit of protein phosphatase B, associated with CSF ptau181 levels in two independent CSF series . We show no association of rs1868402 with risk for AD or age at onset, but detected a very significant association with rate of progression of disease that is consistent in two independent series . Our analyses suggest that genetic variants associated with CSF ptau181 levels may have a greater impact on rate of progression, while genetic variants such as APOE4, that are associated with CSF Aβ42 levels influence risk and onset but not the rate of progression. Our results also suggest that drugs that inhibit or decrease tau phosphorylation may slow cognitive decline in individuals with very mild dementia or delay the appearance of memory problems in elderly individuals with low CSF Aβ42 levels. Finally, we believe genome-wide association studies of CSF tau/ptau181 levels should identify novel genetic variants which will likely influence rate of progression of AD.
Author Summary
Alzheimer's disease (AD) is the most common neurodegenerative disease affecting more than 4.5 million people in the US. Genetic studies of AD have previously identified pathogenic mutations in three genes (APP, PSEN1 and PSEN2) and polymorphisms in APOE as risk factors. These findings have led to a better understanding of the underlying disease mechanisms. However, half of all AD cases have no known genetic risk factors for disease. Most studies are designed to identify variants associated with risk or age at onset, but rarely cover other important facets of AD, such as disease progression or duration. In this study we have used an established AD biomarker (cerebrospinal fluid tau phosphorylated at threonine 181, ptau181) to find genetic variants that influence levels of ptau181 in the cerebrospinal fluid. This novel and powerful approach has allowed us to identify a genetic factor located in the regulatory subunit of the calcineurin that is also strongly associated with rate of progression of AD. This study is important because it defines a strategy to find novel genetic factors influencing different facets of AD pathobiology including risk, onset and progression.
doi:10.1371/journal.pgen.1001101
PMCID: PMC2940763  PMID: 20862329
Human Molecular Genetics  2009;18(16):3125-3135.
Nicotine dependence risk and lung cancer risk are associated with variants in a region of chromosome 15 encompassing genes encoding the nicotinic receptor subunits CHRNA5, CHRNA3 and CHRNB4. To identify potential biological mechanisms that underlie this risk, we tested for cis-acting eQTLs for CHRNA5, CHRNA3 and CHRNB4 in human brain. Using gene expression and disease association studies, we provide evidence that both nicotine-dependence risk and lung cancer risk are influenced by functional variation in CHRNA5. We demonstrated that the risk allele of rs16969968 primarily occurs on the low mRNA expression allele of CHRNA5. The non-risk allele at rs16969968 occurs on both high and low expression alleles tagged by rs588765 within CHRNA5. When the non-risk allele occurs on the background of low mRNA expression of CHRNA5, the risk for nicotine dependence and lung cancer is significantly lower compared to those with the higher mRNA expression. Together, these variants identify three levels of risk associated with CHRNA5. We conclude that there are at least two distinct mechanisms conferring risk for nicotine dependence and lung cancer: altered receptor function caused by a D398N amino acid variant in CHRNA5 (rs16969968) and variability in CHRNA5 mRNA expression.
doi:10.1093/hmg/ddp231
PMCID: PMC2714722  PMID: 19443489
Drug and alcohol dependence  2007;93(1-2):12-20.
Dependence on alcohol and illicit drugs frequently co-occur. Results from a number of twin studies suggest that heritable influences on alcohol dependence and drug dependence may substantially overlap. Using large, genetically informative pedigrees from the Collaborative Study on the Genetics of Alcoholism (COGA), we performed quantitative linkage analyses using a panel of 1717 SNPs. Genome-wide linkage analyses were conducted for quantitative measures of DSM-IV alcohol dependence criteria, cannabis dependence criteria and dependence criteria across any illicit drug (including cannabis) individually and in combination as an average score across alcohol and illicit drug dependence criteria. For alcohol dependence, LOD scores exceeding 2.0 were noted on chromosome 1 (2.0 at 213 cM), 2 (3.4 at 234 cM) and 10 (3.7 at 60 cM). For cannabis dependence, a maximum LOD of 1.9 was noted at 95 cM on chromosome 14. For any illicit drug dependence, LODs of 2.0 and 2.4 were observed on chromosome 10 (116 cM) and 13 (64 cM) respectively. Finally, the combined alcohol and/or drug dependence symptoms yielded LODs > 2.0 on chromosome 2 (3.2, 234 cM), 10 (2.4 and 2.6 at 60 cM and 116 cM) and 13 (2.1 at 64 cM). These regions may harbor genes that contribute to the biological basis of alcohol and drug dependence.
doi:10.1016/j.drugalcdep.2007.08.015
PMCID: PMC2266629  PMID: 17942244
Linkage; alcohol; cannabis; illicit drugs; dependence; COGA
Biological psychiatry  2008;64(11):922-929.
Background
A non-synonymous coding polymorphism, rs16969968, of the CHRNA5 gene which encodes the alpha-5 subunit of the nicotinic acetylcholine receptor (nAChR) has been found to be associated with nicotine dependence (20). The goal of the present study is to examine the association of this variant with cocaine dependence.
Methods
Genetic association analysis in two, independent samples of unrelated cases and controls; 1.) 504 European-American participating in the Family Study on Cocaine Dependence (FSCD); 2.) 814 European Americans participating in the Collaborative Study on the Genetics of Alcoholsim (COGA).
Results
In the FSCD, there was a significant association between the CHRNA5 variant and cocaine dependence (OR = 0.67 per allele, p = 0.0045, assuming an additive genetic model), but in the reverse direction compared to that previously observed for nicotine dependence. In multivariate analyses that controlled for the effects of nicotine dependence, both the protective effect for cocaine dependence and the previously documented risk effect for nicotine dependence were statistically significant. The protective effect for cocaine dependence was replicated in the COGA sample. In COGA, effect sizes for habitual smoking, a proxy phenotype for nicotine dependence, were consistent with those observed in FSCD.
Conclusion
The minor (A) allele of rs16969968, relative to the major G allele, appears to be both a risk factor for nicotine dependence and a protective factor for cocaine dependence. The biological plausibility of such a bidirectional association stems from the involvement of nAChRs with both excitatory and inhibitory modulation of dopamine-mediated reward pathways.
doi:10.1016/j.biopsych.2008.04.018
PMCID: PMC2582594  PMID: 18519132
Smoking; Nicotine dependence; Addiction; Substance-use disorders; Genetics; Receptors; nicotinic; Cocaine
The American journal of psychiatry  2008;165(9):1163-1171.
Objective
A recent study provisionally identified numerous genetic variants as risk factors for the transition from smoking to the development of nicotine dependence, including an amino acid change in the α5 nicotinic cholinergic receptor (CHRNA5). The purpose of this study is to replicate these findings in an independent dataset and more thoroughly investigate the role of genetic variation in the cluster of physically linked nicotinic receptors, CHRNA5-CHRNA3-CHRNB4, and the risk of smoking.
Methods
Individuals from 219 European American families (N=2,284) were genotyped across this gene cluster to test the genetic association with smoking. The frequency of the amino acid variant (rs16969968) was studied in 995 individuals from diverse ethnic populations. In vitro studies were performed to directly test whether the amino acid variant in the CHRNA5 influenced receptor function.
Results
A genetic variant marking an amino acid change showed association with the smoking phenotype (p=0.007). This variant is within a highly conserved region across non-human species, but its frequency varied across human populations (0% in African populations to 37% in European populations). Furthermore, functional studies demonstrated that the risk allele decreased response to a nicotine agonist. A second independent finding was seen at rs578776 (p=0.003), and the functional significance of this association remains unknown.
Conclusions
This study confirms that at least two independent variants in this nicotinic receptor gene cluster contribute to the development of habitual smoking in some populations, and it underscores the importance of multiple genetic variants contributing to the development of common diseases in various populations.
doi:10.1176/appi.ajp.2008.07111711
PMCID: PMC2574742  PMID: 18519524
Human molecular genetics  2006;16(1):24-35.
Tobacco use is a leading contributor to disability and death worldwide, and genetic factors contribute in part to the development of nicotine dependence. To identify novel genes for which natural variation contributes to the development of nicotine dependence, we performed a comprehensive genome wide association study using nicotine dependent smokers as cases and non-dependent smokers as controls. To allow the efficient, rapid, and cost effective screen of the genome, the study was carried out using a two-stage design. In the first stage, genotyping of over 2.4 million SNPs was completed in case and control pools. In the second stage, we selected SNPs for individual genotyping based on the most significant allele frequency differences between cases and controls from the pooled results. Individual genotyping was performed in 1050 cases and 879 controls using 31,960 selected SNPs. The primary analysis, a logistic regression model with covariates of age, gender, genotype and gender by genotype interaction, identified 35 SNPs with p-values less than 10-4 (minimum p-value 1.53 × 10-6). Although none of the individual findings is statistically significant after correcting for multiple tests, additional statistical analyses support the existence of true findings in this group. Our study nominates several novel genes, such as Neurexin 1 (NRXN1), in the development of nicotine dependence while also identifying a known candidate gene, the β3 nicotinic cholinergic receptor. This work anticipates the future directions of large-scale genome wide association studies with state-of-the-art methodological approaches and sharing of data with the scientific community.
doi:10.1093/hmg/ddl441
PMCID: PMC2278047  PMID: 17158188
Human molecular genetics  2006;16(1):36-49.
Nicotine dependence is one of the world’s leading causes of preventable death. To discover genetic variants that influence risk for nicotine dependence, we targeted over 300 candidate genes and analyzed 3713 single nucleotide polymorphisms (SNPs) in 1050 cases and 879 controls. The Fagerström test for nicotine dependence (FTND) was used to assess dependence, in which cases were required to have an FTND of 4 or more. The control criterion was strict: control subjects must have smoked at least 100 cigarettes in their lifetimes and had an FTND of 0 during the heaviest period of smoking. After correcting for multiple testing by controlling the false discovery rate, several cholinergic nicotinic receptor genes dominated the top signals. The strongest association was from an SNP representing CHRNB3, the β3 nicotinic receptor subunit gene (P = 9.4 × 10−5). Biologically, the most compelling evidence for a risk variant came from a non-synonymous SNP in the α5 nicotinic receptor subunit gene CHRNA5 (P = 6.4 × 10−4). This SNP exhibited evidence of a recessive mode of inheritance, resulting in individuals having a 2-fold increase in risk of developing nicotine dependence once exposed to cigarette smoking. Other genes among the top signals were KCNJ6 and GABRA4. This study represents one of the most powerful and extensive studies of nicotine dependence to date and has found novel risk loci that require confirmation by replication studies.
doi:10.1093/hmg/ddl438
PMCID: PMC2270437  PMID: 17135278
Neuroscience letters  2007;419(1):15-17.
Alzheimer's disease (AD) pathology is associated with two proteins, the microtubule-binding protein tau and the amyloid-precursor protein (APP). When tau becomes hyperphosphorylated, it forms neuritic aggregates, called neurofibrillary tangles. APP is cleaved by several enzymes to generate Aβ peptides, which are - depending on their length - more or less amyloidogenic and form senile plaques. Pin1, a peptidyl-propyl cis/trans-isomerase, seems to be involved in both pathologies. Pin1 may facilitate dephosphorylation of tau by PP2A phosphatase, while cellular overexpression of Pin1 causes a reduction in the amyloidogenic processing of APP, making this enzyme an interesting target for pharmaceutical intervention. The gene encoding Pin1 maps to 19p13.2, a region previously linked to LOAD. Therefore Pin1 is an excellent positional and functional candidate for LOAD. In this study, we investigated whether common SNPs in Pin1 can influence the risk for developing late-Onset Alzheimer's disease (LOAD). No association was observed with any of six polymorphisms or their resulting haplotypes. A meta-analysis of two promoter SNPs, which combined the data from this study with two previous ones, did not show any association either suggesting that common SNPs in Pin1 do not increase the risk for LOAD.
doi:10.1016/j.neulet.2007.03.071
PMCID: PMC1952685  PMID: 17482359
Pin1; late-onset Alzheimer's disease; genotyping
BMC Genetics  2005;6(Suppl 1):S122.
Background
Genetic maps based on single-nucleotide polymorphisms (SNP) are increasingly being used as an alternative to microsatellite maps. This study compares linkage results for both types of maps for a neurophysiology phenotype and for an alcohol dependence phenotype. Our analysis used two SNP maps on the Illumina and Affymetrix platforms. We also considered the effect of high linkage disequilibrium (LD) in regions near the linkage peaks by analysing a "sparse" SNP map obtained by dropping some markers in high LD with other markers in those regions.
Results
The neurophysiology phenotype at the main linkage peak near 130 MB gave LOD scores of 2.76, 2.53, 3.22, and 2.68 for the microsatellite, Affymetrix, Illumina, and Illumina-sparse maps, respectively. The alcohol dependence phenotype at the main linkage peak near 101 MB gave LOD scores of 3.09, 3.69, 4.08, and 4.11 for the microsatellite, Affymetrix, Illumina, and Illumina-sparse maps, respectively.
Conclusion
The linkage results were stronger overall for SNPs than for microsatellites for both phenotypes. However, LOD scores may be artificially elevated in regions of high LD. Our analysis indicates that appropriately thinning a SNP map in regions of high LD should give more accurate LOD scores. These results suggest that SNPs can be an efficient substitute for microsatellites for linkage analysis of both quantitative and qualitative phenotypes.
doi:10.1186/1471-2156-6-S1-S122
PMCID: PMC1866815  PMID: 16451580
BMC Genetics  2005;6(Suppl 1):S34.
We used the LOKI software to generate multipoint identity-by-descent matrices for a microsatellite map (with 31 markers) and two single-nucleotide polymorphism (SNP) maps to examine information content across chromosome 7 in the Collaborative Study on the Genetics of Alcoholism dataset. Despite the lower information provided by a single SNP, SNP maps overall had higher and more uniform information content across the chromosome. The Affymetrix map (578 SNPs) and the Illumina map (271 SNPs) provided almost identical information. However, increased information has a computational cost: SNP maps require 100 times as many iterations as microsatellites to produce stable estimates.
doi:10.1186/1471-2156-6-S1-S34
PMCID: PMC1866751  PMID: 16451644
BMC Genetics  2005;6(Suppl 1):S152.
The overlap of 94 single-nucleotide polymorphisms (SNP) among the 4,720 and 11,120 SNPs contained in the linkage panels of Illumina and Affymetrix, respectively, allows an assessment of the discrepancy rate produced by these two platforms. Although the no-call rate for the Affymetrix platform is approximately 8.6 times greater than for the Illumina platform, when both platforms make a genotypic call, the agreement is an impressive 99.85%. To determine if disputed genotypes can be resolved without sequencing, we studied recombination in the region of the discrepancy for the most discrepant SNP rs958883 (typed by Illumina) and tsc02060848 (typed by Affymetrix). We find that the number of inferred recombinants is substantially higher for the Affymetrix genotypes compared to the Illumina genotypes. We illustrate this with pedigree 10043, in which 3 of 7 versus 0 of 7 offspring must be double recombinants using the genotypes from the Affymetrix and the Illumina platforms, respectively. Of the 36 SNPs with one or more discrepancies, we identified a subset that appears to cluster in families. Some of this clustering may be due to the presence of a second segregating SNP that obliterates a XbaI site (the restriction enzyme used in the Affymetrix platform), resulting in a fragment too long (>1,000 bp) to be amplified.
doi:10.1186/1471-2156-6-S1-S152
PMCID: PMC1866782  PMID: 16451613

Results 1-25 (27)