PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-12 (12)
 

Clipboard (0)
None

Select a Filter Below

Journals
Year of Publication
Document Types
1.  Valosin-containing protein mutations in sporadic amyotrophic lateral sclerosis 
Neurobiology of Aging  2012;33(9):2231.e1-2231.e6.
We recently reported that mutations in the VCP gene are a cause of 1–2% of familial amyotrophic lateral sclerosis (ALS) cases, but their role in the pathogenesis of sporadic ALS is unclear. We undertook mutational screening of VCP in 701 sporadic ALS cases. Three pathogenic variants (p.Arg159Cys, p.Asn387Thr, and p.R662C) were found in three US cases, each of whom presented with progressive upper and lower motor neuron signs consistent with definite ALS by El Escorial diagnostic criteria. Our data indicate that VCP mutations may underlie apparently sporadic ALS, but account for less than 1% of this form of disease.
doi:10.1016/j.neurobiolaging.2012.04.005
PMCID: PMC3391327  PMID: 22572540
Amyotrophic lateral sclerosis; valosin-containing protein; mutations; sporadic disease
2.  Exome sequencing reveals riboflavin transporter mutations as a cause of motor neuron disease 
Brain  2012;135(9):2875-2882.
Brown–Vialetto–Van Laere syndrome was first described in 1894 as a rare neurodegenerative disorder characterized by progressive sensorineural deafness in combination with childhood amyotrophic lateral sclerosis. Mutations in the gene, SLC52A3 (formerly C20orf54), one of three known riboflavin transporter genes, have recently been shown to underlie a number of severe cases of Brown–Vialetto–Van Laere syndrome; however, cases and families with this disease exist that do not appear to be caused by SLC52A3 mutations. We used a combination of linkage and exome sequencing to identify the disease causing mutation in an extended Lebanese Brown–Vialetto–Van Laere kindred, whose affected members were negative for SLC52A3 mutations. We identified a novel mutation in a second member of the riboflavin transporter gene family (gene symbol: SLC52A2) as the cause of disease in this family. The same mutation was identified in one additional subject, from 44 screened. Within this group of 44 patients, we also identified two additional cases with SLC52A3 mutations, but none with mutations in the remaining member of this gene family, SLC52A1. We believe this strongly supports the notion that defective riboflavin transport plays an important role in Brown–Vialetto–Van Laere syndrome. Initial work has indicated that patients with SLC52A3 defects respond to riboflavin treatment clinically and biochemically. Clearly, this makes an excellent candidate therapy for the SLC52A2 mutation-positive patients identified here. Initial riboflavin treatment of one of these patients shows promising results.
doi:10.1093/brain/aws161
PMCID: PMC3437022  PMID: 22740598
motor neuron disease; ALS; riboflavin; BVVL; SLC52A2
3.  C9ORF72 hexanucleotide repeat expansions in the Italian sporadic ALS population 
Neurobiology of Aging  2012;33(8):1848.e15-1848.e20.
It has been recently reported that a large proportion of patients with familial amyotrophic lateral sclerosis (familial ALS) and frontotemporal dementia (FTD) are associated with a hexanucleotide (GGGGCC) repeat expansion in the first intron of C9ORF72. We have assessed 1,757 Italian sporadic ALS cases, 133 from Sardinia, 101 from Sicily, and 1,523 from mainland Italy. Sixty (3.7%) of 1,624 mainland Italians and Sicilians and 9 (6.8%) of the 133 Sardinian sporadic ALS cases carried the pathogenic repeat expansion. None of the 619 regionally-matched control samples (1,238 chromosomes) carried the expansion. Twenty-five cases (36.2%) had behavioral FTD in addition to ALS. FTD or unspecified dementia was also detected in 19 pedigrees (27.5%) in first-degree relatives of ALS patients. Cases carrying the C9ORF72 hexanucleotide expansion survived one year less than cases who did not carry this mutation. In conclusion, we found that C9ORF72 hexanucloetide repeat expansions represents a sizeable proportion of apparent sporadic ALS in the Italian and Sardinian population, representing by far the commonest mutation in Italy and the second more common in Sardinia.
doi:10.1016/j.neurobiolaging.2012.02.011
PMCID: PMC3372681  PMID: 22418734
Amyotrophic lateral sclerosis; C9ORF72; frontotemporal dementia; survival
4.  Frequency of the C9ORF72 hexanucleotide repeat expansion in ALS and FTD in diverse populations: a cross-sectional study 
Lancet Neurology  2012;11(4):323-330.
Background
A hexanucleotide repeat expansion in the C9ORF72 gene has recently been shown to cause a large proportion of amyotrophic lateral sclerosis (ALS) and fronto-temporal dementia (FTD).
Methods
We screened 4,448 patients diagnosed with ALS and 1,425 patients diagnosed with FTD drawn from diverse populations for the hexanucleotide expansion using a repeat-primed PCR assay. ALS and FTD were diagnosed according to the El Escorial and Lund-Manchester criteria respectively. Familial status was based on self-reported family history of similar neurodegenerative diseases at the time of sample collection. Haplotype data of 262 patients carrying the expansion were compared with the known Finnish founder risk haplotype across the chromosomal locus. Age-related penetrance was calculated by the Kaplan-Meier method using data from 603 individuals carrying the expansion.
Findings
The mutation was observed among 7·0% (n = 236 of 3,377) of Caucasians, 4·1% (n = 2 of 49) of African-Americans, and 8·3% (n = 6 of 72) of Hispanic individuals diagnosed with sporadic ALS, whereas the rate was 6·0% (n = 59 of 981) among Caucasians diagnosed with sporadic FTD. Among Asians, 5·0% (n = 1 of 20) of familial ALS and 66·6% (n = 2 of 3) of familial FTD cases carried the repeat expansion. In contrast, mutations were not observed among patients of Native American (n = 3 sporadic ALS), Indian (n = 31 sporadic ALS, n = 31 sporadic FTD), and Pacific Islander (n = 90 sporadic ALS) ethnicity. All patients with the repeat expansion carried, either partially or fully, the founder haplotype suggesting that the expansion occurred on a single occasion in the past (~1,500 years ago). The pathogenic expansion was non-penetrant below 35 years of age, increasing to 50·0% penetrance by 58 years of age, and was almost fully penetrant by 80 years of age.
Interpretation
We confirm that a common single Mendelian genetic lesion is implicated in a large proportion of sporadic and familial ALS and FTD. Testing for this pathogenic expansion will be important in the management and genetic counseling of patients with these fatal neurodegenerative diseases.
Funding
See Acknowledgements.
doi:10.1016/S1474-4422(12)70043-1
PMCID: PMC3322422  PMID: 22406228
5.  Clinical characteristics of patients with familial amyotrophic lateral sclerosis carrying the pathogenic GGGGCC hexanucleotide repeat expansion of C9ORF72 
Brain  2012;135(3):784-793.
A large hexanucleotide (GGGGCC) repeat expansion in the first intron of C9ORF72, a gene located on chromosome 9p21, has been recently reported to be responsible for ∼40% of familial amyotrophic lateral sclerosis cases of European ancestry. The aim of the current article was to describe the phenotype of amyotrophic lateral sclerosis cases carrying the expansion by providing a detailed clinical description of affected cases from representative multi-generational kindreds, and by analysing the age of onset, gender ratio and survival in a large cohort of patients with familial amyotrophic lateral sclerosis. We collected DNA and analysed phenotype data for 141 index Italian familial amyotrophic lateral sclerosis cases (21 of Sardinian ancestry) and 41 German index familial amyotrophic lateral sclerosis cases. Pathogenic repeat expansions were detected in 45 (37.5%) patients from mainland Italy, 12 (57.1%) patients of Sardinian ancestry and nine (22.0%) of the 41 German index familial amyotrophic lateral sclerosis cases. The disease was maternally transmitted in 27 (49.1%) pedigrees and paternally transmitted in 28 (50.9%) pedigrees (P = non-significant). On average, children developed disease 7.0 years earlier than their parents [children: 55.8 years (standard deviation 7.9), parents: 62.8 (standard deviation 10.9); P = 0.003]. Parental phenotype influenced the type of clinical symptoms manifested by the child: of the 13 cases where the affected parent had an amyotrophic lateral sclerosis–frontotemporal dementia or frontotemporal dementia, the affected child also developed amyotrophic lateral sclerosis–frontotemporal dementia in nine cases. When compared with patients carrying mutations of other amyotrophic lateral sclerosis-related genes, those with C9ORF72 expansion had commonly a bulbar onset (42.2% compared with 25.0% among non-C9ORF72 expansion cases, P = 0.03) and cognitive impairment (46.7% compared with 9.1% among non-C9ORF72 expansion cases, P = 0.0001). Median survival from symptom onset among cases carrying C9ORF72 repeat expansion was 3.2 years lower than that of patients carrying TARDBP mutations (5.0 years; 95% confidence interval: 3.6–7.2) and longer than those with FUS mutations (1.9 years; 95% confidence interval: 1.7–2.1). We conclude that C9ORF72 hexanucleotide repeat expansions were the most frequent mutation in our large cohort of patients with familial amyotrophic lateral sclerosis of Italian, Sardinian and German ancestry. Together with mutation of SOD1, TARDBP and FUS, mutations of C9ORF72 account for ∼60% of familial amyotrophic lateral sclerosis in Italy. Patients with C9ORF72 hexanucleotide repeat expansions present some phenotypic differences compared with patients with mutations of other genes or with unknown mutations, namely a high incidence of bulbar-onset disease and comorbidity with frontotemporal dementia. Their pedigrees typically display a high frequency of cases with pure frontotemporal dementia, widening the concept of familial amyotrophic lateral sclerosis.
doi:10.1093/brain/awr366
PMCID: PMC3286333  PMID: 22366794
amyotrophic lateral sclerosis; familial ALS, C9ORF72 gene; phenotype–genotype correlation
7.  Large proportion of amyotrophic lateral sclerosis cases in Sardinia are due to a single founder mutation of the TARDBP gene 
Archives of neurology  2011;68(5):594-598.
Objective
To perform an extensive screening for mutations of amyotrophic lateral sclerosis (ALS)–related genes in a consecutive cohort of Sardinian patients, a genetic isolate phylogenically distinct from other European populations.
Design
Population-based, prospective cohort study.
Patients
A total of 135 Sardinian patients with ALS and 156 healthy control subjects of Sardinian origin who were age- and sex-matched to patients.
Intervention
Patients underwent mutational analysis for SOD1, FUS, and TARDBP.
Results
Mutational screening of the entire cohort found that 39 patients (28.7%) carried the c.1144G A (p.A382T) missense mutation of the TARDBP gene. Of these, 15 had familial ALS (belonging to 10 distinct pedigrees) and 24 had apparently sporadic ALS. None of the 156 age-, sex-, and ethnicity-matched controls carried the pathogenic variant. Genotype data obtained for 5 ALS cases carrying the p.A382T mutation found that they shared a 94–single-nucleotide polymorphism risk haplotype that spanned 663 Kb across the TARDBP locus on chromosome 1p36.22. Three patients with ALS who carry the p.A382T mutation developed extrapyramidal symptoms several years after their initial presentation with motor weakness.
Conclusions
The TARDBP p.A382T missense mutation accounts for approximately one-third of all ALS cases in this island population. These patients share a large risk haplotype across the TARDBP locus, indicating that they have a common ancestor.
doi:10.1001/archneurol.2010.352
PMCID: PMC3513278  PMID: 21220647
8.  A hexanucleotide repeat expansion in C9ORF72 is the cause of chromosome 9p21-linked ALS-FTD 
Renton, Alan E. | Majounie, Elisa | Waite, Adrian | Simón-Sánchez, Javier | Rollinson, Sara | Gibbs, J. Raphael | Schymick, Jennifer C. | Laaksovirta, Hannu | van Swieten, John C. | Myllykangas, Liisa | Kalimo, Hannu | Paetau, Anders | Abramzon, Yevgeniya | Remes, Anne M. | Kaganovich, Alice | Scholz, Sonja W. | Duckworth, Jamie | Ding, Jinhui | Harmer, Daniel W. | Hernandez, Dena G. | Johnson, Janel O. | Mok, Kin | Ryten, Mina | Trabzuni, Danyah | Guerreiro, Rita J. | Orrell, Richard W. | Neal, James | Murray, Alex | Pearson, Justin | Jansen, Iris E. | Sondervan, David | Seelaar, Harro | Blake, Derek | Young, Kate | Halliwell, Nicola | Callister, Janis | Toulson, Greg | Richardson, Anna | Gerhard, Alex | Snowden, Julie | Mann, David | Neary, David | Nalls, Michael A. | Peuralinna, Terhi | Jansson, Lilja | Isoviita, Veli-Matti | Kaivorinne, Anna-Lotta | Hölttä-Vuori, Maarit | Ikonen, Elina | Sulkava, Raimo | Benatar, Michael | Wuu, Joanne | Chiò, Adriano | Restagno, Gabriella | Borghero, Giuseppe | Sabatelli, Mario | Heckerman, David | Rogaeva, Ekaterina | Zinman, Lorne | Rothstein, Jeffrey | Sendtner, Michael | Drepper, Carsten | Eichler, Evan E. | Alkan, Can | Abdullaev, Zied | Pack, Svetlana D. | Dutra, Amalia | Pak, Evgenia | Hardy, John | Singleton, Andrew | Williams, Nigel M. | Heutink, Peter | Pickering-Brown, Stuart | Morris, Huw R. | Tienari, Pentti J. | Traynor, Bryan J.
Neuron  2011;72(2):257-268.
The chromosome 9p21 amyotrophic lateral sclerosis-frontotemporal dementia (ALS-FTD) locus contains one of the last major unidentified autosomal dominant genes underlying these common neurodegenerative diseases. We have previously shown that a founder haplotype, covering the MOBKL2b, IFNK and C9ORF72 genes, is present in the majority of cases linked to this region. Here we show that there is a large hexanucleotide (GGGGCC) repeat expansion in the first intron of C9ORF72 on the affected haplotype. This repeat expansion segregates perfectly with disease in the Finnish population, underlying 46.0% of familial ALS and 21.1% of sporadic ALS in that population. Taken together with the D90A SOD1 mutation, 87% of familial ALS in Finland is now explained by a simple monogenic cause. The repeat expansion is also present in one third of familial ALS cases of outbred European descent making it the most common genetic cause of these fatal neurodegenerative diseases identified to date.
doi:10.1016/j.neuron.2011.09.010
PMCID: PMC3200438  PMID: 21944779
9.  Frequency of the C9orf72 hexanucleotide repeat expansion in patients with amyotrophic lateral sclerosis and frontotemporal dementia: a cross-sectional study 
Lancet Neurology  2012;11(4):323-330.
Summary
Background
We aimed to accurately estimate the frequency of a hexanucleotide repeat expansion in C9orf72 that has been associated with a large proportion of cases of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD).
Methods
We screened 4448 patients diagnosed with ALS (El Escorial criteria) and 1425 patients with FTD (Lund-Manchester criteria) from 17 regions worldwide for the GGGGCC hexanucleotide expansion using a repeat-primed PCR assay. We assessed familial disease status on the basis of self-reported family history of similar neurodegenerative diseases at the time of sample collection. We compared haplotype data for 262 patients carrying the expansion with the known Finnish founder risk haplotype across the chromosomal locus. We calculated age-related penetrance using the Kaplan-Meier method with data for 603 individuals with the expansion.
Findings
In patients with sporadic ALS, we identified the repeat expansion in 236 (7·0%) of 3377 white individuals from the USA, Europe, and Australia, two (4·1%) of 49 black individuals from the USA, and six (8·3%) of 72 Hispanic individuals from the USA. The mutation was present in 217 (39·3%) of 552 white individuals with familial ALS from Europe and the USA. 59 (6·0%) of 981 white Europeans with sporadic FTD had the mutation, as did 99 (24·8%) of 400 white Europeans with familial FTD. Data for other ethnic groups were sparse, but we identified one Asian patient with familial ALS (from 20 assessed) and two with familial FTD (from three assessed) who carried the mutation. The mutation was not carried by the three Native Americans or 360 patients from Asia or the Pacific Islands with sporadic ALS who were tested, or by 41 Asian patients with sporadic FTD. All patients with the repeat expansion had (partly or fully) the founder haplotype, suggesting a one-off expansion occurring about 1500 years ago. The pathogenic expansion was non-penetrant in individuals younger than 35 years, 50% penetrant by 58 years, and almost fully penetrant by 80 years.
Interpretation
A common Mendelian genetic lesion in C9orf72 is implicated in many cases of sporadic and familial ALS and FTD. Testing for this pathogenic expansion should be considered in the management and genetic counselling of patients with these fatal neurodegenerative diseases.
Funding
Full funding sources listed at end of paper (see Acknowledgments).
doi:10.1016/S1474-4422(12)70043-1
PMCID: PMC3322422  PMID: 22406228
10.  A de novo missense mutation of the FUS gene in a ‘true’ sporadic ALS case 
Neurobiology of aging  2010;32(3):553.e23-553.e26.
Mutations in the Cu/Zn superoxide dismutase (SOD1), transactive response (TAR)-DNA binding protein (TARDBP) and fused in sarcoma (FUS) genes account for approximately one third of familial amyotrophic lateral sclerosis (ALS) cases. Mutations in these genes have been found in 1 to 2% of apparently sporadic cases. We present the first case of an ALS patient carrying a de novo missense mutation of the FUS gene (c.1561C>T, p.R521C). This report highlights the importance of screening ALS patients, both familial and sporadic, for FUS mutations and also suggests that de novo mutations is a relevant mechanism underlying sporadic neurodegenerative disease.
doi:10.1016/j.neurobiolaging.2010.05.016
PMCID: PMC2972379  PMID: 20598774
11.  FUS mutations in sporadic amyotrophic lateral sclerosis 
Neurobiology of aging  2010;32(3):550.e1-550.e4.
Mutations in the FUS gene have recently been described as a cause of familial ALS, but their role in the pathogenesis of sporadic ALS is unclear. We undertook mutational screening of all coding exons of FUS in 228 sporadic ALS cases, and, as previous reports suggest that exon 15 represents a mutational hotspot, we sequenced this exon in an additional 1,295 sporadic cases. Six variants in six different cases were found, indicating that FUS mutations can underlie apparently sporadic ALS, but account for less than 1% of this form of disease.
doi:10.1016/j.neurobiolaging.2009.12.020
PMCID: PMC2891336  PMID: 20138404
amyotrophic lateral sclerosis; sporadic disease; FUS; Italy; United States of America
12.  Exome sequencing reveals VCP mutations as a cause of familial ALS 
Neuron  2010;68(5):857-864.
Summary
Using exome sequencing, we identified a p.R191Q amino acid change in the valosin-containing protein (VCP) gene in an Italian family with autosomal dominantly inherited amyotrophic lateral sclerosis (ALS). Mutations in VCP have previously been identified in families with Inclusion Body Myopathy, Paget’s disease and Frontotemporal Dementia (IBMPFD). Screening of VCP in a cohort of 210 familial ALS cases and 78 autopsy-proven ALS cases identified four additional mutations including a p.R155H mutation in a pathologically-proven case of ALS. VCP protein is essential for maturation of ubiquitin-containing autophagosomes, and mutant VCP toxicity is partially mediated through its effect on TDP-43 protein, a major constituent of ubiquitin inclusions that neuropathologically characterize ALS. Our data broaden the phenotype of IBMPFD to include motor neuron degeneration, suggest that VCP mutations may account for ~1–2% of familial ALS, and represent the first evidence directly implicating defects in the ubiquitination/protein degradation pathway in motor neuron degeneration.
doi:10.1016/j.neuron.2010.11.036
PMCID: PMC3032425  PMID: 21145000

Results 1-12 (12)