Search tips
Search criteria

Results 1-25 (1821)

Clipboard (0)

Select a Filter Below

Year of Publication
more »
1.  [No title available] 
PMCID: PMC4014175
2.  Digital Deconvolution Filter Derived from Linear Discriminant Analysis and Application for Multiphoton Fluorescence Microscopy 
Analytical Chemistry  2014;86(7):3508-3516.
A digital filter derived from linear discriminant analysis (LDA) is developed for recovering impulse responses in photon counting from a high speed photodetector (rise time of ∼1 ns) and applied to remove ringing distortions from impedance mismatch in multiphoton fluorescence microscopy. Training of the digital filter was achieved by defining temporally coincident and noncoincident transients and identifying the projection within filter-space that best separated the two classes. Once trained, data analysis by digital filtering can be performed quickly. Assessment of the reliability of the approach was performed through comparisons of simulated voltage transients, in which the ground truth results were known a priori. The LDA filter was also found to recover deconvolved impulses for single photon counting from highly distorted ringing waveforms from an impedance mismatched photomultiplier tube. The LDA filter was successful in removing these ringing distortions from two-photon excited fluorescence micrographs and through data simulations was found to extend the dynamic range of photon counting by approximately 3 orders of magnitude through minimization of detector paralysis.
PMCID: PMC3983021  PMID: 24559143
3.  Raman Spectroscopy Enables Noninvasive Biochemical Characterization and Identification of the Stage of Healing of a Wound 
Analytical Chemistry  2014;86(8):3764-3772.
Accurate and rapid assessment of the healing status of a wound in a simple and noninvasive manner would enable clinicians to diagnose wounds in real time and promptly adjust treatments to hasten the resolution of nonhealing wounds. Histologic and biochemical characterization of biopsied wound tissue, which is currently the only reliable method for wound assessment, is invasive, complex to interpret, and slow. Here we demonstrate the use of Raman microspectroscopy coupled with multivariate spectral analysis as a simple, noninvasive method to biochemically characterize healing wounds in mice and to accurately identify different phases of healing of wounds at different time-points. Raman spectra were collected from “splinted” full thickness dermal wounds in mice at 4 time-points (0, 1, 5, and 7 days) corresponding to different phases of wound healing, as verified by histopathology. Spectra were deconvolved using multivariate factor analysis (MFA) into 3 “factor score spectra” (that act as spectral signatures for different stages of healing) that were successfully correlated with spectra of prominent pure wound bed constituents (i.e., collagen, lipids, fibrin, fibronectin, etc.) using non-negative least squares (NNLS) fitting. We show that the factor loadings (weights) of spectra that belonged to wounds at different time-points provide a quantitative measure of wound healing progress in terms of key parameters such as inflammation and granulation. Wounds at similar stages of healing were characterized by clusters of loading values and slowly healing wounds among them were successfully identified as “outliers”. Overall, our results demonstrate that Raman spectroscopy can be used as a noninvasive technique to provide insight into the status of normally healing and slow-to-heal wounds and that it may find use as a complementary tool for real-time, in situ biochemical characterization in wound healing studies and clinical diagnosis.
PMCID: PMC4004186  PMID: 24559115
4.  Kinetic and Equilibrium Binding Characterization of Aptamers to Small Molecules using a Label-Free, Sensitive, and Scalable Platform 
Analytical Chemistry  2014;86(7):3273-3278.
Nucleic acid aptamers function as versatile sensing and targeting agents for analytical, diagnostic, therapeutic, and gene-regulatory applications, but their limited characterization and functional validation have hindered their broader implementation. We report the development of a surface plasmon resonance-based platform for rapid characterization of kinetic and equilibrium binding properties of aptamers to small molecules. Our system is label-free and scalable and enables analysis of different aptamer–target pairs and binding conditions with the same platform. This method demonstrates improved sensitivity, flexibility, and stability compared to other aptamer characterization methods. We validated our assay against previously reported aptamer affinity and kinetic measurements and further characterized a diverse panel of 12 small molecule-binding RNA and DNA aptamers. We report the first kinetic characterization for six of these aptamers and affinity characterization of two others. This work is the first example of direct comparison of in vitro selected and natural aptamers using consistent characterization conditions, thus providing insight into the influence of environmental conditions on aptamer binding kinetics and affinities, indicating different possible regulatory strategies used by natural aptamers, and identifying potential in vitro selection strategies to improve resulting binding affinities.
PMCID: PMC3983011  PMID: 24548121
5.  Ultrasound-Enhanced Attenuated Total Reflection Mid-infrared Spectroscopy In-Line Probe: Acquisition of Cell Spectra in a Bioreactor 
Analytical Chemistry  2015;87(4):2314-2320.
This article presents a novel method for selective acquisition of Fourier transform infrared (FT-IR) spectra of microorganisms in-line during fermentation, using Saccharomyces cerevisiae as an example. The position of the cells relative to the sensitive region of the attenuated total reflection (ATR) FT-IR probe was controlled by combing a commercially available ATR in-line probe with contact-free, gentle particle manipulation by ultrasonic standing waves. A prototype probe was successfully constructed, assembled, and tested in-line during fed-batch fermentations of S. cerevisiae. Control over the position of the cells was achieved by tuning the ultrasound frequency: 2.41 MHz was used for acquisition of spectra of the cells (pushing frequency fp) and 1.87 MHz, for retracting the cells from the ATR element, therefore allowing spectra of the medium to be acquired. Accumulation of storage carbohydrates (trehalose and glycogen) inside the cells was induced by a lack of a nitrogen source in the feed medium. These changes in biochemical composition were visible in the spectra of the cells recorded in-line during the application of fp and could be verified by reference spectra of dried cell samples recorded off-line with a FT-IR microscope. Comparison of the cell spectra with spectra of trehalose, glycogen, glucose, and mannan, i.e., the major carbohydrates present in S. cerevisiae, and principal components analysis revealed that the changes observed in the cell spectra correlated well with the bands specific for trehalose and glycogen. This proves the applicability and capability of ultrasound-enhanced in-line ATR mid-IR spectroscopy as a real-time PAT method for the in situ monitoring of cellular biochemistry during fermentation.
PMCID: PMC4333607  PMID: 25582569
6.  Characterization and Quantification of Diacylglycerol Species in Biological Extracts after One-step Derivatization: A Shotgun Lipidomics Approach 
Analytical chemistry  2014;86(4):2146-2155.
Diacylglycerols (DAGs) are important intermediates of lipid metabolism and cellular signaling. It is well known that the mass levels of DAG are altered under disease states. Therefore, quantitative analysis of DAGs in biological samples can provide critical information to uncover underlying mechanisms of various cellular functional disorders. Although great efforts on the analysis of individual DAG species have recently been made by utilizing mass spectrometry with or without derivatization, cost effective and high throughput methodology for identification and quantification of all DAG species including regioisomers, particularly in an approach of shotgun lipidomics, are still missing. Herein, we described a novel method for directly identifying and quantifying DAG species including regioisomers present in lipid extracts of biological samples after facile one-step derivatization with dimethylglycine based on the principles of multi-dimensional mass spectrometry-based shotgun lipidomics. The established method provided substantial sensitivity (low limit of quantification at amol/µl), high specificity, and broad linear dynamics range (2,500 folds) without matrix effects. By exploiting this novel method, we revealed a 16-fold increase of total DAG mass in the livers of ob/ob mice compared to their wild type controls at 4 months of age (an insulin-resistant state) vs. a 5-fold difference between 3-month old mice (with normal insulin). These results demonstrated the importance and power of the method for studying biochemical mechanisms underpinning disease states.
PMCID: PMC3954745  PMID: 24432906
brain injury; diacylglycerol; dimethylglycine derivatization; lipid metabolism; mass spectrometry; obesity; shotgun lipidomics
7.  Time-Insensitive Fluorescent Sensor for Human Serum Albumin and Its Unusual Red Shift 
Analytical Chemistry  2014;86(5):2332-2336.
The concentration of human serum albumin (HSA) indicates the health state of individuals and is routinely measured by UV spectroscopy with bromocresol. However, this method tends to overestimate HSA, and more critically, depends highly on the timing, in seconds, of the measurements. Here, we report an analog of 2′,7′-dichlorofluorescein that can be used as a fluorescent sensor to quantify HSA in human sera. The accuracy of this new method proved superior to that of bromocresol when an international standard serum sample was analyzed. This method is more convenient than the bromocresol method because it allows for fluorescence measurements during a >15 min period. Colorimetric analysis was also performed to further investigate the effects of the binding of the sensor to HSA. These spectroscopic studies suggest that absorption and emission changes upon HSA binding may be due to the dehydration of the dye and/or stabilization of the tritylic cation species.
PMCID: PMC3983026  PMID: 24527887
8.  Mini 12, Miniature Mass Spectrometer for Clinical and Other Applications—Introduction and Characterization 
Analytical Chemistry  2014;86(6):2909-2916.
A benchtop miniature mass spectrometer system, Mini 12, with ambient ionization source and tandem mass spectrometry capabilities has been developed and characterized. This instrument was developed as a self-contained system to produce quantitative results for unprocessed samples of small volumes including nonvolatile analytes. The ion processing system, vacuum system, and control system are detailed. An integrated sample loading system facilitates automated operation. A user interface has been developed to acquire and to interpret analytical results for personnel who have limited mass spectrometry knowledge. Peak widths of Δm/z 0.6 Th (full width at half-maximum) and a mass range of up to m/z 900 are demonstrated with the rectilinear ion trap mass analyzer. Multistage experiments up to MS5 are accomplished. Consumable cartridges have been designed for use in ambient paper spray ionization, and the recently developed extraction spray ionization method has been employed to improve the quantitative performance. Monitoring of trace-levels of chemicals in therapeutic drugs, as well as in food safety and environmental protection operations is demonstrated. Dual MS/MS scans are implemented to obtain the intensities of the fragment ions from the analyte and its internal standard, and the ratio is used in quantitative analysis of complex samples. Limits of quantitation (LOQ) of 7.5 ng/mL, with relative standard deviations below 10%, have been obtained for selected therapeutic drugs in whole blood throughout their individual therapeutic ranges.
PMCID: PMC3985695  PMID: 24521423
9.  High Sensitivity Detection of Active Botulinum Neurotoxin by Glyco-Quantitative Polymerase Chain-Reaction 
Analytical Chemistry  2014;86(5):2279-2284.
The sensitive detection of highly toxic botulinum neurotoxin (BoNT) from Clostridium botulinum is of critical importance because it causes human illnesses if foodborne or introduced in wounds and as an iatrogenic substance. Moreover, it has been recently considered a possible biological warfare agent. Over the past decade, significant progress has been made in BoNT detection technologies, including mouse lethality assays, enzyme-linked immunosorbent assays, and endopeptidase assays and by mass spectrometry. Critical assay requirements, including rapid assay, active toxin detection, sensitive and accurate detection, still remain challenging. Here, we present a novel method to detect active BoNTs using a Glyco-quantitative polymerase chain-reaction (qPCR) approach. Sialyllactose, which interacts with the binding-domain of BoNTs, is incorporated into a sialyllactose-DNA conjugate as a binding-probe for active BoNT and recovered through BoNT-immunoprecipitation. Glyco-qPCR analysis of the bound sialyllactose-DNA is then used to detect low attomolar concentrations of BoNT and attomolar to femtomolar concentrations of BoNT in honey, the most common foodborne source of infant botulism.
PMCID: PMC3985614  PMID: 24506443
10.  Surface Enhanced Raman Correlation Spectroscopy of Particles in Solution 
Analytical Chemistry  2014;86(5):2625-2632.
Surface enhanced Raman correlation spectroscopy (SERCS) is shown as a label-free, chemically specific method for monitoring individual polymer beads and lipid vesicles interacting with a 2-D planar surface enhanced Raman (SERS) substrate in solution. The enhancement afforded by the SERS substrate allows for spectral data to be acquired in series at rates between 31 and 83 Hz. Auto- and cross-correlation of spectral data facilitates the measurement of diffusion constants for particles ranging in radius from 50 to 500 nm while discriminating signal associated with the target analyte from extraneous fluctuations. The measured diffusion coefficients are on the order of 10–10–10–11 cm2/s, a factor of 40 times slower than predicted from the Stokes–Einstein equation, suggesting that particles are experiencing hindered diffusion at the surface. The enhanced signals appear to originate from particles less than 5 nm of the SERS substrate, consistent with adsorption to the surface. This work provides a means to measure and monitor surface interactions and demonstrates the utility and limits of SERS detection in solution over planar SERS substrates.
PMCID: PMC3966183  PMID: 24502388
11.  Label-Free Absolute Quantitation of Oligosaccharides Using Multiple Reaction Monitoring 
Analytical Chemistry  2014;86(5):2640-2647.
An absolute quantitation method for measuring free human milk oligosaccharides (HMOs) in milk samples was developed using multiple reaction monitoring (MRM). To obtain the best sensitivity, the instrument conditions were optimized to reduce the source and postsource fragmentation prior to the quadrupole transmission. Fragmentation spectra of HMOs using collision-induced dissociation were studied to obtain the best characteristic fragments. At least two MRM transitions were used to quantify and identify each structure in the same run. The fragment ions corresponded to the production of singly charged mono-, di-, and trisaccharide fragments. The sensitivity and accuracy of the quantitation using MRM were determined, with the detection limit in the femtomole level and the calibration range spanning over 5 orders of magnitude. Seven commercial HMO standards were used to create calibration curves and were used to determine a universal response for all HMOs. The universal response factor was used to estimate absolute amounts of other structures and the total oligosaccharide content in milk. The quantitation method was applied to 20 human milk samples to determine the variations in HMO concentrations from women classified as secretors and nonsecretors, a phenotype that can be identified by the concentration of 2′-fucosylation in their milk.
PMCID: PMC3983013  PMID: 24502421
12.  [No title available] 
PMCID: PMC3982976  PMID: 24494671
13.  [No title available] 
PMCID: PMC3983017  PMID: 24494631
14.  [No title available] 
PMCID: PMC3983020  PMID: 24383576
15.  [No title available] 
PMCID: PMC4106471  PMID: 24325255
17.  Combined Analysis of the Tobacco Metabolites Cotinine and 4-(Methylnitrosamino)-1-(3-pyridyl)-1-butanol in Human Urine 
Analytical chemistry  2015;87(3):1514-1517.
Two of the most widely measured compounds in the urine of people who use tobacco products are cotinine, a major metabolite of the addictive constituent nicotine, and 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol (NNAL), a metabolite of the powerful lung carcinogen 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK). Thousands of analyses have been reported in the literature, carried out exclusively – to the best of our knowledge – by separate methods. In the study reported here, we have developed a sensitive, accurate, and precise liquid chromatography-electrospray ionization-tandem mass spectrometry-selected reaction monitoring method for the combined analysis of total cotinine (the sum of cotinine and its glucuronide) and total NNAL (the sum of NNAL and its glucuronide). The new method quantifies naturally occurring [13C]cotinine to minimize problems associated with the vast differences in concentration of total cotinine and total NNAL in urine. This method should greatly facilitate future determinations of these important compounds.
PMCID: PMC4315695  PMID: 25544129
18.  [No title available] 
PMCID: PMC3982983  PMID: 24483992
19.  [No title available] 
PMCID: PMC3958140  PMID: 24479858
20.  Neutron-Encoded Mass Signatures for Quantitative Top-Down Proteomics∥ 
Analytical Chemistry  2014;86(5):2314-2319.
The ability to acquire highly accurate quantitative data is an increasingly important part of any proteomics experiment, whether shotgun or top-down approaches are used. We recently developed a quantitation strategy for peptides based on neutron encoding, or NeuCode SILAC, which uses closely spaced heavy isotope-labeled amino acids and high-resolution mass spectrometry to provide quantitative data. We reasoned that the strategy would also be applicable to intact proteins and could enable robust, multiplexed quantitation for top-down experiments. We used yeast lysate labeled with either 13C615N2-lysine or 2H8-lysine, isotopologues of lysine that are spaced 36 mDa apart. Proteins having such close spacing cannot be distinguished during a medium resolution scan, but upon acquiring a high-resolution scan, the two forms of the protein with each amino acid are resolved and the quantitative information revealed. An additional benefit NeuCode SILAC provides for top down is that the spacing of the isotope peaks indicates the number of lysines present in the protein, information that aids in identification. We used NeuCode SILAC to quantify several hundred isotope distributions, manually identify and quantify proteins from 1:1, 3:1, and 5:1 mixed ratios, and demonstrate MS2-based quantitation using ETD.
PMCID: PMC3983007  PMID: 24475910
21.  Data Dependent Peak Model Based Spectrum Deconvolution for Analysis of High Resolution LC-MS Data 
Analytical Chemistry  2014;86(4):2156-2165.
A data dependent peak model (DDPM) based spectrum deconvolution method was developed for analysis of high resolution LC-MS data. To construct the selected ion chromatogram (XIC), a clustering method, the density based spatial clustering of applications with noise (DBSCAN), is applied to all m/z values of an LC-MS data set to group the m/z values into each XIC. The DBSCAN constructs XICs without the need for a user defined m/z variation window. After the XIC construction, the peaks of molecular ions in each XIC are detected using both the first and the second derivative tests, followed by an optimized chromatographic peak model selection method for peak deconvolution. A total of six chromatographic peak models are considered, including Gaussian, log-normal, Poisson, gamma, exponentially modified Gaussian, and hybrid of exponential and Gaussian models. The abundant nonoverlapping peaks are chosen to find the optimal peak models that are both data- and retention-time-dependent. Analysis of 18 spiked-in LC-MS data demonstrates that the proposed DDPM spectrum deconvolution method outperforms the traditional method. On average, the DDPM approach not only detected 58 more chromatographic peaks from each of the testing LC-MS data but also improved the retention time and peak area 3% and 6%, respectively.
PMCID: PMC3982975  PMID: 24533635
22.  Developing New Isotope-Coded Mass Spectrometry-Cleavable Cross-Linkers for Elucidating Protein Structures 
Analytical Chemistry  2014;86(4):2099-2106.
Structural characterization of protein complexes is essential for the understanding of their function and regulation. However, it remains challenging due to limitations in existing tools. With recent technological improvements, cross-linking mass spectrometry (XL-MS) has become a powerful strategy to define protein–protein interactions and elucidate structural topologies of protein complexes. To further advance XL-MS studies, we present here the development of new isotope-coded MS-cleavable homobifunctional cross-linkers: d0- and d10-labeled dimethyl disuccinimidyl sulfoxide (DMDSSO). Detailed characterization of DMDSSO cross-linked peptides further demonstrates that sulfoxide-containing MS-cleavable cross-linkers offer robust and predictable MS2 fragmentation of cross-linked peptides, permitting subsequent MS3 analysis for simplified, unambiguous identification. Concurrent usage of these reagents provides a characteristic doublet pattern of DMDSSO cross-linked peptides, thus aiding in the confidence of cross-link identification by MSn analysis. More importantly, the unique isotopic profile permits quantitative analysis of cross-linked peptides and therefore expands the capability of XL-MS strategies to analyze both static and dynamic protein interactions. Together, our work has established a new XL-MS workflow for future studies toward the understanding of structural dynamics of protein complexes.
PMCID: PMC3985771  PMID: 24471733
23.  Ion Permeability of the Nuclear Pore Complex and Ion-Induced Macromolecular Permeation as Studied by Scanning Electrochemical and Fluorescence Microscopy 
Analytical Chemistry  2014;86(4):2090-2098.
Efficient delivery of therapeutic macromolecules and nanomaterials into the nucleus is imperative for gene therapy and nanomedicine. Nucleocytoplasmic molecular transport, however, is tightly regulated by the nuclear pore complex (NPC) with the hydrophobic transport barriers based on phenylalanine and glycine repeats. Herein, we apply scanning electrochemical microscopy (SECM) to quantitatively study the permeability of the NPCs to small probe ions with a wide range of hydrophobicity as a measure of their hydrophobic interactions with the transport barriers. Amperometric detection of the redox-inactive probe ions is enabled by using the ion-selective SECM tips based on the micropipet- or nanopipet-supported interfaces between two immiscible electrolyte solutions. The remarkably high ion permeability of the NPCs is successfully measured by SECM and theoretically analyzed. This analysis demonstrates that the ion permeability of the NPCs is determined by the dimensions and density of the nanopores without a significant effect of the transport barriers on the transported ions. Importantly, the weak ion–barrier interactions become significant at sufficiently high concentrations of extremely hydrophobic ions, i.e., tetraphenylarsonium and perfluorobutylsulfonate, to permeabilize the NPCs to naturally impermeable macromolecules. Dependence of ion-induced permeabilization of the NPC on the pathway and mode of macromolecular transport is studied by using fluorescence microscopy to obtain deeper insights into the gating mechanism of the NPC as the basis of a new transport model.
PMCID: PMC3955255  PMID: 24460147
24.  Monitoring Phosphatidic Acid Formation in Intact Phosphatidylcholine Bilayers upon Phospholipase D Catalysis 
Analytical Chemistry  2014;86(3):1753-1759.
We have monitored the production of the negatively charged lipid, 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidic acid acid (POPA), in supported lipid bilayers via the enzymatic hydrolysis of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (PC), a zwitterionic lipid. Experiments were performed with phospholipase D (PLD) in a Ca2+ dependent fashion. The strategy for doing this involved using membrane-bound streptavidin as a biomarker for the charge on the membrane. The focusing position of streptavidin in electrophoretic-electroosmotic focusing (EEF) experiments was monitored via a fluorescent tag on this protein. The negative charge increased during these experiments due to the formation of POPA lipids. This caused the focusing position of streptavidin to migrate toward the negatively charged electrode. With the use of a calibration curve, the amount of POPA generated during this assay could be read out from the intact membrane, an objective that has been otherwise difficult to achieve because of the lack of unique chromophores on PA lipids. On the basis of these results, other enzymatic reactions involving the change in membrane charge could also be monitored in a similar way. This would include phosphorylation, dephosphorylation, lipid biosynthesis, and additional phospholipase reactions.
PMCID: PMC3983022  PMID: 24456402
25.  Ex Vivo Chemical Cytometric Analysis of Protein Tyrosine Phosphatase Activity in Single Human Airway Epithelial Cells 
Analytical chemistry  2013;86(2):1291-1297.
We describe a novel method for the measurement of protein tyrosine phosphatase (PTP) activity in single human airway epithelial cells (hAECs) using capillary electrophoresis. This technique involved the microinjection of a fluorescent phosphopeptide that is hydrolyzed specifically by PTPs. Analyses in BEAS-2B immortalized bronchial epithelial cells showed rapid PTP-mediated dephosphorylation of the substrate (2.2 pmol min−1 mg−1) that was blocked by pretreatment of the cells with the PTP inhibitors pervanadate, Zn2+, and 1,2-naphthoquinone (76%, 69%, 100% inhibition relative to PTP activity in untreated controls, respectively). These studies were then extended to a more physiologically relevant model system: primary hAECs cultured from bronchial brushings of living human subjects. In primary hAECs, dephosphorylation of the substrate occurred at a rate of 2.2 pmol min−1 mg−1, and was also effectively inhibited by pre-incubation of the cells with the inhibitors pervanadate, Zn2+, and 1,2- naphthoquinone (91%, 88%, and 87% median PTP inhibition, respectively). Reporter proteolysis in single BEAS-2B cells occurred at a median rate of 43 fmol min−1 mg−1 resulting in a mean half-life of 20 min. The reporter displayed a similar median half-life of 28 min in these single primary cells. Finally, single viable epithelial cells (which were assayed for PTP activity immediately after collection by bronchial brushing of a human volunteer) showed dephosphorylation rates ranging from 0.34–36 pmol min−1 mg−1 (n = 6). These results demonstrate the utility and applicability of this technique for the ex vivo quantification of PTP activity in small, heterogeneous, human cells and tissues.
PMCID: PMC3924180  PMID: 24380370

Results 1-25 (1821)