PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-23 (23)
 

Clipboard (0)
None

Select a Filter Below

Year of Publication
Document Types
1.  The Functional Connectivity Landscape of the Human Brain 
PLoS ONE  2014;9(10):e111007.
Functional brain networks emerge and dissipate over a primarily static anatomical foundation. The dynamic basis of these networks is inter-regional communication involving local and distal regions. It is assumed that inter-regional distances play a pivotal role in modulating network dynamics. Using three different neuroimaging modalities, 6 datasets were evaluated to determine whether experimental manipulations asymmetrically affect functional relationships based on the distance between brain regions in human participants. Contrary to previous assumptions, here we show that short- and long-range connections are equally likely to strengthen or weaken in response to task demands. Additionally, connections between homotopic areas are the most stable and less likely to change compared to any other type of connection. Our results point to a functional connectivity landscape characterized by fluid transitions between local specialization and global integration. This ability to mediate functional properties irrespective of spatial distance may engender a diverse repertoire of cognitive processes when faced with a dynamic environment.
doi:10.1371/journal.pone.0111007
PMCID: PMC4211704  PMID: 25350370
2.  How Does it STAC Up? Revisiting the Scaffolding Theory of Aging and Cognition 
Neuropsychology Review  2014;24(3):355-370.
“The Scaffolding Theory of Aging and Cognition (STAC)”, proposed in 2009, is a conceptual model of cognitive aging that integrated evidence from structural and functional neuroimaging to explain how the combined effects of adverse and compensatory neural processes produce varying levels of cognitive function. The model made clear and testable predictions about how different brain variables, both structural and functional, were related to cognitive function, focusing on the core construct of compensatory scaffolding. The present paper provides a revised model that integrates new evidence about the aging brain that has emerged since STAC was published 5 years ago. Unlike the original STAC model, STAC-r incorporates life-course factors that serve to enhance or deplete neural resources, thereby influencing the developmental course of brain structure and function, as well as cognition, over time. Life-course factors also influence compensatory processes that are engaged to meet cognitive challenge, and to ameliorate the adverse effects of structural and functional decline. The revised model is discussed in relation to recent lifespan and longitudinal data as well as emerging evidence about the effects of training interventions. STAC-r goes beyond the previous model by combining a life-span approach with a life-course approach to understand and predict cognitive status and rate of cognitive change over time.
doi:10.1007/s11065-014-9270-9
PMCID: PMC4150993  PMID: 25143069
Cognitive aging; Brain imaging; Scaffolding; Compensation
3.  Physical Activity is Related to Timing Performance in Older Adults 
Physical activity has been linked to better cognitive function in older adults, especially for executive control processes. Researchers have suggested that temporal processing of durations less than 1 second is automatic and engages motor processes, while timing of longer durations engages executive processes. The purpose of this study was to determine whether a higher level of physical activity is associated with better reproduction performance in older adults, especially for durations in the “cognitive” range (i.e. longer than 1 s). Older right-handed adults completed a temporal reproduction task with five target durations (300, 650, 1000, 1350, and 1700 ms). Physical activity level was assessed via estimation of VO2 peak using a self-report activity scale. Results indicated that higher physical activity level was associated with better timing accuracy and that this effect was dependent on target duration. Namely, the relationship between physical activity and timing accuracy was strongest at the longest durations. Therefore, greater physical activity in older adults may have specific benefits linked to better executive functions.
doi:10.1080/13825585.2012.715625
PMCID: PMC3528826  PMID: 22917438
Temporal reproduction; Physical Activity; Cognition; Older Adults; Neuro-protection
4.  Study protocol to examine the effects of spaceflight and a spaceflight analog on neurocognitive performance: extent, longevity, and neural bases 
BMC Neurology  2013;13:205.
Background
Long duration spaceflight (i.e., 22 days or longer) has been associated with changes in sensorimotor systems, resulting in difficulties that astronauts experience with posture control, locomotion, and manual control. The microgravity environment is an important causal factor for spaceflight induced sensorimotor changes. Whether spaceflight also affects other central nervous system functions such as cognition is yet largely unknown, but of importance in consideration of the health and performance of crewmembers both in- and post-flight. We are therefore conducting a controlled prospective longitudinal study to investigate the effects of spaceflight on the extent, longevity and neural bases of sensorimotor and cognitive performance changes. Here we present the protocol of our study.
Methods/design
This study includes three groups (astronauts, bed rest subjects, ground-based control subjects) for which each the design is single group with repeated measures. The effects of spaceflight on the brain will be investigated in astronauts who will be assessed at two time points pre-, at three time points during-, and at four time points following a spaceflight mission of six months. To parse out the effect of microgravity from the overall effects of spaceflight, we investigate the effects of seventy days head-down tilted bed rest. Bed rest subjects will be assessed at two time points before-, two time points during-, and three time points post-bed rest. A third group of ground based controls will be measured at four time points to assess reliability of our measures over time. For all participants and at all time points, except in flight, measures of neurocognitive performance, fine motor control, gait, balance, structural MRI (T1, DTI), task fMRI, and functional connectivity MRI will be obtained. In flight, astronauts will complete some of the tasks that they complete pre- and post flight, including tasks measuring spatial working memory, sensorimotor adaptation, and fine motor performance. Potential changes over time and associations between cognition, motor-behavior, and brain structure and function will be analyzed.
Discussion
This study explores how spaceflight induced brain changes impact functional performance. This understanding could aid in the design of targeted countermeasures to mitigate the negative effects of long-duration spaceflight.
doi:10.1186/1471-2377-13-205
PMCID: PMC3878338  PMID: 24350728
Space flight; Astronauts; Microgravity; Sensorimotor feedback; Cognition; Neuroimaging; MRI; Longitudinal studies; Bed rest
5.  Differential Callosal Contributions to Bimanual Control in Young and Older Adults 
Journal of cognitive neuroscience  2010;23(9):10.1162/jocn.2010.21600.
Our recent work has shown that older adults are disproportionately impaired at bimanual tasks when the two hands are moving out of phase with each other [Bangert, A. S., Reuter-Lorenz, P. A., Walsh, C. M., Schachter, A. B., & Seidler, R. D. Bimanual coordination and aging: Neurobehavioral implications. Neuropsychologia, 48, 1165–1170, 2010]. Interhemispheric interactions play a key role during such bimanual movements to prevent interference from the opposite hemisphere. Declines in corpus callosum (CC) size and microstructure with advancing age have been well documented, but their contributions to age deficits in bimanual function have not been identified. In the current study, we used structural magnetic resonance and diffusion tensor imaging to investigate age-related changes in the relationships between callosal macrostructure, microstructure, and motor performance on tapping tasks requiring differing degrees of interhemispheric interaction. We found that older adults demonstrated disproportionately poorer performance on out-of-phase bimanual control, replicating our previous results. In addition, older adults had smaller anterior CC size and poorer white matter integrity in the callosal midbody than their younger counterparts. Surprisingly, larger CC size and better integrity of callosal microstructure in regions connecting sensorimotor cortices were associated with poorer motor performance on tasks requiring high levels of interhemispheric interaction in young adults. Conversely, in older adults, better performance on these tasks was associated with larger size and better CC microstructure integrity within the same callosal regions. These findings implicate age-related declines in callosal size and integrity as a key contributor to bimanual control deficits. Further, the differential age-related involvement of transcallosal pathways reported here raises new questions about the role of the CC in bimanual control.
doi:10.1162/jocn.2010.21600
PMCID: PMC3809031  PMID: 20954936
6.  Memory Distortion in Alzheimer’s Disease: Deficient Monitoring of Short and Long-term Memory 
Neuropsychology  2012;26(4):509-516.
Objective
This study measured distortions of memory during short-term memory (STM) and long-term memory (LTM) versions of a semantically-associated word list learning paradigm. Performance of patients with mild-to-moderate Alzheimer’s disease (AD; MMSE ≥ 16) was compared to performance of age-matched, healthy older adult participants.
Method
In a STM version of the Deese-Roediger-McDermott (DRM) task, participants viewed four-word lists and were prompted for recall after a brief interval. The LTM task tested recall memory for 12-word lists.
Results
Compared to the healthy group, the AD participants show greater impairment on the LTM task than on the STM task, although veridical recall is significantly reduced on both tasks. Furthermore, on both memory tasks: a) Participants with AD generate more nonsemantic intrusions than healthy older adult participants; b) semantic intrusion rate, when computed as a proportion of total recall, does not differ between groups. Notably, nonsemantic intrusions are consistently high for AD participants across both STM and LTM despite a marked difference in recall accuracy (65% and 23%, respectively).
Conclusions
STM impairment with some preserved semantic processing is evident in AD. The extent and variety of intrusions reported by AD participants indicates a breakdown in their ability to monitor and constrain their recall responses, even within seconds of initial learning.
doi:10.1037/a0028684
PMCID: PMC3389800  PMID: 22746309
Alzheimer’s disease; false memory; short-term memory; long-term memory; semantic memory
7.  Session II: Mechanisms of Age-Related Cognitive Change and Targets for Intervention: Neural Circuits, Networks, and Plasticity 
Age-related changes in neural circuits, neural networks, and their plasticity are central to our understanding of age changes in cognition and brain structure and function. This paper summarizes selected findings on these topics presented at the Cognitive Aging Summit II. Specific areas discussed were synaptic vulnerability and plasticity, including the role of different types of synaptic spines, and hormonal effects in the dorsolateral prefrontal cortex of nonhuman primates, the impact of both compensatory processes and dedifferentiation on demand-dependent differences in prefrontal activation in relation to age and performance, the role of vascular disease, indexed by white matter signal abnormalities, on prefrontal activation during a functional magnetic resonance imaging-based cognitive control paradigm, and the influence of amyloid-β neuropathology on memory performance in older adults and the networks of brain activity underlying variability in performance. A greater understanding of age-related changes in brain plasticity and neural networks in healthy aging and in the presence of underlying vascular disease or amyloid pathology will be essential to identify new targets for intervention. Moreover, this understanding will assist in promoting the utilization of existing interventions, such as lifestyle and therapeutic modifiers of vascular disease.
doi:10.1093/gerona/gls111
PMCID: PMC3732094  PMID: 22570135
cognitive changes; aging; Neural networks
8.  The effects of working memory resource depletion and training on sensorimotor adaptation 
Behavioural Brain Research  2011;228(1):107-115.
We have recently demonstrated that visuospatial working memory performance predicts the rate of motor skill learning, particularly during the early phase of visuomotor adaptation. Here, we follow up these correlational findings with direct manipulations of working memory resources to determine the impact on visuomotor adaptation, a form of motor learning. We conducted two separate experiments. In the first one, we used a resource depletion strategy to investigate whether the rate of early visuomotor adaptation would be negatively affected by fatigue of spatial working memory resources. In the second study, we employed a dual n-back task training paradigm that has been shown to result in transfer effects [1] over five weeks to determine whether training-related improvements would boost the rate of early visuomotor adaptation. The depletion of spatial working memory resources negatively affected the rate of early visuomotor adaptation. However, enhancing working memory capacity via training did not lead to improved rates of visuomotor adaptation, suggesting that working memory capacity may not be the factor limiting maximal rate of visuomotor adaptation in young adults. These findings are discussed from a resource limitation / capacity framework with respect to current views of motor learning.
doi:10.1016/j.bbr.2011.11.040
PMCID: PMC3264800  PMID: 22155489
working memory; visuomotor adaptation; resource depletion; cognitive training
9.  Configural Representations in Spatial Working Memory: Modulation by Perceptual Segregation and Voluntary Attention 
In what form are multiple spatial locations represented in working memory? The current study revealed that people often maintain the configural properties (inter-item relationships) of visuospatial stimuli even when this information is explicitly task-irrelevant. However, results also indicate that the voluntary allocation of selective attention prior to stimulus presentation, as well as feature-based perceptual segregation of relevant from irrelevant stimuli, can eliminate the influences of stimulus configuration on location change detection performance. In contrast, voluntary attention cued to the relevant target location following presentation of the stimulus array failed to attenuate these influences. Thus, whereas voluntary selective attention can isolate or prevent the encoding of irrelevant stimulus locations and configural properties, people, perhaps due to limitations in attentional resources, reliably fail to isolate or suppress configural representations that have been encoded into working memory.
doi:10.3758/s13414-011-0180-0
PMCID: PMC3205194  PMID: 21761373
10.  Age differences in callosal contributions to cognitive processes 
Neuropsychologia  2011;49(9):2564-2569.
In many cases bilateral cortical activation in older adults has been associated with better task performance, suggesting that a greater reliance on interhemispheric interactions aids performance. Interhemispheric communication is primarily mediated via the corpus callosum (CC), however with advancing age the anterior half of the CC undergoes significant atrophy. Here we determine whether there are age differences in the relationship between cross-sectional area of the CC and performance on cognitive tests of psychomotor processing speed and working memory. We found that older adults had significantly smaller callosal area in the anterior and mid-body of the CC than young adults. Furthermore, older adults with larger size in these callosal areas performed better on assessments of working memory and processing speed. Our results indicate that older adults with larger size of the anterior half of the CC exhibit better cognitive function, although their performance was still poorer than young adults with similar CC size. Thus, while the capability for interhemispheric interactions, as inferred from callosal size, may provide performance benefits for older adults, this capacity alone does not assure protection from general performance decline.
doi:10.1016/j.neuropsychologia.2011.05.004
PMCID: PMC3137668  PMID: 21601582
Corpus callosum; aging; working memory; processing speed
11.  The Adaptive Brain: Aging and Neurocognitive Scaffolding 
Annual Review of Psychology  2009;60:173-196.
There are declines with age in speed of processing, working memory, inhibitory function, and long-term memory, as well as decreases in brain structure size and white matter integrity. In the face of these decreases, functional imaging studies have demonstrated, somewhat surprisingly, reliable increases in prefrontal activation. To account for these joint phenomena, we propose the scaffolding theory of aging and cognition (STAC). STAC provides an integrative view of the aging mind, suggesting that pervasive increased frontal activation with age is a marker of an adaptive brain that engages in compensatory scaffolding in response to the challenges posed by declining neural structures and function. Scaffolding is a normal process present across the lifespan that involves use and development of complementary, alternative neural circuits to achieve a particular cognitive goal. Scaffolding is protective of cognitive function in the aging brain, and available evidence suggests that the ability to use this mechanism is strengthened by cognitive engagement, exercise, and low levels of default network engagement.
doi:10.1146/annurev.psych.59.103006.093656
PMCID: PMC3359129  PMID: 19035823
default network; dedifferentiation; hippocampus; compensation; cognitive reserve; frontal activation
12.  Dissecting the Clock: Understanding the mechanisms of timing across tasks and temporal intervals 
Acta psychologica  2010;136(1):20-34.
Currently, it is unclear what model of timing best describes temporal processing across millisecond and second timescales in tasks with different response requirements. In the present set of experiments, we assessed whether the popular dedicated scalar model of timing accounts for performance across a restricted timescale surrounding the 1 second duration for different tasks. The first two experiments evaluate whether temporal variability scales proportionally with the timed duration within temporal reproduction. The third experiment compares timing across millisecond and second timescales using temporal reproduction and discrimination tasks designed with parallel structures. The data exhibit violations of the assumptions of a single scalar timekeeper across millisecond and second timescales within temporal reproduction; these violations are less apparent for temporal discrimination. The finding of differences across tasks suggests that task demands influence the mechanisms that are engaged for keeping time.
doi:10.1016/j.actpsy.2010.09.006
PMCID: PMC3019300  PMID: 20955998
Time; Time perception; Time estimation; Prospective timing; Scalar timing PsycINFO classification: 2340
13.  False memories seconds later: The rapid and compelling onset of illusory recognition 
Distortions of long-term memory (LTM) in the converging associates task are thought to arise from semantic associative processes and monitoring failures due to degraded verbatim and/or contextual memory. Traditionally, sensory-based coding is considered more prevalent than meaning-based coding in short-term memory (STM), whereas the converse characterizes LTM, leading to the expectation that false memory phenomena should be less robust in a canonical STM task. These expectations were violated in two experiments in which participants viewed lists of four semantically-related words and were probed immediately following a filled 3–4 second retention interval or approximately 20 minutes later in a surprise recognition test. Corrected false recognition rates, confidence ratings, and Remember/Know judgments reveal similar false memory effects across STM and LTM conditions. These results indicate that compelling false memory illusions can be rapidly instantiated, and originate from processes that are not specific to LTM tasks, consistent with unitary models of memory.
doi:10.1037/a0019903
PMCID: PMC2933080  PMID: 20804300
14.  Human Neuroscience and the Aging Mind: A New Look at Old Problems 
In this article, marking the 65th anniversary of the Journal of Gerontology, we offer a broad-brush overview of the new synthesis between neuroscientific and psychological approaches to cognitive aging. We provide a selective review of brain imaging studies and their relevance to mechanisms of cognitive aging first identified primarily from behavioral measurements. We also examine some new key discoveries, including evidence favoring plasticity and compensation that have emerged specifically from using cognitive neuroscience methods to study healthy aging. We then summarize several recent neurocognitive theories of aging, including our own model—the Scaffolding Theory of Aging and Cognition. We close by discussing some newly emerging trends and future research trajectories for investigating the aging mind and brain.
doi:10.1093/geronb/gbq035
PMCID: PMC2883872  PMID: 20478901
Aging; Plasticity; Cognitive Neuroscience; Imaging
15.  Harnessing neuroplasticity for clinical applications 
Brain  2011;134(6):1591-1609.
Neuroplasticity can be defined as the ability of the nervous system to respond to intrinsic or extrinsic stimuli by reorganizing its structure, function and connections. Major advances in the understanding of neuroplasticity have to date yielded few established interventions. To advance the translation of neuroplasticity research towards clinical applications, the National Institutes of Health Blueprint for Neuroscience Research sponsored a workshop in 2009. Basic and clinical researchers in disciplines from central nervous system injury/stroke, mental/addictive disorders, paediatric/developmental disorders and neurodegeneration/ageing identified cardinal examples of neuroplasticity, underlying mechanisms, therapeutic implications and common denominators. Promising therapies that may enhance training-induced cognitive and motor learning, such as brain stimulation and neuropharmacological interventions, were identified, along with questions of how best to use this body of information to reduce human disability. Improved understanding of adaptive mechanisms at every level, from molecules to synapses, to networks, to behaviour, can be gained from iterative collaborations between basic and clinical researchers. Lessons can be gleaned from studying fields related to plasticity, such as development, critical periods, learning and response to disease. Improved means of assessing neuroplasticity in humans, including biomarkers for predicting and monitoring treatment response, are needed. Neuroplasticity occurs with many variations, in many forms, and in many contexts. However, common themes in plasticity that emerge across diverse central nervous system conditions include experience dependence, time sensitivity and the importance of motivation and attention. Integration of information across disciplines should enhance opportunities for the translation of neuroplasticity and circuit retraining research into effective clinical therapies.
doi:10.1093/brain/awr039
PMCID: PMC3102236  PMID: 21482550
neuroplasticity; retraining; therapeutics; clinical assessment
16.  Bimanual Coordination and Aging: Neurobehavioral Implications 
Neuropsychologia  2009;48(4):1165-1170.
We investigate whether aging leads to global declines in discrete and continuous bimanual coordination tasks thought to rely on different control mechanisms for temporal coupling of the limbs. All conditions of continuous bimanual circle drawing were associated with age-equivalent temporal control. This was also true for discrete simultaneous tapping. Older adults’ between-hand coordination deficits were specific to discrete tapping conditions requiring asynchronous intermanual timing and were associated with self-reported executive dysfunction on the Dysexecutive (DEX) questionnaire. Also, older adults exclusively showed a relationship between the most difficult bimanual circling condition and a measure of working memory. Thus, age-related changes in bimanual coordination are specific to task conditions that place complex timing demands on left and right hand movements and are, therefore, likely to require executive control.
doi:10.1016/j.neuropsychologia.2009.11.013
PMCID: PMC2828502  PMID: 19941878
Executive Control; Motor Control; Bimanual Coordination; Aging
17.  Aging, training, and the brain: A review and future directions 
Neuropsychology review  2009;19(4):504-522.
As the population ages, the need for effective methods to maintain or even improve older adults’ cognitive performance becomes increasingly pressing. Here we provide a brief review of the major intervention approaches that have been the focus of past research with healthy older adults (strategy training, multi-modal interventions, cardiovascular exercise, and process-based training), and new approaches that incorporate neuroimaging. As outcome measures, neuroimaging data on intervention-related changes in volume, structural integrity, and functional activation can provide important insights into the nature and duration of an intervention's effects. Perhaps even more intriguingly, several recent studies have used neuroimaging data as a guide to identify core cognitive processes that can be trained in one task with effective transfer to other tasks that share the same underlying processes. Although many open questions remain, this research has greatly increased our understanding of how to promote successful aging of cognition and the brain.
doi:10.1007/s11065-009-9119-9
PMCID: PMC3005345  PMID: 19876740
18.  Mapping interference resolution across task domains: A shared control process in left inferior frontal gyrus 
Brain research  2008;1256:92-100.
Work in functional neuroimaging has mapped interference resolution processing onto left inferior frontal regions for both verbal working memory and a variety of semantic processing tasks. The proximity of the identified regions from these different tasks suggests the existence of a common, domain-general interference resolution mechanism. The current research specifically tests this idea in a within-subject design using fMRI to assess the activation associated with variable selection requirements in a semantic retrieval task (verb generation) and a verbal working memory task with a trial-specific proactive interference manipulation (recent-probes). High interference trials on both tasks were associated with activity in the midventrolateral region of the left inferior frontal gyrus, and the regions activated in each task strongly overlapped. The results indicate that an elemental component of executive control associated with interference resolution during retrieval from working memory and from semantic memory can be mapped to a common portion of the left inferior frontal gyrus.
doi:10.1016/j.brainres.2008.12.001
PMCID: PMC2718547  PMID: 19111526
Prefrontal cortex; Cognitive control; Magnetic resonance imaging; Working memory; Semantic retrieval; Interference; Selection
19.  Age Differences in the Neural Representation of Working Memory Revealed by Multi-Voxel Pattern Analysis 
Working memory function declines across the lifespan. Computational models of aging attribute such memory impairments to reduced distinctiveness between neural representations of different mental states in old age, a phenomenon termed dedifferentiation. These models predict that neural distinctiveness should be reduced uniformly across experimental conditions in older adults. In contrast, the Compensation-Related Utilization of Neural Circuits Hypothesis (CRUNCH) model predicts that the distinctiveness of neural representations should be increased in older adults (relative to young adults) at low levels of task demand but reduced at high levels of demand. The present study used multi-voxel pattern analysis to measure the effects of age and task demands on the distinctiveness of the neural representations of verbal and visuospatial working memory. Neural distinctiveness was estimated separately for memory encoding, maintenance, and retrieval, and for low, medium, and high memory loads. Results from sensory cortex during encoding and retrieval were consistent with the dedifferentiation hypothesis: distinctiveness of visual cortical representations during these phases was uniformly reduced in older adults, irrespective of memory load. However, maintenance-related responses in prefrontal and parietal regions yielded a strikingly different pattern of results. At low loads, older adults showed higher distinctiveness than younger adults; at high loads, this pattern reversed, such that distinctiveness was higher in young adults. This interaction between age group and memory load is at odds with the dedifferentiation hypothesis but consistent with CRUNCH. In sum, our results provide partial support for both dedifferentiation- and compensation-based models; we argue that comprehensive theories of cognitive aging must incorporate aspects of both models to fully explain complex patterns of age-related neuro-cognitive change.
doi:10.3389/fnhum.2010.00217
PMCID: PMC2996172  PMID: 21151373
aging; working memory; dedifferentiation; compensation; multi-voxel pattern analysis; fMRI
20.  Exploring the motivational brain: effects of implicit power motivation on brain activation in response to facial expressions of emotion 
This study tested the hypothesis that implicit power motivation (nPower), in interaction with power incentives, influences activation of brain systems mediating motivation. Twelve individuals low (lowest quartile) and 12 individuals high (highest quartile) in nPower, as assessed per content coding of picture stories, were selected from a larger initial participant pool and participated in a functional magnetic resonance imaging study during which they viewed high-dominance (angry faces), low-dominance (surprised faces) and control stimuli (neutral faces, gray squares) under oddball-task conditions. Consistent with hypotheses, high-power participants showed stronger activation in response to emotional faces in brain structures involved in emotion and motivation (insula, dorsal striatum, orbitofrontal cortex) than low-power participants.
doi:10.1093/scan/nsn030
PMCID: PMC2607053  PMID: 19015083
implicit motives; facial expressions of emotion; motivation; power; dominance; personality; brain; fMRI
21.  Divergent Trajectories in the Aging Mind: Changes in Working Memory for Affective Versus Visual Information With Age 
Psychology and aging  2005;20(4):542-553.
Working memory mediates the short-term maintenance of information. Virtually all empirical research on working memory involves investigations of working memory for verbal and visual information. Whereas aging is typically associated with a deficit in working memory for these types of information, recent findings suggestive of relatively well-preserved long-term memory for emotional information in older adults raise questions about working memory for emotional material. This study examined age differences in working memory for emotional versus visual information. Findings demonstrate that, despite an age-related deficit for the latter, working memory for emotion was unimpaired. Further, older adults exhibited superior performance on positive relative to negative emotion trials, whereas their younger counterparts exhibited the opposite pattern.
doi:10.1037/0882-7974.20.4.542
PMCID: PMC2746384  PMID: 16420130
emotion; working memory; affect; cognition; positivity effect
22.  Emotional category data on images from the International Affective Picture System 
Behavior research methods  2005;37(4):626-630.
The International Affective Picture System (IAPS) is widely used in studies of emotion and has been characterized primarily along the dimensions of valence, arousal, and dominance. Even though research has shown that the IAPS is useful in the study of discrete emotions, the categorical structure of the IAPS has not been characterized thoroughly. The purpose of the present project was to collect descriptive emotional category data on subsets of the IAPS in an effort to identify images that elicit one discrete emotion more than others. These data reveal multiple emotional categories for the images and indicate that this image set has great potential in the investigation of discrete emotions. This article makes these data available to researchers with such interests.
PMCID: PMC1808555  PMID: 16629294
23.  Cognitive fatigue of executive processes: Interaction between interference resolution tasks. 
Neuropsychologia  2007;45(7):1571-1579.
A resource depletion framework motivated a novel strategy for investigating whether the central executive is unitary or separable into relatively independent subprocesses. The idea that tasks with overlapping neural representations may involve similar executive components was also critical to our approach. Of particular interest were tasks requiring resolution of interference among competing representations. Within a single experimental session intensive training reduced the ability to resolve interference on a transfer task if the training task placed high demands on interference resolution. Negative transfer was absent when interference resolution was minimally required by the task, or when the training and transfer tasks did not rely on overlapping neural representations. These results suggest a nonunitary central executive composed of separable subcomponents, at least one of which mediates interference resolution. Our results are consistent with an executive control process specialized for the selection of task relevant representations from competitors. The results also agree with the view that higher cognitive processes are resource limited and can be temporarily depleted.
doi:10.1016/j.neuropsychologia.2006.12.007
PMCID: PMC1876692  PMID: 17227678
Prefrontal; Cognitive control; Semantic; Memory; Negative transfer; Working memory

Results 1-23 (23)