PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-2 (2)
 

Clipboard (0)
None

Select a Filter Below

Journals
Authors
Year of Publication
Document Types
author:("Lee, gyusuji")
1.  Origins of Submovements during Pointing Movements 
Acta psychologica  2008;129(1):91-100.
Submovements that are frequently observed in the final portion of pointing movements have traditionally been viewed as pointing accuracy adjustments. Here we re-examine this long-lasting interpretation by developing evidence that many of submovements may be non-corrective fluctuations arising from various sources of motor output variability. In particular, non-corrective submovements may emerge during motion termination and during motion of low speed. The contribution of these factors and the factor of accuracy regulation in submovement production is investigated here by manipulating movement mode (discrete, reciprocal, and passing) and target size (small and large). The three modes provided different temporal combinations of accuracy regulation and motion termination, thus allowing us to disentangle submovements associated with each factor. The target size manipulations further emphasized the role of accuracy regulation and provided variations in movement speed. Gross and fine submovements were distinguished based on the degree of perturbation of smooth motion. It was found that gross submovements were predominantly related to motion termination and not to pointing accuracy regulation. Although fine submovements were more frequent during movements to small than to large targets, other results show that they may also be not corrective submovements but rather motion fluctuations attributed to decreases in movement speed accompanying decreases in target size. Together, the findings challenge the traditional interpretation, suggesting that the majority of submovements are fluctuations emerging from mechanical and neural sources of motion variability. The implications of the findings for the mechanisms responsible for accurate target achievement are discussed.
doi:10.1016/j.actpsy.2008.04.009
PMCID: PMC2600723  PMID: 18550020
arm kinematics; discrete; continuous; accuracy; variability
2.  Origins of submovements in movements of elderly adults 
Background
Slowness is a well-recognized feature of movements in aging. One of the possible reasons for slowness suggested by previous research is production of corrective submovements that compensate for shortened primary submovement to the target. Here, we re-examine this traditional interpretation and argue that the majority of submovements in older adults may be a consequence rather than the cause of slowness.
Methods
Pointing movements in young and older adults were recorded. Conditions for submovement emergence were manipulated by using small and large targets and three movement modes: discrete (required stopping on the target), reciprocal (required reversal on the target), and passing (required crossing the target and stopping after that). Movements were parsed into a primary and secondary submovement based on zero-crossings of velocity (type 1 submovements), acceleration (type 2 submovements), and jerk (type 3 submovements). In the passing mode, secondary submovements were analyzed only after crossing the target to exclude that they were accuracy adjustments.
Results
Consistent with previous research, the primary submovement was shortened and total secondary submovement incidence was increased in older adults. However, comparisons across conditions suggested that many submovements were non-corrective in both groups. Type 1 submovements were non-corrective because they were more frequent for large than small targets. They predominantly emerged due to arm stabilization and energy dissipation during motion termination in the discrete and passing mode. Although type 2 and 3 submovements were more frequent for small than large targets, this trend was also observed in the passing mode, suggesting that many of these submovements were non-corrective. Rather, they could have been velocity fluctuations associated predominantly with low speed of movements to small targets.
Conclusion
The results question the traditional interpretation of frequent submovements in older adults as corrective adjustments. Rather, the increased incidence of submovements in older adults is directly related to low movement speed observed in aging, whereas the relationship between submovement incidence and target size is a result of speed-accuracy trade-off. Aging-related declines in muscular control that may contribute to the disproportional increases in submovement incidence during slow movements of older adults are discussed.
doi:10.1186/1743-0003-5-28
PMCID: PMC2628348  PMID: 19014548

Results 1-2 (2)