PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (96)
 

Clipboard (0)
None

Select a Filter Below

Journals
more »
Year of Publication
more »
1.  WNTLESS IS REQUIRED FOR PERIPHERAL LUNG DIFFERENTIATION AND PULMONARY VASCULAR DEVELOPMENT 
Developmental biology  2013;379(1):38-52.
Wntless (Wls), a gene highly conserved across the animal kingdom, encodes for a transmembrane protein that mediates Wnt ligand secretion. Wls is expressed in developing lung, wherein Wnt signaling is necessary for pulmonary morphogenesis. We hypothesize that Wls plays a critical role in modulating Wnt signaling during lung development and therefore affects processes critical for pulmonary morphogenesis. We generated conditional Wls mutant mice utilizing Shh-Cre and Dermo1-Cre mice to delete Wls in the embryonic respiratory epithelium and mesenchyme, respectively. Epithelial deletion of Wls disrupted lung branching morphogenesis, peripheral lung development and pulmonary endothelial differentiation. Epithelial Wls mutant mice died at birth due to respiratory failure caused by lung hypoplasia and pulmonary hemorrhage. In the lungs of these mice, VEGF and Tie2-angiopoietin signaling pathways, which mediate vascular development, were downregulated from early stages of development. In contrast, deletion of Wls in mesenchymal cells of the developing lung did not alter branching morphogenesis or early mesenchymal differentiation. In vitro assays support the concept that Wls acts in part via Wnt5a to regulate pulmonary vascular development. We conclude that epithelial Wls modulates Wnt ligand activities critical for pulmonary vascular differentiation and peripheral lung morphogenesis. These studies provide a new framework for understanding the molecular mechanisms underlying normal pulmonary vasculature formation and the dysmorphic pulmonary vasculature development associated with congenital lung disease.
doi:10.1016/j.ydbio.2013.03.010
PMCID: PMC3699333  PMID: 23523683
Wntless; Wnt; lung development; endothelium; epithelium
2.  Epithelial SCAP/INSIG/SREBP Signaling Regulates Multiple Biological Processes during Perinatal Lung Maturation 
PLoS ONE  2014;9(5):e91376.
Pulmonary surfactant is required for lung function at birth and throughout postnatal life. Defects in the surfactant system are associated with common pulmonary disorders including neonatal respiratory distress syndrome and acute respiratory distress syndrome in children and adults. Lipogenesis is essential for the synthesis of pulmonary surfactant by type II epithelial cells lining the alveoli. This study sought to identify the role of pulmonary epithelial SREBP, a transcriptional regulator of cellular lipid homeostasis, during a critical time period of perinatal lung maturation in the mouse. Genome wide mRNA expression profiling of lung tissue from transgenic mice with epithelial-specific deletions of Scap (ScapΔ/Δ, resulting in inactivation of SREBP signaling) or Insig1 and Insig2 (Insig1/2Δ/Δ, resulting in activation of SREBP signaling) was assessed. Differentially expressed genes responding to SREBP perturbations were identified and subjected to functional enrichment analysis, pathway mapping and literature mining to predict upstream regulators and transcriptional networks regulating surfactant lipid homeostasis. Through comprehensive data analysis and integration, time dependent effects of epithelial SCAP/INSIG/SREBP deletion and defined SCAP/INSIG/SREBP-associated genes, bioprocesses and downstream pathways were identified. SREBP signaling influences epithelial development, cell death and cell proliferation at E17.5, while primarily influencing surfactant physiology, lipid/sterol synthesis, and phospholipid transport after birth. SREBP signaling integrated with the Wnt/β-catenin and glucocorticoid receptor signaling pathways during perinatal lung maturation. SREBP regulates perinatal lung lipogenesis and maturation through multiple mechanisms by interactions with distinct sets of regulatory partners.
doi:10.1371/journal.pone.0091376
PMCID: PMC4012993  PMID: 24806461
3.  Kruppel-like factor 5 Controls Villus Formation and Initiation of Cytodifferentiation in the Embryonic Intestinal Epithelium 
Developmental biology  2012;375(2):128-139.
Kruppel-like factor 5 (Klf5) is a transcription factor expressed by embryonic endodermal progenitors that form the lining of the gastrointestinal tract. A Klf5 floxed allele was efficiently deleted from the intestinal epithelium by a Cre transgene under control of the Shh promoter resulting in the inhibition of villus morphogenesis and epithelial differentiation. Although proliferation of the intestinal epithelium was maintained, the expression of Elf3, Pparγ, Atoh1, Ascl2, Neurog3, Hnf4α, Cdx1, and other genes associated with epithelial cell differentiation was inhibited in the Klf5-deficient intestines. At E18.5, Klf5Δ/Δ fetuses lacked the apical brush border characteristic of enterocytes, and a loss of goblet and enteroendocrine cells was observed. The failure to form villi was not attributable to the absence of HH or PDGF signaling, known mediators of this developmental process. Klf5-deletion blocked the decrease in FoxA1 and Sox9 expression that accompanies normal villus morphogenesis. KLF5 directly inhibited activity of the FoxA1 promoter, and in turn FOXA1 inhibited Elf3 gene expression in vitro, linking the observed loss of Elf3 with the persistent expression of FoxA1 observed in Klf5-deficient mice. Genetic network analysis identified KLF5 as a key transcription factor regulating intestinal cell differentiation and cell adhesion. These studies indicate a novel requirement for KLF5 to initiate morphogenesis of the early endoderm into a compartmentalized intestinal epithelium comprised of villi and terminally differentiated cells.
doi:10.1016/j.ydbio.2012.12.010
PMCID: PMC3582784  PMID: 23266329
Elf3; FoxA1; intestine development; cell adhesion
4.  Molecular Determinants of Lung Development 
Development of the pulmonary system is essential for terrestrial life. The molecular pathways that regulate this complex process are beginning to be defined, and such knowledge is critical to our understanding of congenital and acquired lung diseases. A recent workshop was convened by the National Heart, Lung, and Blood Institute to discuss the developmental principles that regulate the formation of the pulmonary system. Emerging evidence suggests that key developmental pathways not only regulate proper formation of the pulmonary system but are also reactivated upon postnatal injury and repair and in the pathogenesis of human lung diseases. Molecular understanding of early lung development has also led to new advances in areas such as generation of lung epithelium from pluripotent stem cells. The workshop was organized into four different topics, including early lung cell fate and morphogenesis, mechanisms of lung cell differentiation, tissue interactions in lung development, and environmental impact on early lung development. Critical points were raised, including the importance of epigenetic regulation of lung gene expression, the dearth of knowledge on important mesenchymal lineages within the lung, and the interaction between the developing pulmonary and cardiovascular system. This manuscript describes the summary of the discussion along with general recommendations to overcome the gaps in knowledge in lung developmental biology.
doi:10.1513/AnnalsATS.201207-036OT
PMCID: PMC3955361  PMID: 23607856
lung development; lung cell fate; lung cell differentiation; tissue interaction; environmental impact
5.  CDC42 is Required for Structural Patterning of the Lung During Development 
Developmental biology  2012;374(1):46-57.
The formation of highly branched epithelial structures is critical for the development of many essential organs, including lung, liver, pancreas, kidney and mammary glands. Elongation and branching of these structures require precise control of complex morphogenetic processes that are dependent upon coordinate regulation of cell shape, apical-basal polarity, proliferation, migration, and interactions among multiple cell types. Herein, we demonstrate that temporal-spatial regulation of epithelial cell polarity by the small GTPase, CDC42, is essential for branching morphogenesis of the developing lung. Epithelial cell-specific deletion of CDC42 in fetal mice disrupted epithelial cell polarity, the actin cytoskeleton, intercellular contacts, directional trafficking of proteins, proliferation and mitotic spindle orientation, impairing the organization and patterning of the developing respiratory epithelium and adjacent mesenchyme. Transition from a pseudostratified to a simple columnar epithelium was impaired, consistent with coordinate dysregulation of epithelial cell polarity, mitotic spindle orientation, and repositioning of mitotic cells within the epithelium during cell cycle progression. Expression of sonic hedgehog and its receptor, patched-1, was decreased, while fibroblast growth factor 10 expression in the mesenchyme was expanded, resulting in disruption of branching morphogenesis and bronchiolar smooth muscle formation in this model. CDC42 is required for spatial positioning of proliferating epithelial cells, as well as signaling interactions between the epithelium and mesenchyme and is, therefore, essential for formation and maintenance of the respiratory tract during morphogenesis of the fetal lung.
doi:10.1016/j.ydbio.2012.11.030
PMCID: PMC3549046  PMID: 23219958
Mouse Development; Branching Morphogenesis; Rho GTPase; Targeted Deletion; Intercellular Junctions; Pulmonary Hypoplasia
6.  The Pulmonary Collectins and Respiratory Syncytial Virus: Is There a Clinical Link? 
The Journal of pediatrics  2010;156(3):10.1016/j.jpeds.2009.11.040.
doi:10.1016/j.jpeds.2009.11.040
PMCID: PMC3870860  PMID: 20176182
7.  Foxm1 Transcription Factor Is Critical for Proliferation and Differentiation of Clara Cells during Development of Conducting Airways 
Developmental biology  2012;370(2):198-212.
SUMMARY
Respiratory epithelial cells are derived from cell progenitors in the foregut endoderm that subsequently differentiate into the distinct cell types lining the conducting and alveolar regions of the lung. To identify transcriptional mechanisms regulating differentiation and maintenance of respiratory epithelial cells, we conditionally deleted Foxm1 transcription factor from the conducting airways of the developing mouse lung. Conditional deletion of Foxm1 from Clara cells, controlled by the Scgb1a1 promoter, dramatically altered airway structure and caused peribronchial fibrosis, resulting in airway hyperreactivity in adult mice. Deletion of Foxm1 inhibited proliferation of Clara cells and disrupted the normal patterning of epithelial cell differentiation in the bronchioles, causing squamous and goblet cell metaplasia, and the loss of Clara and ciliated cells. Surprisingly, conducting airways of Foxm1-deficient mice contained highly differentiated cuboidal type II epithelial cells that are normally restricted to the alveoli. Lineage tracing studies showed that the ectopic alveolar type II cells in Foxm1-deficient airways were derived from Clara cells. Deletion of Foxm1 inhibited Sox2 and Scgb1a1, both of which are critical for differentiation and function of Clara cells. In co-transfection experiments, Foxm1 directly bound to and induced transcriptional activity of Scgb1a1 and Sox2 promoters. Foxm1 is required for differentiation and maintenance of epithelial cells lining conducting airways.
doi:10.1016/j.ydbio.2012.07.028
PMCID: PMC3449302  PMID: 22885335
Foxm1; Clara cells; airway epithelium; type II cells; Sox2; airway development
8.  CCAAT/Enhancer Binding Protein–α Regulates the Protease/Antiprotease Balance Required for Bronchiolar Epithelium Regeneration 
Many transcription factors that regulate lung morphogenesis during development are reactivated to mediate repairs of the injured adult lung. We hypothesized that CCAAT/enhancer binding protein–α (C/EBPα), a transcription factor critical for perinatal lung maturation, regulates genes required for the normal repair of the bronchiolar epithelium after injury. Transgenic CebpαΔ/Δ mice, in which Cebpa was conditionally deleted from Clara cells and Type II cells after birth, were used in this study. Airway injury was induced in mice by the intraperitoneal administration of naphthalene to ablate bronchiolar epithelial cells. Although the deletion of C/EBPα did not influence lung structure and function under unstressed conditions, C/EBPα was required for the normal repair of terminal bronchiolar epithelium after naphthalene injury. To identify cellular processes that are influenced by C/EBPα during repair, mRNA microarray was performed on terminal bronchiolar epithelial cells isolated by laser-capture microdissection. Normal repair of the terminal bronchiolar epithelium was highly associated with the mRNAs regulating antiprotease activities, and their induction required C/EBPα. The defective deposition of fibronectin in CebpαΔ/Δ mice was associated with increased protease activity and delayed differentiation of FoxJ1-expressing ciliated cells. The fibronectin and ciliated cells were restored by the intratracheal treatment of CebpαΔ/Δ mice with the serine protease inhibitor. In conclusion, C/EBPα regulates the expression of serine protease inhibitors that are required for the normal increase of fibronectin and the restoration of ciliated cells after injury. Treatment with serine protease inhibitor may aid in the recovery of injured bronchiolar epithelial cells, and prevent common chronic lung diseases.
doi:10.1165/rcmb.2011-0239OC
PMCID: PMC3488626  PMID: 22652201
C/EBPα; antiprotease; Spink5; naphthalene; Scgb1a1
9.  Inhibition of the Growth Factor MDK/Midkine by a Novel Small Molecule Compound to Treat Non-Small Cell Lung Cancer 
PLoS ONE  2013;8(8):e71093.
Midkine (MDK) is a heparin-binding growth factor that is highly expressed in many malignant tumors, including lung cancers. MDK activates the PI3K pathway and induces anti-apoptotic activity, in turn enhancing the survival of tumors. Therefore, the inhibition of MDK is considered a potential strategy for cancer therapy. In the present study, we demonstrate a novel small molecule compound (iMDK) that targets MDK. iMDK inhibited the cell growth of MDK-positive H441 lung adenocarcinoma cells that harbor an oncogenic KRAS mutation and H520 squamous cell lung cancer cells, both of which are types of untreatable lung cancer. However, iMDK did not reduce the cell viability of MDK-negative A549 lung adenocarcinoma cells or normal human lung fibroblast (NHLF) cells indicating its specificity. iMDK suppressed the endogenous expression of MDK but not that of other growth factors such as PTN or VEGF. iMDK suppressed the growth of H441 cells by inhibiting the PI3K pathway and inducing apoptosis. Systemic administration of iMDK significantly inhibited tumor growth in a xenograft mouse model in vivo. Inhibition of MDK with iMDK provides a potential therapeutic approach for the treatment of lung cancers that are driven by MDK.
doi:10.1371/journal.pone.0071093
PMCID: PMC3745462  PMID: 23976985
10.  FOXM1 Promotes Allergen-Induced Goblet Cell Metaplasia and Pulmonary Inflammation 
Molecular and Cellular Biology  2013;33(2):371-386.
Chronic airway disorders, including chronic obstructive pulmonary disease (COPD), cystic fibrosis, and asthma, are associated with persistent pulmonary inflammation and goblet cell metaplasia and contribute to significant morbidity and mortality worldwide. While the molecular pathogenesis of these disorders is actively studied, little is known regarding the transcriptional control of goblet cell differentiation and mucus hyperproduction. Herein, we demonstrated that pulmonary allergen sensitization induces expression of FOXM1 transcription factor in airway epithelial and inflammatory cells. Conditional deletion of the Foxm1 gene from either airway epithelium or myeloid inflammatory cells decreased goblet cell metaplasia, reduced lung inflammation, and decreased airway resistance in response to house dust mite allergen (HDM). FOXM1 induced goblet cell metaplasia and Muc5AC expression through the transcriptional activation of Spdef. FOXM1 deletion reduced expression of CCL11, CCL24, and the chemokine receptors CCR2 and CX3CR1, resulting in decreased recruitment of eosinophils and macrophages to the lung. Deletion of FOXM1 from dendritic cells impaired the uptake of HDM antigens and decreased cell surface expression of major histocompatibility complex II (MHC II) and costimulatory molecule CD86, decreasing production of Th2 cytokines by activated T cells. Finally, pharmacological inhibition of FOXM1 by ARF peptide prevented HDM-mediated pulmonary responses. FOXM1 regulates genes critical for allergen-induced lung inflammation and goblet cell metaplasia.
doi:10.1128/MCB.00934-12
PMCID: PMC3554115  PMID: 23149934
11.  Thy-1 Signals through PPARγ to Promote Lipofibroblast Differentiation in the Developing Lung 
Thy-1 is a glycosylphosphytidylinositol-linked cell-surface glycoprotein present on a subset of lung fibroblasts, which plays an important role in postnatal alveolarization. In the present study, we define the role of Thy-1 in pulmonary lipofibroblast differentiation and in the regulation of lipid homeostasis via peroxisome proliferator–activated receptor–γ (PPARγ). Thy-1 was associated with interstitial cells containing lipid droplets in vivo. The transfection of Thy-1 into Thy-1 (−) fibroblasts increased triglyceride content, fatty-acid uptake, and the expression of the lipofibroblast marker adipocyte differentiation–related protein. Thy-1 (+) fibroblasts exhibited 2.4-fold higher PPARγ activity, and the inhibition or activation of PPARγ reduced and increased triglyceride content, respectively. Thy-1 (−) fibroblasts were not responsive to either of the PPARγ agonists ciglitazone or prostaglandin J2, supporting the importance of Thy-1 in signaling via PPARγ. Thy-1 (+) fibroblasts expressed significantly higher concentrations of fatty-acid transporter protein–3 mRNA, and demonstrated higher rates of fatty-acid uptake and increased triglyceride content. The inhibition of fatty-acid transporter protein function reduced Thy-1 (+) fibroblast lipid content. The expression of Thy-1 in C57BL/6 lung fibroblasts increased during the neonatal period, coinciding with the onset of alveolarization. Thy-1 promoted lipofibroblast differentiation via the expression of PPARγ, stimulated lipid accumulation via fatty-acid esterification, and enhanced the fatty-acid uptake mediated by fatty-acid transporter proteins. Thy-1 is important in the regulation of lipofibroblast differentiation in the developing lung.
doi:10.1165/rcmb.2011-0316OC
PMCID: PMC3380285  PMID: 22268140
Thy-1; lipofibroblast; PPARγ; lipid metabolism
12.  Foxm1 Mediates Cross Talk between Kras/Mitogen-Activated Protein Kinase and Canonical Wnt Pathways during Development of Respiratory Epithelium 
Molecular and Cellular Biology  2012;32(19):3838-3850.
While Kras/mitogen-activated protein kinase (MAPK) and canonical Wnt/β-catenin are critical for lung morphogenesis, mechanisms integrating these important signaling pathways during lung development are unknown. Herein, we demonstrate that the Foxm1 transcription factor is a key downstream target of activated KrasG12D. Deletion of Foxm1 from respiratory epithelial cells during lung formation prevented structural abnormalities caused by activated KrasG12D. Kras/Foxm1 signaling inhibited the activity of canonical Wnt signaling in the developing lung in vivo. Foxm1 decreased T-cell factor (TCF) transcriptional activity induced by activated β-catenin in vitro. Depletion of Foxm1 by short interfering RNA (siRNA) increased nuclear localization of β-catenin, increased expression of β-catenin target genes, and decreased mRNA and protein levels of the β-catenin inhibitor Axin2. Axin2 mRNA was reduced in distal lung epithelium of Foxm1-deficient mice. Foxm1 directly bound to and increased transcriptional activity of the Axin2 promoter region. Foxm1 is required for Kras signaling in distal lung epithelium and provides a mechanism integrating Kras and canonical Wnt/β-catenin signaling during lung development.
doi:10.1128/MCB.00355-12
PMCID: PMC3457538  PMID: 22826436
13.  Dexamethasone Regulates CFTR Expression in Calu-3 Cells with the Involvement of Chaperones HSP70 and HSP90 
PLoS ONE  2012;7(12):e47405.
Background
Dexamethasone is widely used for pulmonary exacerbation in patients with cystic fibrosis, however, not much is known about the effects of glucocorticoids on the wild-type cystic fibrosis channel transmembrane regulator (CFTR). Our aim was to determine the effects of dexamethasone treatment on wild-type CFTR expression.
Methods and Results
Dose–response (1 nM to 10 µM) and time course (3 to 48 h) curves were generated for dexamethasone for mRNA expression in Calu-3 cells using a real-time PCR. Within 24 h, dexamethasone (10 nM) showed a 0.3-fold decrease in CFTR mRNA expression, and a 3.2-fold increase in αENaC mRNA expression compared with control groups. Dexamethasone (10 nM) induced a 1.97-fold increase in the total protein of wild-type CFTR, confirmed by inhibition by mifepristone. To access surface protein expression, biotinylation followed by Western blotting showed that dexamethasone treatment led to a 2.35-fold increase in the amount of CFTR in the cell surface compared with the untreated control groups. Once protein translation was inhibited with cycloheximide, dexamethasone could not increase the amount of CFTR protein. Protein stability was assessed by inhibition of protein synthesis with cycloheximide (50 µg/ml) at different times in cells treated with dexamethasone and in untreated cells. Dexamethasone did not alter the degradation of wild-type CFTR. Assessment of the B band of CFTR within 15 min of metabolic pulse labeling showed a 1.5-fold increase in CFTR protein after treatment with dexamethasone for 24 h. Chaperone 90 (HSP90) binding to CFTR increased 1.55-fold after treatment with dexamethasone for 24 h, whereas chaperone 70 (HSP70) binding decreased 0.30 fold in an immunoprecipitation assay.
Conclusion
Mature wild-type CFTR protein is regulated by dexamethasone post transcription, involving cotranslational mechanisms with HSP90 and HSP70, which enhances maturation and expression of wild-type CFTR.
doi:10.1371/journal.pone.0047405
PMCID: PMC3521767  PMID: 23272037
14.  Early Metabolic Defects in Dexamethasone-Exposed and Undernourished Intrauterine Growth Restricted Rats 
PLoS ONE  2012;7(11):e50131.
Poor fetal growth, also known as intrauterine growth restriction (IUGR), is a worldwide health concern. IUGR is commonly associated with both an increased risk in perinatal mortality and a higher prevalence of developing chronic metabolic diseases later in life. Obesity, type 2 diabetes or metabolic syndrome could result from noxious “metabolic programming.” In order to better understand early alterations involved in metabolic programming, we modeled IUGR rat pups through either prenatal exposure to synthetic glucocorticoid (dams infused with dexamethasone 100 µg/kg/day, DEX) or prenatal undernutrition (dams feeding restricted to 30% of ad libitum intake, UN). Physiological (glucose and insulin tolerance), morphometric (automated tissue image analysis) and transcriptomic (quantitative PCR) approaches were combined during early life of these IUGR pups with a special focus on their endocrine pancreas and adipose tissue development. In the absence of catch-up growth before weaning, DEX and UN IUGR pups both presented basal hyperglycaemia, decreased glucose tolerance, and pancreatic islet atrophy. Other early metabolic defects were model-specific: DEX pups presented decreased insulin sensitivity whereas UN pups exhibited lowered glucose-induced insulin secretion and more marked alterations in gene expression of pancreatic islet and adipose tissue development regulators. In conclusion, these results show that before any catch-up growth, IUGR rats present early physiologic, morphologic and transcriptomic defects, which can be considered as initial mechanistic basis of metabolic programming.
doi:10.1371/journal.pone.0050131
PMCID: PMC3500352  PMID: 23166830
15.  KrasG12D and Nkx2-1 haploinsufficiency induce mucinous adenocarcinoma of the lung  
The Journal of Clinical Investigation  2012;122(12):4388-4400.
Mucinous adenocarcinoma of the lung is a subtype of highly invasive pulmonary tumors and is associated with decreased or absent expression of the transcription factor NK2 homeobox 1 (NKX2-1; also known as TTF-1). Here, we show that haploinsufficiency of Nkx2-1 in combination with oncogenic KrasG12D, but not with oncogenic EGFRL858R, caused pulmonary tumors in transgenic mice that were phenotypically similar to human mucinous adenocarcinomas. Gene expression patterns distinguished tumor goblet (mucous) cells from nontumorigenic airway and intestinal goblet cells. Expression of NKX2-1 inhibited urethane and oncogenic KrasG12D-induced tumorigenesis in vivo. Haploinsufficiency of Nkx2-1 enhanced KrasG12D-mediated tumor progression, but reduced EGFRL858R-mediated progression. Genome-wide analysis of gene expression demonstrated that a set of genes induced in mucinous tumors was shared with genes induced in a nontumorigenic chronic lung disease, while a distinct subset of genes was specific to mucinous tumors. ChIP with massively parallel DNA sequencing identified a direct association of NKX2-1 with the genes induced in mucinous tumors. NKX2-1 associated with the AP-1 binding element as well as the canonical NKX2-1 binding element. NKX2-1 inhibited both AP-1 activity and tumor colony formation in vitro. These data demonstrate that NKX2-1 functions in a context-dependent manner in lung tumorigenesis and inhibits KrasG12D-driven mucinous pulmonary adenocarcinoma.
doi:10.1172/JCI64048
PMCID: PMC3533546  PMID: 23143308
16.  Kruppel-like factor 5 is Required for Formation and Differentiation of the Bladder Urothelium 
Developmental biology  2011;358(1):79-90.
SUMMARY
Kruppel-like transcription factor 5 (Klf5) was detected in the developing and mature murine bladder urothelium. Herein we report a critical role of KLF5 in the formation and terminal differentiation of the urothelium. The ShhGfpCre transgene was used to delete the Klf5floxed alleles from bladder epithelial cells causing prenatal hydronephrosis, hydroureter, and vesicoureteric reflux. The bladder urothelium failed to stratify and did not express terminal differentiation markers characteristic of basal, intermediate, and umbrella cells including keratins 20, 14, and 5, and the uroplakins. The effects of Klf5 deletion were unique to the developing bladder epithelium since maturation of the epithelium comprising the bladder neck and urethra were unaffected by the lack of KLF5. mRNA analysis identified reductions in Pparγ, Grhl3, Elf3, and Ovol1expression in Klf5 deficient fetal bladders supporting their participation in a transcriptional network regulating bladder urothelial differentiation. KLF5 regulated expression of the mGrhl3 promoter in transient transfection assays. The absence of urothelial Klf5 altered epithelial-mesenchymal signaling leading to the formation of an ectopic alpha smooth muscle actin positive layer of cells subjacent to the epithelium and a thinner detrusor muscle that was not attributable to disruption of SHH signaling, a known mediator of detrusor morphogenesis. Deletion of Klf5 from the developing bladder urothelium blocked epithelial cell differentiation, impaired bladder morphogenesis and function causing hydroureter and hydronephrosis at birth.
doi:10.1016/j.ydbio.2011.07.020
PMCID: PMC3180904  PMID: 21803035
bladder; vesicoureteral reflux; KLF5; GRHL3; urothelium; micro-CT
17.  Transcriptional Programs Controlling Perinatal Lung Maturation 
PLoS ONE  2012;7(8):e37046.
The timing of lung maturation is controlled precisely by complex genetic and cellular programs. Lung immaturity following preterm birth frequently results in Respiratory Distress Syndrome (RDS) and Broncho-Pulmonary Dysplasia (BPD), which are leading causes of mortality and morbidity in preterm infants. Mechanisms synchronizing gestational length and lung maturation remain to be elucidated. In this study, we designed a genome-wide mRNA expression time-course study from E15.5 to Postnatal Day 0 (PN0) using lung RNAs from C57BL/6J (B6) and A/J mice that differ in gestational length by ∼30 hr (B6
doi:10.1371/journal.pone.0037046
PMCID: PMC3423373  PMID: 22916088
Rationale: Airway mucous cell metaplasia and chronic inflammation are pathophysiological features that influence morbidity and mortality associated with asthma and other chronic pulmonary disorders. Elucidation of the molecular mechanisms regulating mucous metaplasia and hypersecretion provides the scientific basis for diagnostic and therapeutic opportunities to improve the care of chronic pulmonary diseases.
Objectives: To determine the role of the airway epithelial–specific transcription factor NK2 homeobox 1 (NKX2-1, also known as thyroid transcription factor-1 [TTF-1]) in mucous cell metaplasia and lung inflammation.
Methods: Expression of NKX2-1 in airway epithelial cells from patients with asthma was analyzed. NKX2-1+/− gene targeted or transgenic mice expressing NKX2-1 in conducting airway epithelial cells were sensitized to the aeroallergen ovalbumin. In vitro studies were used to identify mechanisms by which NKX2-1 regulates mucous cell metaplasia and inflammation.
Measurements and Main Results: NKX2-1 was suppressed in airway epithelial cells from patients with asthma. Reduced expression of NKX2-1 in heterozygous NKX2-1+/− gene targeted mice increased mucous metaplasia in the small airways after pulmonary sensitization to ovalbumin. Conversely, mucous cell metaplasia induced by aeroallergen was inhibited by expression of NKX2-1 in the respiratory epithelium in vivo. Genome-wide mRNA analysis of lung tissue from ovalbumin-treated mice demonstrated that NKX2-1 inhibited mRNAs associated with mucous metaplasia and Th2-regulated inflammation, including Spdef, Ccl17, and Il13. In vitro, NKX2-1 inhibited SPDEF, a critical regulator of airway mucous cell metaplasia, and the Th2 chemokine CCL26.
Conclusions: The present data demonstrate a novel function for NKX2-1 in a gene network regulating mucous cell metaplasia and allergic inflammation in the respiratory epithelium.
doi:10.1164/rccm.201101-0106OC
PMCID: PMC3175541  PMID: 21562130
asthma; goblet cell; respiratory epithelium; NK2 homeobox 1
Recent advances in cellular, molecular, and developmental biology have revolutionized our concepts regarding the process of organogenesis that have important implications for our understanding of both lung formation and pulmonary disease pathogenesis. Pulmonary investigators have long debated whether developmental processes are recapitulated during normal repair of the lung or in the setting of chronic pulmonary diseases. Although the cellular events involved in lung morphogenesis and those causing pulmonary disease are likely to include processes that are distinct, there is increasing evidence that the pathogenesis of many lung disorders involves the same genetic machinery that regulates cell growth, specification, and differentiation during normal lung development.
doi:10.1164/rccm.201103-0495PP
PMCID: PMC3175542  PMID: 21642246
lung; morphogenesis; transcription; respiratory
OBJECTIVE
The fetus is thought to play a central role in the onset of labor. Pulmonary surfactant protein (SP)-A, secreted by the maturing fetal lung, has been implicated in the mechanisms initiating parturition in mice. The present study was conducted to determine whether amniotic fluid concentrations of SP-A and SP-B change during human parturition.
STUDY DESIGN
Amniotic fluid SP-A and SP-B concentrations were measured with sensitive and specific ELISA in the following groups of pregnant women: 1) mid-trimester of pregnancy between 15th and 18th weeks of gestation (n=29); 2) term pregnancy not in labor (n=28); and 3) term pregnancy in spontaneous labor (n=26). Non-parametric statistics were used for analysis.
RESULTS
SP-A was detected in all amniotic fluid samples. SP-B was detected in 24.1% (7/29) of mid-trimester samples and in all samples at term. The median amniotic fluid concentration of SP-A and SP-B were significantly higher in women at term than in women in the mid-trimester (SP-A term no labor: median 5.6 μg/ml, range 2.2–15.2 μg/ml vs. mid-trimester: median 1.64 μg/ml, range 0.1–4.7 μg/ml; and SP-B term no labor: median 0.54 μg/ml, range 0.17–1.99 μg/ml vs. mid-trimester: median 0 μg/ml, range 0–0.35 μg/ml; both p<0.001). The median amniotic fluid SP-A concentration in women at term in labor was significantly lower than that in women at term not in labor (term in labor: median 2.7 μg/ml, range 1.2–10.1 μg/ml vs. term no labor: median 5.6 μg/ml, range 2.2–15.2 μg/ml; p<0.001). There was no significant difference in the median amniotic fluid SP-B concentrations between women in labor and those not in labor (term in labor: median 0.47 μg/ml range 0.04–1.32 μg/ml vs. term no labor: median 0.54 μg/ml range 0.17–1.99 μg/ml; p=0.2).
CONCLUSION
The amniotic fluid concentration of surfactant protein-A decreases in spontaneous human parturition at term.
doi:10.1080/14767050802215193
PMCID: PMC3418916  PMID: 18828058
Surfactant protein; SP-A; SP-B; amniotic fluid; term; labor; parturition
Developmental biology  2011;356(1):5-18.
Members of the Krüppel-like family of transcription factors regulate diverse developmental processes in various organs. Previously, we have demonstrated the role of Klf4 in the mouse ocular surface. Herein, we determined the role of the structurally related Klf5, using Klf5-conditional null (Klf5CN) mice derived by mating Klf5-LoxP and Le-Cre mice. Klf5 mRNA was detected as early as embryonic day 12 (E12) in the cornea, conjunctiva and eyelids, wherein its expression increased during development. Though the embryonic eye morphogenesis was unaltered in the Klf5CN mice, postnatal maturation was defective, resulting in smaller eyes with swollen eyelids that failed to separate properly. Klf5CN palpebral epidermis was hyperplastic with 7-9 layers of keratinocytes, compared with 2-3 in the wild type (WT). Klf5CN eyelid hair follicles and sebaceous glands were significantly enlarged, and the meibomian glands malformed. Klf5CN lacrimal glands displayed increased vasculature and large number of infiltrating cells. Klf5CN corneas were translucent, thicker with defective epithelial basement membrane and hypercellular stroma. Klf5CN conjunctiva lacked goblet cells, demonstrating that Klf5 is required for conjunctival goblet cell development. The number of Ki67-positive mitotic cells was more than doubled, consistent with the increased number of Klf5CN ocular surface epithelial cells. Co-ablation of Klf4 and Klf5 resulted in a more severe ocular surface phenotype compared with Klf4CN or Klf5CN, demonstrating that Klf4 and Klf5 share few if any, redundant functions. Thus, Klf5CN mice provide a useful model for investigating ocular surface pathologies involving meibomian gland dysfunction, blepharitis, corneal or conjunctival defects.
doi:10.1016/j.ydbio.2011.05.005
PMCID: PMC3130829  PMID: 21600198
Klf5; cornea; conjunctiva; meibomian glands; lacrimal glands; eyelids; goblet cells
Gynecologic oncology  2011;122(2):424-429.
Objective
Endometrial cancer (EMC) is the most common gynecological malignancy. The etiology and the cell types that are conducive to EMC are not completely understood, provoking further studies. Our objective was to determine whether deletion of Pten specifically in the uterine stroma and myometrium induces cancer or manifests different phenotypes.
Methods
PtenAmhr2(d/d) mice with conditional deletion of Pten in the mouse uterine stroma and myometrium, but not in the epithelium, were generated by mating floxed Pten mice and anti-Mullerian hormone type 2 receptor (Amhr2)-Cre mice. The phenotypes were compared between Ptenf/f and PtenAmhr2(d/d) uteri.
Results
We show that conditional deletion of Pten in the mouse uterine stroma and myometrium, but not in the epithelium, fails to generate EMC even at the age of 5 months. Surprisingly Pten deletion by Amhr2-Cre transformed a large number of myometrial cells into adipocytes with lipid accumulation, possibly a result of increased levels of SREBP1 and PPARγ which regulate adipose differentiation.
Conclusions
These results provide evidence that deletion of Pten specifically in the stroma and myometrium does not result in EMC in female mice examined up to 5 months of age but alters the myocytes to adipocytes and mimics histologic similarities with lipoleiomyomas in humans, raising the possibility of using this mouse model to further explore the cause of the disease.
doi:10.1016/j.ygyno.2011.04.022
PMCID: PMC3139002  PMID: 21570712
Sox2, a transcription factor critical for the maintenance of embryonic stem cells and induction of pluripotent stem cells, is expressed exclusively in the conducting airway epithelium of the lung, where it is required for differentiation of nonciliated, goblet, and ciliated cells. To determine the role of Sox2 in respiratory epithelial cells, Sox2 was selectively and conditionally expressed in nonciliated airway epithelial cells and in alveolar type II cells in the adult mouse. Sox2 induced epithelial cell proliferation within 3 days of expression. Epithelial cell proliferation was associated with increased Ki-67 and cyclin D1 staining. Expression of cell cycle genes, including FoxM1, Ccna2 (Cyclin A2), Ccnb2 (Cyclin B2), and Ccnd1 (Cyclin D1), was increased. Consistent with a role in cell proliferation, Sox2 activated the transcription of FoxM1 in vitro. In alveoli, Sox2 caused hyperplasia and ectopic differentiation of epithelial cells to those with morphologic and molecular characteristics of conducting airway epithelium. Sox2 induced the expression of conducting airway epithelial specific genes, including Scgb1a1, Foxj1, Tubb3, and Cyp2f2. Although prolonged expression of Sox2 caused cell proliferation and epithelial hyperplasia, Sox2 did not induce pulmonary tumors. Sox2 induces proliferation of respiratory epithelial cells and, subsequently, partially reprograms alveolar epithelial cells into cells with characteristics of the conducting airways.
doi:10.1165/rcmb.2010-0149OC
PMCID: PMC3145063  PMID: 20855650
lung; transcription; progenitor cell; differentiation; tumorigenesis
In April 2010, a NIH workshop was convened to discuss the current state of understanding of lung cell plasticity, including the responses of epithelial cells to injury, with the objectives of summarizing what is known, what the field needs to know, and how to get there. The proximal stimulus for this workshop is the body of recent evidence suggesting that plasticity is a prominent but incompletely characterized property of lung epithelial cells, and that a focus on understanding this aspect of epithelial cell biology in particular, may be an important window into disease pathobiology and pathogenesis. In addition to their many vital functions in maintaining tissue homeostasis, epithelial cells have emerged as both a central target of disease initiation and an active contributor to disease progression, making a workshop to investigate the role of cell plasticity in lung injury and repair timely. The workshop was organized around four major themes: lung epithelial cell plasticity, signaling control of plasticity, fibroblast plasticity and crosstalk, and translation to human disease. Although this breakdown was recognized to be somewhat artificial, it was felt that this approach would promote cross-fertilization among groups that ordinarily do not communicate and lend itself to the generation of new approaches. The summary reports of individual group discussions below are followed by consensus priorities and recommendations of the workshop participants.
doi:10.1513/pats.201012-067CB
PMCID: PMC3132783  PMID: 21653526
epithelial-mesenchymal transition (EMT); idiopathic pulmonary fibrosis; cell lineage
Rationale: The respiratory epithelium has a remarkable capacity to respond to acute injury. In contrast, repeated epithelial injury is often associated with abnormal repair, inflammation, and fibrosis. There is increasing evidence that nonciliated epithelial cells play important roles in the repair of the bronchiolar epithelium after acute injury. Cellular processes underlying the repair and remodeling of the lung after chronic epithelial injury are poorly understood.
Objectives: To identify cell processes mediating epithelial regeneration and remodeling after acute and chronic Clara cell depletion.
Methods: A transgenic mouse model was generated to conditionally express diphtheria toxin A to ablate Clara cells in the adult lung. Epithelial regeneration and peribronchiolar fibrosis were assessed after acute and chronic Clara cell depletion.
Measurements and Main Results: Acute Clara cell ablation caused squamous metaplasia of ciliated cells and induced proliferation of residual progenitor cells. Ciliated cells in the bronchioles and pro–surfactant protein C–expressing cells in the bronchiolar alveolar duct junctions did not proliferate. Epithelial cell proliferation occurred at multiple sites along the airways and was not selectively associated with regions around neuroepithelial bodies. Chronic Clara cell depletion resulted in ineffective repair and caused peribronchiolar fibrosis.
Conclusions: Colocalization of proliferation and cell type–specific markers demonstrate that Clara cells are critical airway progenitor cells. Continuous depletion of Clara cells resulted in persistent squamous metaplasia, lack of normal reepithelialization, and peribronchiolar fibrosis. Induction of proliferation in subepithelial fibroblasts supports the concept that chronic epithelial depletion caused peribronchiolar fibrosis.
doi:10.1164/rccm.201005-0744OC
PMCID: PMC3056226  PMID: 20870756
chronic obstructive pulmonary disease; bronchiolitis obliterans syndrome; squamous metaplasia; diphtheria toxin; progenitor cells

Results 1-25 (96)