PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-1 (1)
 

Clipboard (0)
None

Select a Filter Below

Journals
Authors
Year of Publication
Document Types
1.  Overexpression of 14-3-3ζ in cancer cells activates PI3K via binding the p85 regulatory subunit 
Oncogene  2011;31(7):897-906.
The ubiquitously expressed 14-3-3 proteins regulate many pathways involved in transformation. Previously, we found that 14-3-3ζ overexpression increased Akt phosphorylation in human mammary epithelial cells. Here, we investigated the clinical relevance and molecular mechanism of 14-3-3ζ overexpression-mediated Akt phosphorylation and the potential impact on breast cancer progression. We found that 14-3-3ζ overexpression was significantly (P = 0.005) associated with increased Akt phosphorylation in human breast tumors. Additionally, 14-3-3ζ overexpression combined with strong Akt phosphorylation was significantly (P=0.01) associated with increased cancer recurrence in patients. In contrast, knockdown of 14-3-3ζ expression by siRNA in cancer cell lines and tumor xenografts reduced Akt phosphorylation. Furthermore, 14-3-3ζ enhanced Akt phosphorylation through activation of PI3K. Mechanistically, 14-3-3ζ bound to the p85 regulatory subunit of PI3K and increased PI3K translocation to the cell membrane. A single 14-3-3 binding motif encompassing serine 83 on p85 is largely responsible for 14-3-3ζ-mediated p85 binding and PI3K/Akt activation. Mutation of serine 83 to alanine on p85 inhibited 14-3-3ζ binding to the p85 subunit of PI3K, reduced PI3K membrane localization and activation, impeded anchorage independent growth and enhanced stress induced apoptosis. These findings revealed a novel mechanism by which 14-3-3ζ overexpression activates PI3K, a key node in the mitogenic signaling network known to promote malignancies in many cell types.
doi:10.1038/onc.2011.284
PMCID: PMC3193867  PMID: 21743495
14-3-3ζ; breast cancer; PI3K; Akt

Results 1-1 (1)