Search tips
Search criteria

Results 1-6 (6)

Clipboard (0)

Select a Filter Below

more »
Year of Publication
Document Types
1.  Tissue Inhibitor of Metalloproteinase-1 and -3 Improves Cardiac Function in an Ischemic Cardiomyopathy Model Rat 
Tissue Engineering. Part A  2014;20(21-22):3073-3084.
Matrix metalloproteinases (MMPs) and a family of tissue inhibitors of metalloproteinases (TIMPs) may contribute to myocardial remodeling in heart failure. TIMPs are the main inhibitors of MMPs and have other MMP-independent functions. Because little is known of the role of TIMPs in the heart, we examined the effects of TIMPs on cardiac fibroblasts (CFs) and cardiomyocytes. In vitro, TIMP-1–4 enhanced smooth muscle actin (SMA) expression in CFs, and TIMP-1 and TIMP-3 enhanced the expression of phosphorylated Smad-3 and phosphorylated transforming growth factor (TGF)-β type 1 receptor in CFs; this effect was inhibited by TGF-β receptor blocker SB-505124. TIMPs-1, -3, and -4 also inhibited the FAK, AKT, and ERK pathways that induce cardiac hypertrophy. TIMP-1 and TIMP-2 suppressed apoptosis in cardiomyocytes; in contrast, TIMP-4 induced apoptosis in CFs. TIMP-2 stimulated collagen synthesis. Collagen gels containing TIMP-1 or TIMP-3, which exhibit cardioprotective effects in vitro, were transplanted to the left ventricular anterior wall of a rat heart model of myocardial infarction. Gel-released TIMP-1 and TIMP-3 significantly improved cardiac function and myocardial remodeling and enhanced SMA expression in the infarcted area in ischemic cardiomyopathy model rats. Further, the transplantation of TIMP-1 or TIMP-3 gels inhibited apoptosis in the ischemic myocardium and reduced MMP-2 activity. TIMPs may be an ideal target of cardiac regeneration therapy.
PMCID: PMC4229714  PMID: 24814095
2.  Enhanced Expression of Integrin αvβ3 Induced by TGF-β Is Required for the Enhancing Effect of Fibroblast Growth Factor 1 (FGF1) in TGF-β-Induced Epithelial-Mesenchymal Transition (EMT) in Mammary Epithelial Cells 
PLoS ONE  2015;10(9):e0137486.
Epithelial-to-mesenchymal transition (EMT) plays a critical role in cancer metastasis, and is regulated by growth factors such as transforming growth factor β (TGF-β) and fibroblast growth factors (FGF) secreted from the stromal and tumor cells. However, the role of growth factors in EMT has not been fully established. Several integrins are upregulated by TGF-β1 during EMT. Integrins are involved in growth factor signaling through integrin-growth factor receptor crosstalk. We previously reported that FGF1 directly binds to integrin αvβ3 and the interaction was required for FGF1 functions such as cell proliferation and migration. We studied the role of αvβ3 induced by TGF-β on TGF-β-induced EMT. Here, we describe that FGF1 augmented EMT induced by TGF-β1 in MCF10A and MCF12A mammary epithelial cells. TGF-β1 markedly amplified integrin αvβ3 and FGFR1 (but not FGFR2). We studied if the enhancing effect of FGF1 on TGF-β1-induced EMT requires enhanced levels of both integrin αvβ3 expression and FGFR1. Knockdown of β3 suppressed the enhancement by FGF1 of TGF-β1-induced EMT in MCF10A cells. Antagonists to FGFR suppressed the enhancing effect of FGF1 on EMT. Integrin-binding defective FGF1 mutant did not augment TGF-β1-induced EMT in MCF10A cells. These findings suggest that enhanced integrin αvβ3 expression in addition to enhanced FGFR1 expression is critical for FGF1 to augment TGF-β1-induced EMT in mammary epithelial cells.
PMCID: PMC4559424  PMID: 26334633
3.  Homology-based method for detecting regions of interest in colonic digital images 
Diagnostic Pathology  2015;10:36.
A region of interest (ROI) is a part of tissue that contains important information for diagnosis. To use many image analysis methods efficiently, a technique that would allow for ROI identification is required. For the colon, ROIs are characterized by areas of stronger color intensity of hematoxylin. Since malignant tumors grow in the innermost layer, most ROIs will be located in the colonic mucosa and will be an accumulation of tumor cells and/or integrated cells with distorted architecture.
Using homology theory, our group proposed a method to estimate the contact degree of elements in a unit area of tissue. Homology is a concept that is used in many branches of algebra and topology, and it can quantify the contact degree. Due to the lack of contact inhibition of cancer cells, an area with unusual contact degree is expected to be a potential ROI.
The current work verifies the accuracy of this method against the results of pathological diagnosis, based on 1825 colonic images provided by the Osaka Medical Center for Cancer and Cardiovascular Diseases. Although we have many false positives and there is a possibility of missing undifferentiated types of cancer, this system is very effective for detecting ROIs.
The mathematical system proposed by our group successfully detects ROIs and is a potentially useful tool for differentiating tumor areas in microscopic examination very quickly. Because we use only the information from low-power field images, there is room for further improvement. This system could be used to screen for not only colon cancer but other cancers as well. More sophisticated and more efficient automated pathological diagnosis systems can be developed by integrating various techniques available today.
Virtual Slide
The virtual slide(s) for this article can be found here:
PMCID: PMC4448533  PMID: 25907563
Pathology; Colon cancer; Computer-assisted diagnosis; The Betti numbers; Histology
4.  A Dominant-Negative FGF1 Mutant (the R50E Mutant) Suppresses Tumorigenesis and Angiogenesis 
PLoS ONE  2013;8(2):e57927.
Fibroblast growth factor-1 (FGF1) and FGF2 play a critical role in angiogenesis, a formation of new blood vessels from existing blood vessels. Integrins are critically involved in FGF signaling through crosstalk. We previously reported that FGF1 directly binds to integrin αvβ3 and induces FGF receptor-1 (FGFR1)-FGF1-integrin αvβ3 ternary complex. We previously generated an integrin binding defective FGF1 mutant (Arg-50 to Glu, R50E). R50E is defective in inducing ternary complex formation, cell proliferation, and cell migration, and suppresses FGF signaling induced by WT FGF1 (a dominant-negative effect) in vitro. These findings suggest that FGFR and αvβ3 crosstalk through direct integrin binding to FGF, and that R50E acts as an antagonist to FGFR. We studied if R50E suppresses tumorigenesis and angiogenesis. Here we describe that R50E suppressed tumor growth in vivo while WT FGF1 enhanced it using cancer cells that stably express WT FGF1 or R50E. Since R50E did not affect proliferation of cancer cells in vitro, we hypothesized that R50E suppressed tumorigenesis indirectly through suppressing angiogenesis. We thus studied the effect of R50E on angiogenesis in several angiogenesis models. We found that excess R50E suppressed FGF1-induced migration and tube formation of endothelial cells, FGF1-induced angiogenesis in matrigel plug assays, and the outgrowth of cells in aorta ring assays. Excess R50E suppressed FGF1-induced angiogenesis in chick embryo chorioallantoic membrane (CAM) assays. Interestingly, excess R50E suppressed FGF2-induced angiogenesis in CAM assays as well, suggesting that R50E may uniquely suppress signaling from other members of the FGF family. Taken together, our results suggest that R50E suppresses angiogenesis induced by FGF1 or FGF2, and thereby indirectly suppresses tumorigenesis, in addition to its possible direct effect on tumor cell proliferation in vivo. We propose that R50E has potential as an anti-cancer and anti-angiogenesis therapeutic agent (“FGF1 decoy”).
PMCID: PMC3585250  PMID: 23469107
5.  Overexpression of 14-3-3ζ in cancer cells activates PI3K via binding the p85 regulatory subunit 
Oncogene  2011;31(7):897-906.
The ubiquitously expressed 14-3-3 proteins regulate many pathways involved in transformation. Previously, we found that 14-3-3ζ overexpression increased Akt phosphorylation in human mammary epithelial cells. Here, we investigated the clinical relevance and molecular mechanism of 14-3-3ζ overexpression-mediated Akt phosphorylation and the potential impact on breast cancer progression. We found that 14-3-3ζ overexpression was significantly (P = 0.005) associated with increased Akt phosphorylation in human breast tumors. Additionally, 14-3-3ζ overexpression combined with strong Akt phosphorylation was significantly (P=0.01) associated with increased cancer recurrence in patients. In contrast, knockdown of 14-3-3ζ expression by siRNA in cancer cell lines and tumor xenografts reduced Akt phosphorylation. Furthermore, 14-3-3ζ enhanced Akt phosphorylation through activation of PI3K. Mechanistically, 14-3-3ζ bound to the p85 regulatory subunit of PI3K and increased PI3K translocation to the cell membrane. A single 14-3-3 binding motif encompassing serine 83 on p85 is largely responsible for 14-3-3ζ-mediated p85 binding and PI3K/Akt activation. Mutation of serine 83 to alanine on p85 inhibited 14-3-3ζ binding to the p85 subunit of PI3K, reduced PI3K membrane localization and activation, impeded anchorage independent growth and enhanced stress induced apoptosis. These findings revealed a novel mechanism by which 14-3-3ζ overexpression activates PI3K, a key node in the mitogenic signaling network known to promote malignancies in many cell types.
PMCID: PMC3193867  PMID: 21743495
14-3-3ζ; breast cancer; PI3K; Akt
6.  A Novel Fibroblast Growth Factor-1 (FGF1) Mutant that Acts as an FGF Antagonist 
PLoS ONE  2010;5(4):e10273.
Crosstalk between integrins and FGF receptors has been implicated in FGF signaling, but the specifics of the crosstalk are unclear. We recently discovered that 1) FGF1 directly binds to integrin αvβ3, 2) the integrin-binding site and FGF receptor (FGFR) binding site are distinct, and 3) the integrin-binding-defective FGF1 mutant (R50E) is defective in inducing FGF signaling although R50E still binds to FGFR and heparin and induces transient ERK1/2 activation.
Principal Findings
We tested if excess R50E affect DNA synthesis and cell survival induced by WT FGF1 in BaF3 mouse pro-B cells expressing human FGFR1. R50E suppressed DNA synthesis and cell proliferation induced by WT FGF1. We tested if WT FGF1 and R50E generate integrin-FGF1-FGFR ternary complex. WT FGF1 induced ternary complex formation (integrin-FGF-FGFR1) and recruitment of SHP-2 to the complex in NIH 3T3 cells and human umbilical endothelial cells, but R50E was defective in these functions. It has been reported that sustained ERK1/2 activation is integrin-dependent and crucial to cell cycle entry upon FGF stimulation. We thus determined the time-course of ERK1/2 activation induced by WT FGF1 and R50E. We found that WT FGF1 induced sustained activation of ERK1/2, but R50E was defective in this function.
Our results suggest that 1) R50E is a dominant-negative mutant, 2) Ternary complex formation is involved in FGF signaling, 3) The defect of R50E to bind to integrin may be directly related to the antagonistic action of R50E. Taken together, these results suggest that R50E has potential as a therapeutic in cancer.
PMCID: PMC2858075  PMID: 20422052

Results 1-6 (6)