Search tips
Search criteria

Results 1-25 (26)

Clipboard (0)

Select a Filter Below

Year of Publication
Document Types
author:("Ma, hongqiao")
1.  Epidemiological and Etiological Characteristics of Fever, Thrombocytopenia and Leukopenia Syndrome in Henan Province, China, 2011–2012 
PLoS ONE  2014;9(3):e91166.
The Fever, Thrombocytopenia and Leukopenia Syndrome (FTLS) is caused by a bunyavirus known as the FTLS virus (FTLSV), which was recently discovered in China. We examined the epidemiological and etiological features of 637 laboratory-confirmed cases of FTLS with onset from January 2011 to December 2012 in Henan Province, China. The highest incidence of FTLS occurred between May and August: 76.5% of all laboratory-confirmed cases occurred during those four months. Of the laboratory-confirmed cases, 60.9% were in the 46–69 years old age groups; 96.1% (612/637) occurred in farmers; 98.1% (625/637) were reported from Xinyang Prefecture. During the same time period, 2047 cases were reported in China. The nucleotide and amino acid sequences of FTLSV strains identified during 2011–2012 in Henan Province were ≥96% identical. This findings provides insight for developing public-health interventions for the control and prevention of FTLS in epidemic area.
PMCID: PMC3954591  PMID: 24633131
2.  Genetic Variations in the Flanking Regions of miR-101-2 Are Associated with Increased Risk of Breast Cancer 
PLoS ONE  2014;9(1):e86319.
Genetic variants in human microRNA (miRNA) genes may alter mature miRNA processing and/or target selection, and likely contribute to cancer susceptibility and disease progression. Previous studies have suggested that miR-101 may play important roles in the development of cancer by regulating key tumor-associated genes. However, the role of single nucleotide polymorphisms (SNPs) of miR-101 in breast cancer susceptibility remains unclear. In this study, we genotyped 11 SNPs of the miR-101 genes (including miR-101-1 and miR-101-2) in a case-control study of 1064 breast cancer cases and 1073 cancer-free controls. The results revealed that rs462480 and rs1053872 in the flank regions of pre-miR-101-2 were significantly associated with increased risk of breast cancer (rs462480 AC/CC vs AA: adjusted OR = 1.182, 95% CI: 1.030–1.357, P = 0.017; rs1053872 CG/GG vs CC: adjusted OR = 1.179, 95% CI: 1.040–1.337, P = 0.010). However, the remaining 9 SNPs were not significantly associated with risk of breast cancer. Additionally, combined analysis of the two high-risk SNPs revealed that subjects carrying the variant genotypes of rs462480 and rs1053872 had increased risk of breast cancer in a dose-response manner (Ptrend = 0.002). Compared with individuals with “0–1” risk allele, those carrying “2–4” risk alleles had 1.29-fold risk of breast cancer. In conclusion, these findings suggested that the SNPs rs462480 and rs1053872 residing in miR-101-2 gene may have a solid impact on genetic susceptibility to breast cancer, which may improve our understanding of the potential contribution of miRNA SNPs to cancer pathogenesis.
PMCID: PMC3901682  PMID: 24475105
3.  A Genetic Variant in the Promoter Region of miR-106b-25 Cluster Predict Clinical Outcome of HBV-Related Hepatocellular Carcinoma in Chinese 
PLoS ONE  2014;9(1):e85394.
MiR-106b-25 cluster, hosted in intron 13 of MCM7, may play integral roles in diverse processes including immune response, tumorigenesis and progression. A single nucleotide polymorphism (SNP), rs999885, is located in the promoter region of MCM7. Our previous study showed that the A to G base change of rs999885 may provide an increased risk for HCC in HBV persistent carriers by altering the expression of the miR-106b-25 cluster. However, it is unknown whether rs999885 is associated with prognosis of intermediate or advanced HBV-related hepatocellular carcinoma (HCC) patients.
The SNP, rs999885, was genotyped by using the TaqMan allelic discrimination Assay in 414 intermediate or advanced HCC patients. Log-rank test and Cox proportional hazard models were used for survival analysis.
The variant genotypes of rs999885 were associated with a significantly decreased risk of death for intermediate or advanced HCC [additive model: adjusted hazard ratio (HR)  = 0.76,95% confidence intervals (CI)  = 0.59–0.97]. Further stepwise regression analysis suggested that rs999885 was an independently protective factor for the prognosis of HCC in the final model (additive model: adjusted HR  = 0.72, 95% CI  = 0.56–0.91, P = 0.007).
These findings indicate that the A to G base change of rs999885 may provide a protective effect on the prognosis of intermediate or advanced HCC in Chinese.
PMCID: PMC3885710  PMID: 24416400
4.  Association of TLR2 and TLR4 Polymorphisms with Risk of Cancer: A Meta-Analysis 
PLoS ONE  2013;8(12):e82858.
The activation of Toll-like receptors (TLRs) may be an important event in the immune evasion of tumor cell. Recently, numerous studies have investigated the associations between TLR2 −196 to −174 del and two SNPs of TLR4 (rs4986790 and rs4986791) and the susceptibility to different types of cancer; however, the results remain conflicting. The aim of this study was to assess the association between TLR2 and TLR4 polymorphisms and cancer risk in a meta-analysis with eligible published studies.
Methodology/Principle Findings
A dataset composed of 14627 cases and 17438 controls from 34 publications were included in a meta-analysis to evaluate the association between overall cancer risk or cancer-specific risk and three SNPs of TLRs (TLR2 −196 to −174 del, TLR4 rs4986790 and rs4986791). The results showed that all of these three polymorphisms were significantly associated with the increased cancer risk (dominant model: OR = 1.64, 95% CI: 1.04–2.60 for TLR2 −196 to −174 del; OR = 1.19, 95% CI: 1.01–1.41 for TLR4 rs4986790; and OR = 1.47, 95% CI: 1.120–1.80 for TLR4 rs4986791; respectively). In stratified analysis, we found the effect of TLR2 −196 to −174 del on cancer risk remained significant in the subgroup of Caucasians and South Asians, but not in East Asians. However, the association between rs4986791 and cancer risk was significant in both South Asians and East Asians, but not in Caucasians. Furthermore, the association between rs4986790 and cancer risk was statistically significant in digestive cancers (dominant model: OR = 1.76, 95% CI: 1.13–2.73) and female-specific cancers (dominant model: OR = 1.50, 95% CI: 1.16–1.94). However, no significant association with risk of digestive system cancers was observed for TLR2 −196 to −174 del and TLR4 rs4986791.
This meta-analysis presented additional evidence for the association between TLR2 and TLR4 polymorphisms and cancer risk. Further well-designed investigations with large sample sizes are required to confirm this conclusion.
PMCID: PMC3869723  PMID: 24376595
5.  Genome-Wide Association Study of Prognosis in Advanced Non–Small Cell Lung Cancer Patients Receiving Platinum-Based Chemotherapy 
Genetic variation may influence chemotherapy response and overall survival in cancer patients.
Experimental design
We conducted a genome-wide scan in 535 advanced-stage non–small cell lung cancer (NSCLC) patients from two independent cohorts (307 from Nanjing and 228 from Beijing). A replication was carried out on an independent cohort of 340 patients from Southeastern China followed by a second validation on 409 patients from the Massachusetts General Hospital (Boston, MA).
Consistent associations with NSCLC survival were identified for five single-nucleotide polymorphisms (SNP) in Chinese populations with P values ranging from 3.63 × 10−5 to 4.19 × 10−7 in the additive genetic model. The minor allele of three SNPs (rs7629386 at 3p22.1, rs969088 at 5p14.1, and rs3850370 at 14q24.3) were associated with worse NSCLC survival while 2 (rs41997 at 7q31.31 and rs12000445 at 9p21.3) were associated with better NSCLC survival. In addition, rs7629386 at 3p22.1 (CTNNB1) and rs3850370 at 14q24.3 (SNW1-ALKBH1-NRXN3) were further replicated in the Caucasian population.
In this three-stage genome-wide association studies, we identified five SNPs as markers for survival of advanced-stage NSCLC patients treated with first-line platinum-based chemotherapy in Chinese Han populations. Two of these SNPs, rs7629386 and rs3850370, could also be markers for survival among Caucasian patients.
PMCID: PMC3723686  PMID: 22872573
6.  Genetic Variants at 12p11 and 12q24 Are Associated with Breast Cancer Risk in a Chinese Population 
PLoS ONE  2013;8(6):e66519.
A recent genome-wide association study (GWAS) has identified three new breast cancer susceptibility loci at 12p11, 12q24 and 21q21 in populations of European descent. However, because of the genetic heterogeneity, it is largely unknown for the role of these loci in the breast cancer susceptibility in the populations of non-European descent.
Methodology/Principal Findings
Here, we genotyped three variants (rs10771399 at 12p11, rs1292011 at 12q24 and rs2823093 at 21q21) in an independent case–control study with a total of 1792 breast cancer cases and 1867 cancer-free controls in a Chinese population. We found that rs10771399 and rs1292011 were significantly associated with risk of breast cancer with per-allele odds ratios (ORs) of 0.85 (95% confidence interval (CI): 0.76–0.96; P = 0.010) and 0.84 (95% CI: 0.76–0.95; P = 4.50×10−3), respectively, which was consistent with those reported in populations of European descent. Similar effects were observed between ER/PR positive and negative breast cancer for both loci. However, we did not found significant association between rs2823093 and breast cancer risk (OR = 0.97, 95%CI = 0.76–1.24; P  = 0.795).
Our results indicate that genetic variants at 12p11 and 12q24 may also play an important role in breast cancer development in Chinese women.
PMCID: PMC3680498  PMID: 23776684
7.  Genetic Variants at 14q24.1 and Breast Cancer Susceptibility: a Fine-Mapping Study in Chinese Women 
DNA and Cell Biology  2012;31(6):1114-1120.
A single nucleotide polymorphism (SNP) rs999737 at 14q24.1 was identified as a susceptibility marker of breast cancer in a genome-wide association study of the European population, which was also confirmed by some of the following studies in populations of European descent. However, rs999737 is very rare or nonpolymorphic in non-Europeans including Chinese, and the role of other genetic variants at 14q24.1 has not been evaluated in populations of non-European descent. In this study, we first selected 21 common tagging SNPs (minor allele frequency [MAF] >0.05 in the Chinese population) by searching the Hapmap database, covering a linage disequilibrium region of more than 70 Kb at 14q24.1, and then conducted a two-stage study (stage I: 878 cases and 900 controls; stage II: 914 cases and 967 controls) to investigate the associations between these tagging SNPs and risk of breast cancer in a Chinese population. In stage I, two SNPs (rs2842346 and rs17828907) were identified to be significantly associated with breast cancer risk (p=0.030 and 0.027 for genotype distributions, respectively). However, no significant associations were found between these two SNPs and breast cancer risk in either stage II or the combined dataset. These findings suggest that common variants at 14q24.1 might not be associated with the risk of breast cancer in the Chinese population, which will need the replication in additional larger studies.
PMCID: PMC3378955  PMID: 22313133
8.  The miR-184 Binding-Site rs8126 T>C Polymorphism in TNFAIP2 Is Associated with Risk of Gastric Cancer 
PLoS ONE  2013;8(5):e64973.
TNFAIP2 is a crucial gene involved in apoptosis. Single nucleotide polymorphisms (SNPs) in its miRNA binding sites could modulate functions of the miRNA-target genes and thus risk of cancers. In this study, we investigated associations between potentially functional SNPs in the miRNA binding sites of the 3′UTR of TNFAIP2 and gastric cancer risk in a US population.
We conducted a case-control study of 301 gastric cancer patients and 313 cancer-free controls frequency-matched by age, sex and ethnicity. We genotyped four selected TNFAIP2 SNPs (rs8126 T>C, rs710100 G>A, rs1052912 G>A and rs1052823 G>T) and used the logistic regression analysis to assess associations of these SNPs with cancer risk.
The rs8126 CC genotype was associated with a significantly elevated risk of gastric cancer (adjusted OR = 2.00, 95% CI = 1.09–3.64 and P = 0.024), compared with the combined rs8126 TT+TC genotypes, particularly in current drinkers. However, none of other TNFAIP2 SNPs was associated with risk of gastric cancer.
Our data suggested that the TNFAIP2 miRNA binding site rs8126 T>C SNP may be a marker for susceptibility to gastric cancer, and this finding requires further validation by larger studies.
PMCID: PMC3665554  PMID: 23724109
9.  Genome-wide analysis of runs of homozygosity identifies new susceptibility regions of lung cancer in Han Chinese 
Journal of Biomedical Research  2013;27(3):208-214.
Runs of homozygosity (ROHs) are a class of important but poorly studied genomic variations and may be involved in individual susceptibility to diseases. To better understand ROH and its relationship with lung cancer, we performed a genome-wide ROH analysis of a subset of a previous genome-wide case-control study (1,473 cases and 1,962 controls) in a Han Chinese population. ROHs were classified into two classes, based on lengths, intermediate and long ROHs, to evaluate their association with lung cancer risk using existing genome-wide single nucleotide polymorphism (SNP) data. We found that the overall level of intermediate ROHs was significantly associated with a decreased risk of lung cancer (odds ratio = 0.63; 95% confidence interval: 0.51-0.77; P = 4.78×10−6 ), while the long ROHs seemed to be a risk factor of lung cancer. We also identified one ROH region at 14q23.1 that was consistently associated with lung cancer risk in the study. These results indicated that ROHs may be a new class of variation which may be associated with lung cancer risk, and genetic variants at 14q23.1 may be involved in the development of lung cancer.
PMCID: PMC3664727  PMID: 23720676
lung cancer; runs of homozygosity (ROHs); genome-wide association study
10.  Prognostic assessment of apoptotic gene polymorphisms in non-small cell lung cancer in Chinese 
Journal of Biomedical Research  2013;27(3):231-238.
Apoptosis plays a key role in inhibiting tumor growth, progression and resistance to anti-tumor therapy. We hypothesized that genetic variants in apoptotic genes may affect the prognosis of lung cancer. To test this hypothesis, we selected 38 potentially functional single nucleotide polymorphisms (SNPs) from 12 genes (BAX, BCL2, BID, CASP3, CASP6, CASP7, CASP8, CASP9, CASP10, FAS, FASLG and MCL1) involved in apoptosis to assess their prognostic significance in lung cancer in a Chinese case cohort with 568 non-small cell lung cancer (NSCLC) patients. Thirty-five SNPs passing quality control underwent association analyses, 11 of which were shown to be significantly associated with NSCLC survival (P < 0.05). After Cox stepwise regression analyses, 3 SNPs were independently associated with the outcome of NSCLC (BID rs8190315: P = 0.003; CASP9 rs4645981: P = 0.007 and FAS rs1800682: P = 0.016). A favorable survival of NSCLC was significantly associated with the genotypes of BID rs8190315 AG/GG (adjusted HR = 0.65, 95% CI: 0.49-0.88), CASP9 rs4645981 AA (HR = 0.22, 95% CI: 0.07-0.69) and FAS rs1800682 GG (adjusted HR = 0.67, 95% CI: 0.46-0.97). Time-dependent receptor operation curve (ROC) analysis revealed that the area under curve (AUC) at year 5 was significantly increased from 0.762 to 0.819 after adding the risk score of these 3 SNPs to the clinical risk score. The remaining 32 SNPs were not significantly associated with NSCLC prognosis after adjustment for these 3 SNPs. These findings indicate that BID rs8190315, CASP9 rs4645981 and FAS rs1800682 polymorphisms in the apoptotic pathway may be involved in the prognosis of NSCLC in the Chinese population.
PMCID: PMC3664730  PMID: 23720679
apoptosis; polymorphisms; non-small cell lung cancer (NSCLC); prognosis
11.  Genome-Wide Association Study Identifies a Novel Susceptibility Locus at 12q23.1 for Lung Squamous Cell Carcinoma in Han Chinese 
PLoS Genetics  2013;9(1):e1003190.
Adenocarcinoma (AC) and squamous cell carcinoma (SqCC) are two major histological subtypes of lung cancer. Genome-wide association studies (GWAS) have made considerable advances in the understanding of lung cancer susceptibility. Obvious heterogeneity has been observed between different histological subtypes of lung cancer, but genetic determinants in specific to lung SqCC have not been systematically investigated. Here, we performed the GWAS analysis specifically for lung SqCC in 833 SqCC cases and 3,094 controls followed by a two-stage replication in additional 2,223 lung SqCC cases and 6,409 controls from Chinese populations. We found that rs12296850 in SLC17A8-NR1H4 gene region at12q23.1 was significantly associated with risk of lung SqCC at genome-wide significance level [additive model: odds ratio (OR) = 0.78, 95% confidence interval (CI) = 0.72–0.84, P = 1.19×10−10]. Subjects carrying AG or GG genotype had a 26% (OR = 0.74, 95% CI = 0.67–0.81) or 32% (OR = 0.68, 95% CI = 0.56–0.83) decreased risk of lung SqCC, respectively, as compared with AA genotype. However, we did not observe significant association between rs12296850 and risk of lung AC in a total of 4,368 cases with lung AC and 9,486 controls (OR = 0.96, 95% CI = 0.90–1.02, P = 0.173). These results indicate that genetic variations on chromosome 12q23.1 may specifically contribute to lung SqCC susceptibility in Chinese population.
Author Summary
Previous genome-wide association studies (GWAS) strongly suggested the importance of genetic susceptibility for lung cancer. However, the studies specific to different histological subtypes of lung cancer were limited. We performed the GWAS analysis specifically for lung squamous cell carcinoma (SqCC) with 570,009 autosomal SNPs in 833 SqCC cases and 3,094 controls and replicated in additional 2,223 lung SqCC cases and 6,409 controls from Chinese populations (822 SqCC cases and 2,243 controls for the first replication stage and 1,401 SqCC cases and 4,166 controls for the second replication stage). We found a novel association at rs12296850 (SLC17A8-NR1H4) on12q23.1. However, rs12296850 didn't show significant association with risk of lung adenocacinoma (AC) in 4,368 lung AC cases and 9,486 controls. These results indicate that genetic variations on chromosome 12q23.1 may specifically contribute to lung SqCC susceptibility in Chinese population.
PMCID: PMC3547794  PMID: 23341777
12.  Polymorphisms of XPG/ERCC5 and risk of squamous cell carcinoma of the head and neck 
Pharmacogenetics and genomics  2012;22(1):50-57.
Xeroderma pigmentosum group G (XPG) protein is essential for the nucleotide excision repair (NER) system, and genetic variations in XPG/ERCC5 that affect DNA repair capacity may contribute to the risk of tobacco-induced cancers, including squamous cell carcinoma of the head and neck (SCCHN). We investigated the association between XPG/ERCC5 polymorphisms and risk of squamous cell carcinoma of the head and neck (SCCHN).
We genotyped 12 tagging and potentially functional single nucleotide polymorphisms (SNPs) of XPG/ERCC5 in a case-control study of 1,059 non-Hispanic white patients with SCCHN and 1,066 cancer-free age-and sex matched controls and evaluated their associations with SCCHN risk.
Multivariate logistic regression showed that only an intronic tagging SNP (rs4150351A/C) of XPG/ERCC5 was associated with a decreased risk of SCCHN (adjusted OR=0.76, 95% CI=0.62–0.92 for AC vs. AA; adjusted OR=0.81, 95% CI=0.67–0.98 for AC/CC vs. AA), but this association was nonsignificnant after corrections by the permutation test (empirical P=0.105). In the genotype-phenotype correlation analysis using peripheral lymphocytes from 44 SCCHN patients, we found that rs4150351 AC/CC was associated with a statistically significant increase in XPG/ERCC5 mRNA expression.
These findings suggest that genetic variation in XPG/ERCC5 may not affect the SCCHN risk, although rs4150351 C variant genotypes were associated with the increased expression of XPG/ERCC5 mRNA and nonsignificantly decreased risk of SCCHN. Larger population-based and additional functional studies are warranted to validate our findings.
PMCID: PMC3237901  PMID: 22108238
ERCC5; polymorphism; SCCHN; risk
13.  Association between PARP-1 V762A polymorphism and cancer susceptibility: a meta-analysis 
Genetic epidemiology  2011;36(1):56-65.
Poly(ADP-ribose) polymerase-1 (PARP-1 catalyzes poly(ADP-ribosyl)ation to various proteins involved in many cellular processes, including DNA damage detection and repair, and cell proliferation and death. PARP-1 has been implicated in human carcinogenesis, but the association between the most-studied PARP-1 V762A polymorphism (rs1136410) and risk of various cancers was reported with inconclusive results.
To assess the association between the PARP-1 V762A polymorphism and cancer risk.
A meta-analysis of 21 studies with 12027 cancer patients and 14106 cancer-free controls was conducted to evaluate the strength of the association using odds ratio (OR) with 95% confidence interval (CI).
Overall, no significant association was found between the PARP-1 V762A polymorphism and cancer risk. In the stratified analyses, however, it was found that the variant A allele of the PARP-1 V762A polymorphism was associated with an increased risk of cancer among Asian populations (VA+AA vs.VV: OR = 1.11, 95% CI: 1.01-1.23; Pheterogeneity = 0.210) but a decreased risk of cancer (VA+AA vs.VV: OR =0.89, 95% CI: 0.80-1.00; Pheterogeneity = 0.004), among Caucasian populations, especially for glioma risk (OR = 0.79, 95% CI: 0.69-0.90; Pheterogeneity = 0.800).
This meta-analysis found evidence for an association of the PARP-1 V 762A polymorphism with increased risk of cancer among Asians but decreased risk of cancer among Caucasians, particularly of glioma. Further well designed studies with large sample sizes of different ethnic populations and different cancer types are warranted to confirm these findings.
PMCID: PMC3312993  PMID: 22127734
DNA repair; Case-control study; Meta-analysis; Polymorphism; Susceptibility
14.  Roles of genetic variants in the PI3K and RAS/RAF pathways in susceptibility to endometrial cancer and clinical outcomes 
The phosphatidylinositol 3-kinase (PI3K)/PTEN/AKT/mTOR and Ras/Raf/MEK/ERK pathways have been implicated in endometrial tumorigenesis. In this candidate pathway analysis, we investigated associations between genetic variations in these two pathways and both risk and clinical outcomes of endometrial cancer.
We genotyped a total of 48 potentially functional SNPs in 11 key genes (AKT1, AKT2, AKT3, BRAF, FRAP1, KRAS, PDPK1, PIK3CA, PIK3CB, PIK3R1, and PTEN) with the Sequenom genotyping platform in 115 endometrial cancer patients and 230 cancer-free women to evaluate their associations with risk, survival, and recurrence of endometrial cancer.
We found the following: (1) PIK3CA rs6443624 and rs9838411 variants either borderline or significantly decreased risk of endometrial cancer in a dominant model (adjusted odds ratio [OR], 0.62; 95% CI, 0.39–1.00 and 0.59; 95% CI, 0.36–0.95, respectively). Furthermore, there was a statistically significant multiplicative interaction (Pint = 0.036) between these two loci in risk of endometrial cancer. In contrast, the AKT1 rs2498801 genotype significantly increased risk of endometrial cancer (adjusted OR, 1.94; 95% CI, 1.02–3.67 in a recessive model). (2) In Cox regression analyses, three SNPs (PIK3R1 rs1862162, AKT2 rs892119, and PIK3CA rs2699887) showed significant associations with survival of endometrial cancer patients. (3) KRAS rs7312175 and PIK3CA rs6443624 had significant effects on recurrence of endometrial cancer individually and combined in a locus–dosage manner (adjusted Ptrend = 0.003).
These results suggest that common genetic variations in these pathways may modulate risk and clinical outcomes of endometrial cancer. Further replication and functional studies are needed to confirm these findings.
PMCID: PMC3526101  PMID: 22146979
PI3K/PTEN/AKT/mTOR and RAS/RAF/MEK/ERK pathways; Polymorphisms; Endometrial cancer risk; Survival; Recurrence
15.  Telomere Length and TERT Functional Polymorphisms are not Associated with Risk of Squamous Cell Carcinoma of the Head and Neck 
Recent studies reported associations of the relative telomere length (RTL) and TERT variants with risk of several cancers, which has not been comprehensively investigated in squamous cell carcinoma of the head and neck (SCCHN).
We detected RTL in peripheral blood lymphocytes and genotyped six selected functional single nucleotide polymorphisms (SNPs) of the TERT gene in 888 SCCHN cases and 885 cancer-free controls of non-Hispanic whites.
Overall, we did not observe significant associations between RTL and SCCHN risk (adjusted OR, 0.97; 95% CI, 0.80–1.17 for below versus above the median; Ptrend = 0.618) nor between the six TERT SNPs and SCCHN risk. We also found no associations between RTL and TERT SNPs.
Our results suggest that RTL and TERT functional polymorphisms may not play a major role in the etiology of SCCHN. Large prospective studies are needed to validate our findings.
Although our results suggest no association among RTL, TERT functional polymorphisms, and SCCHN risk, this study may contribute to future meta-analysis.
PMCID: PMC3237736  PMID: 21994403
genetic polymorphisms; Telomere length; TERT; head and neck cancer; molecular epidemiology
16.  A functional variant at the miR-184 binding site in TNFAIP2 and risk of squamous cell carcinoma of the head and neck 
Carcinogenesis  2011;32(11):1668-1674.
Although the role of TNFAIP2 is still unclear, it is an important gene involved in apoptosis, and there are single-nucleotide polymorphisms (SNPs) at its microRNA (miRNA)-binding sites that could modulate miRNA target gene function. In this study, we evaluated associations of four selected SNPs (rs8126 T > C, rs710100 G > A, rs1052912 G > A and rs1052823 G > T) in the miRNA-binding sites of the 3′ untranslated region (UTR) with squamous cell carcinoma of the head and neck (SCCHN) risk in 1077 patients with SCCHN and 1073 cancer-free controls in a non-Hispanic White population. We found that, compared with the rs8126 TT genotype, the variant C allele were associated with increased SCCHN risk in an allele dose–response manner (adjusted odds ratio = 1.48 and 95% confidence interval = 1.06–2.05 for CC, respectively; Ptrend = 0.009). No significant associations were seen for the other three SNPs (rs710100 G > A, rs1052912 G > A and rs1052823 G > T). Additionally, we identified that the rs8126 T > C SNP is within the miR-184 seed binding region in the 3′ UTR of TNFAIP2. Further functional analyses showed that the rs8126 variant C allele led to significantly lower luciferase activity, compared with the T allele. In the genotype–phenotype correlation analysis of peripheral blood mononuclear cells from 64 SCCHN patients, the rs8126 CC genotype was associated with reduced expression of TNFAIP2 messenger RNA. Taken together, these findings indicate that the miR-184 binding site SNP (rs8126 T > C) in the 3′ UTR of TNFAIP2 is functional by modulating TNFAIP2 expression and contributes to SCCHN susceptibility. Larger replication studies are needed to confirm our findings.
PMCID: PMC3204352  PMID: 21934093
17.  Genetic Variations in Key MicroRNA Processing Genes and Risk of Head and Neck Cancer: A Case-Control Study in Chinese Population 
PLoS ONE  2012;7(10):e47544.
MicroRNAs (miRNAs) have been reported to play a key role in oncogenesis. Genetic variations in miRNA processing genes and miRNA binding sites may affect the biogenesis of miRNA and the miRNA-mRNA interactions, hence promoting tumorigenesis. In the present study, we hypothesized that potentially functional polymorphisms in miRNA processing genes may contribute to head and neck cancer (HNC) susceptibility. To test this hypothesis, we genotyped three SNPs at miRNA binding sites of miRNA processing genes (rs1057035 in 3′UTR of DICER, rs3803012 in 3′UTR of RAN and rs10773771 in 3′UTR of HIWI) with a case-control study including 397 HNC cases and 900 controls matched by age and sex in Chinese. Although none of three SNPs was significantly associated with overall risk of HNC, rs1057035 in 3′UTR of DICER was associated with a significantly decreased risk of oral cancer (TC/CC vs. TT: adjusted OR  = 0.65, 95% CI  = 0.46–0.92). Furthermore, luciferase activity assay showed that rs1057035 variant C allele led to significantly lower expression levels as compared to the T allele, which may be due to the relatively high inhibition of hsa-miR-574-3p on DICER mRNA. These findings indicated that rs1057035 located at 3′UTR of DICER may contribute to the risk of oral cancer by affecting the binding of miRNAs to DICER. Large-scale and well-designed studies are warranted to validate our findings.
PMCID: PMC3469541  PMID: 23071822
18.  Potentially Functional Variants of PLCE1 Identified by GWASs Contribute to Gastric Adenocarcinoma Susceptibility in an Eastern Chinese Population 
PLoS ONE  2012;7(3):e31932.
Recent genome-wide association studies (GWAS) have found a single nucleotide polymorphism (SNP, rs2274223 A>G) in PLCE1 to be associated with risk of gastric adenocarcinoma. In the present study, we validated this finding and also explored the risk associated with another unreported potentially functional SNP (rs11187870 G>C) of PLCE1 in a hospital-based case-control study of 1059 patients with pathologically confirmed gastric adenocarcinoma and 1240 frequency-matched healthy controls.
Methodology/Principal Findings
We determined genotypes of these two SNPs by the Taqman assay and used logistic regression models to estimate odds ratios (ORs) and 95% confidence intervals (95% CI). We found that a significant higher gastric adenocarcinoma risk was associated with rs2274223 variant G allele (adjusted OR = 1.35, 95% CI = 1.14–1.60 for AG+GG vs. AA) and rs11187870 variant C allele (adjusted OR = 1.26, 95% CI = 1.05–1.50 for CG+CC vs. GG). We also found that the number of combined risk alleles (i.e., rs2274223G and rs11187870C) was associated with risk of gastric adenocarcinoma in an allele-dose effect manner (Ptrend = 0.0002). Stratification analysis indicated that the combined effect of rs2274223G and rs11187870C variant alleles was more evident in subgroups of males, non-smokers, non-drinkers and patients with gastric cardia adenocarcinoma. Further real-time PCR results showed that expression levels of PLCE1 mRNA were significantly lower in tumors than in adjacent noncancerous tissues (0.019±0.002 vs. 0.008±0.001, P<0.05).
Our results further confirmed that genetic variations in PLCE1 may contribute to gastric adenocarcinoma risk in an eastern Chinese population.
PMCID: PMC3295761  PMID: 22412849
19.  Genetic polymorphisms in key DNA repair genes and risk of head and neck cancer in a Chinese population 
Although tobacco and alcohol consumption are the major risk factors of head and neck cancer (HNC), genetic variations of genes involved in several biological pathways, such as DNA repair genes, may affect an individual’s susceptibility to HNC. However, few studies have investigated the associations between polymorphisms in DNA repair genes and HNC risk in the Chinese population. Thus, we genotyped five common, non-synonymous single-nucleotide polymorphisms (SNPs) [APEX1 (Asp148Glu), XRCC1 (Arg399Gln), ADPRT (Val762Ala), XPD (Lys751Gln) and XPG (His1104Asp)] in a hospital-based, case-control study of 397 HNC cases and 900 cancer-free controls in China. The results showed that none of the five SNPs in the DNA repair pathway was significantly associated with HNC risk, suggesting that these polymorphisms may not play a major role in HNC susceptibility in this Chinese population.
PMCID: PMC3438586  PMID: 22969958
DNA repair; polymorphisms; head and neck cancer; risk
20.  Breast cancer risk assessment with five independent genetic variants and two risk factors in Chinese women 
Recently, several genome-wide association studies (GWAS) have identified novel single nucleotide polymorphisms (SNPs) associated with breast cancer risk. However, most of the studies were conducted among Caucasians and only one from Chinese.
In the current study, we first tested whether 15 SNPs identified by previous GWAS were also breast cancer marker SNPs in this Chinese population. Then, we grouped the marker SNPs, and modeled them with clinical risk factors, to see the usage of these factors in breast cancer risk assessment. Two methods (risk factors counting and odds ratio (OR) weighted risk scoring) were used to evaluate the cumulative effects of the five significant SNPs and two clinical risk factors (age at menarche and age at first live birth).
Five SNPs located at 2q35, 3p24, 6q22, 6q25 and 10q26 were consistently associated with breast cancer risk in both testing set (878 cases and 900 controls) and validation set (914 cases and 967 controls) samples. Overall, all of the five SNPs contributed to breast cancer susceptibility in a dominant genetic model (2q35, rs13387042: adjusted OR = 1.26, P = 0.006; 3q24.1, rs2307032: adjusted OR = 1.24, P = 0.005; 6q22.33, rs2180341: adjusted OR = 1.22, P = 0.006; 6q25.1, rs2046210: adjusted OR = 1.51, P = 2.40 × 10-8; 10q26.13, rs2981582: adjusted OR = 1.31, P = 1.96 × 10-4). Risk score analyses (area under the curve (AUC): 0.649, 95% confidence interval (CI): 0.631 to 0.667; sensitivity = 62.60%, specificity = 57.05%) presented better discrimination than that by risk factors counting (AUC: 0.637, 95% CI: 0.619 to 0.655; sensitivity = 62.16%, specificity = 60.03%) (P < 0.0001). Absolute risk was then calculated by the modified Gail model and an AUC of 0.658 (95% CI = 0.640 to 0.676) (sensitivity = 61.98%, specificity = 60.26%) was obtained for the combination of five marker SNPs, age at menarche and age at first live birth.
This study shows that five GWAS identified variants were also consistently validated in this Chinese population and combining these genetic variants with other risk factors can improve the risk predictive ability of breast cancer. However, more breast cancer associated risk variants should be incorporated to optimize the risk assessment.
PMCID: PMC3496134  PMID: 22269215
21.  TNFRSF1B +676 T>G polymorphism predicts survival of non-Small cell lung cancer patients treated with chemoradiotherapy 
BMC Cancer  2011;11:447.
The dysregulation of gene expression in the TNF-TNFR superfamily has been involved in various human cancers including non-small cell lung cancer (NSCLC). Furthermore, functional polymorphisms in TNF-α and TNFRSF1B genes that alter gene expression are likely to be associated with risk and clinical outcomes of cancers. However, few reported studies have investigated the association between potentially functional SNPs in both TNF-α and TNFRSF1B and prognosis of NSCLC patients treated with chemoradiotherapy.
We genotyped five potentially functional polymorphisms of TNF-α and TNFRSF1B genes [TNF-α -308 G>A (rs1800629) and -1031 T>C (rs1799964); TNFRSF1B +676 T>G (rs1061622), -1709A>T(rs652625) and +1663A>G (rs1061624)] in 225 NSCLC patients treated with chemoradiotherapy or radiotherapy alone. Kaplan-Meier survival analysis, log-rank tests and Cox proportional hazard models were used to evaluate associations between these variants and NSCLC overall survival (OS).
We found that the TNFRSF1B +676 GG genotype was associated with a significantly better OS of NSCLC (GG vs. TT: adjusted HR = 0.38, 95% CI = 0.15-0.94; GG vs. GT/TT: adjusted HR = 0.35, 95% CI = 0.14-0.88). Further stepwise multivariate Cox regression analysis showed that the TNFRSF1B +676 GG was an independent prognosis predictor in this NSCLC cohort (GG vs. GT/TT: HR = 0.35, 95% CI = 0.14-0.85), in the presence of node status (N2-3 vs. N0-1: HR = 1.60, 95% CI = 1.09-2.35) and tumor stage (T3-4 vs. T0-2: HR = 1.48, 95% CI = 1.08-2.03).
Although the exact biological function for this SNP remains to be explored, our findings suggest a possible role of TNFRSF1B +676 T>G (rs1061622) in the prognosis of NSCLC. Further large and functional studies are needed to confirm our findings.
PMCID: PMC3220654  PMID: 21995493
TNF-α; TNFRSF1B; polymorphism; non-small cell lung cancer; survival
22.  Association between novel PLCE1 variants identified in published esophageal cancer genome-wide association studies and risk of squamous cell carcinoma of the head and neck 
BMC Cancer  2011;11:258.
Phospholipase C epsilon 1 (PLCE1) (an effector of Ras) belonging to the phospholipase family plays crucial roles in carcinogenesis and progression of several cancers, including squamous cell carcinoma of the head and neck (SCCHN). A single nucleotide polymorphism (SNP, rs2274223) in PLCE1 has been identified as a novel susceptibility locus in genome-wide association studies (GWAS) of esophageal squamous cell carcinoma (ESCC) and gastric cardia adenocarcinoma (GCA) that share similar risk factors with SCCHN. Therefore, we investigated the association between potentially functional SNPs in PLCE1 and susceptibility to SCCHN.
We genotyped three potentially functional SNPs (rs2274223A/G, rs3203713A/G and rs11599672T/G) of PLCE1 in 1,098 SCCHN patients and 1,090 controls matched by age and sex in a non-Hispanic white population.
Although none of three SNPs was alone significantly associated with overall risk of SCCHN, their combined effects of risk alleles (rs2274223G, rs3203713G and rs11599672G) were found to be associated with risk of SCCHN in a locus-dose effect manner (Ptrend = 0.046), particularly for non-oropharyngeal tumors (Ptrend = 0.017); specifically, rs2274223 was associated with a significantly increased risk (AG vs. AA: adjusted OR = 1.29, 95% CI = 1.01-1.64; AG/GG vs. AA: adjusted OR = 1.30, 95% CI = 1.03-1.64), while rs11599672 was associated with a significantly decreased risk (GG vs. TT: adjusted OR = 0.54, 95% CI = 0.34-0.86; TG/GG vs. TT: adjusted OR = 0.76, 95% CI = 0.61-0.95).
Our findings suggest that PLCE1 variants may have an effect on risk of SCCHN associated with tobacco and alcohol exposure, particularly for those tumors arising at non-oropharyngeal sites. These findings, although need to be validated by larger studies, are consistent with those in esophageal and gastric cancers.
PMCID: PMC3142535  PMID: 21689432
PLCE1; polymorphism; SCCHN; risk; susceptibility
23.  Shortened Telomere Length Is Associated with Increased Risk of Cancer: A Meta-Analysis 
PLoS ONE  2011;6(6):e20466.
Telomeres play a key role in the maintenance of chromosome integrity and stability, and telomere shortening is involved in initiation and progression of malignancies. A series of epidemiological studies have examined the association between shortened telomeres and risk of cancers, but the findings remain conflicting.
A dataset composed of 11,255 cases and 13,101 controls from 21 publications was included in a meta-analysis to evaluate the association between overall cancer risk or cancer-specific risk and the relative telomere length. Heterogeneity among studies and their publication bias were further assessed by the χ2-based Q statistic test and Egger's test, respectively.
The results showed that shorter telomeres were significantly associated with cancer risk (OR = 1.35, 95% CI = 1.14–1.60), compared with longer telomeres. In the stratified analysis by tumor type, the association remained significant in subgroups of bladder cancer (OR = 1.84, 95% CI = 1.38–2.44), lung cancer (OR = 2.39, 95% CI = 1.18–4.88), smoking-related cancers (OR = 2.25, 95% CI = 1.83–2.78), cancers in the digestive system (OR = 1.69, 95% CI = 1.53–1.87) and the urogenital system (OR = 1.73, 95% CI = 1.12–2.67). Furthermore, the results also indicated that the association between the relative telomere length and overall cancer risk was statistically significant in studies of Caucasian subjects, Asian subjects, retrospective designs, hospital-based controls and smaller sample sizes. Funnel plot and Egger's test suggested that there was no publication bias in the current meta-analysis (P = 0.532).
The results of this meta-analysis suggest that the presence of shortened telomeres may be a marker for susceptibility to human cancer, but single larger, well-design prospective studies are warranted to confirm these findings.
PMCID: PMC3112149  PMID: 21695195
24.  Experimental Infection of Rabbits with Rabbit and Genotypes 1 and 4 Hepatitis E Viruses 
PLoS ONE  2010;5(2):e9160.
A recent study provided evidence that farmed rabbits in China harbor a novel hepatitis E virus (HEV) genotype. Although the rabbit HEV isolate had 77–79% nucleotide identity to the mammalian HEV genotypes 1 to 4, their genomic organization is very similar. Since rabbits are used widely experimentally, including as models of infection, we investigated whether they constitute an appropriate animal model for human HEV infection.
Forty-two SPF rabbits were divided randomly into eleven groups and inoculated with six different isolates of rabbit HEV, two different doses of a second-passage rabbit HEV, and with genotype 1 and 4 HEV. Sera and feces were collected weekly after inoculation. HEV antigen, RNA, antibody and alanine aminotransferase in sera and HEV RNA in feces were detected. The liver samples were collected during necropsy subject to histopathological examination.
Rabbits inoculated with rabbit HEV became infected with HEV, with viremia, fecal virus shedding and high serum levels of viral antigens, and developed hepatitis, with elevation of the liver enzyme, ALT. The severity of disease corresponded to the infectious dose (genome equivalents), with the most severe hepatic disease caused by strain GDC54-18. However, only two of nine rabbits infected with HEV genotype 4, and none infected with genotype 1, developed hepatitis although six of nine rabbits inoculated with the genotype 1 HEV and in all rabbits inoculated with the genotype 4 HEV seroconverted to be positive for anti-HEV IgG antibody by 14 weeks post-inoculation.
These data indicate that rabbits are an appropriate model for rabbit HEV infection but are not likely to be useful for the study of human HEV. The rabbit HEV infection of rabbits may provide an appropriate parallel animal model to study HEV pathogenesis.
PMCID: PMC2820092  PMID: 20161794
25.  Genetic variants of miRNA sequences and non–small cell lung cancer survival 
The Journal of Clinical Investigation  2008;118(7):2600-2608.
Recent evidence indicates that small noncoding RNA molecules known as microRNAs (miRNAs) can function as tumor suppressors and oncogenes. Mutation, misexpression, and altered mature miRNA processing are implicated in carcinogenesis and tumor progression. Because SNPs in pre-miRNAs could alter miRNA processing, expression, and/or binding to target mRNA, we conducted a systematic survey of common pre-miRNA SNPs and their surrounding regions and evaluated in detail the association of 4 of these SNPs with the survival of individuals with non–small cell lung cancer (NSCLC). When we assumed that disease susceptibility was inherited as a recessive phenotype, we found that the rs11614913 SNP in hsa-mir-196a2 was associated with survival in individuals with NSCLC. Specifically, survival was significantly decreased in individuals who were homozygous CC at SNP rs11614913. In the genotype-phenotype correlation analysis of 23 human lung cancer tissue samples, rs11614913 CC was associated with a statistically significant increase in mature hsa-mir-196a expression but not with changes in levels of the precursor, suggesting enhanced processing of the pre-miRNA to its mature form. Furthermore, binding assays revealed that the rs11614913 SNP can affect binding of mature hsa-mir-196a2-3p to its target mRNA. Therefore, the rs11614913 SNP in hsa-mir-196a2 may be a prognostic biomarker for NSCLC. Further characterization of miRNA SNPs may open new avenues for the study of cancer and therapeutic interventions.
PMCID: PMC2402113  PMID: 18521189

Results 1-25 (26)