PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-2 (2)
 

Clipboard (0)
None

Select a Filter Below

Journals
Authors
more »
Year of Publication
Document Types
1.  14-3-3ζ Cooperates with ErbB2 to Promote Progression of Ductal Carcinoma in Situ to Invasive Breast Cancer by Inducing Epithelial-Mesenchymal Transition 
Cancer cell  2009;16(3):195-207.
Summary
ErbB2, a metastasis-promoting oncoprotein, is overexpressed in ~25% of invasive/metastatic breast cancers, but in 50–60% of non-invasive ductal carcinomas in situ (DCIS). It has been puzzling how a subset of ErbB2-overexpressing DCIS develops into invasive breast cancer (IBC). We found that co-overexpression of 14-3-3ζ in ErbB2-overexpressing DCIS conferred a higher risk of progression to IBC. ErbB2 and 14-3-3ζ overexpression, respectively, increased cell migration and decreased cell adhesion, two prerequisites of tumor cell invasion. 14-3-3ζ overexpression reduced cell adhesion by activating the TGFβ/Smads pathway that led to ZFHX1B/SIP-1 upregulation, E-cadherin loss, and epithelial-mesenchymal transition (EMT). Importantly, patients whose breast tumors overexpressed both ErbB2 and 14-3-3ζ had higher rates of metastatic recurrence and death than those whose tumors overexpressed only one.
doi:10.1016/j.ccr.2009.08.010
PMCID: PMC2754239  PMID: 19732720
2.  Myocardin Sumoylation Transactivates Cardiogenic Genes in Pluripotent 10T1/2 Fibroblasts▿  
Molecular and Cellular Biology  2006;27(2):622-632.
Myocardin, a serum response factor (SRF)-dependent cofactor, is a potent activator of smooth muscle gene activity but a poor activator of cardiogenic genes in pluripotent 10T1/2 fibroblasts. Posttranslational modification of GATA4, another myocardin cofactor, by sumoylation strongly activated cardiogenic gene activity. Here, we found that myocardin's activity was strongly enhanced by SUMO-1 via modification of a lysine residue primarily located at position 445 and that the conversion of this residue to arginine (K445R) impaired myocardin transactivation. PIAS1 was involved in governing myocardin activity via its E3 ligase activity that stimulated myocardin sumoylation on an atypical sumoylation site(s) and by its physical association with myocardin. Myocardin initiated the expression of cardiac muscle-specified genes, such as those encoding cardiac α-actin and α-myosin heavy chain, in an SRF-dependent manner in 10T1/2 fibroblasts, but only in the presence of coexpressed SUMO-1/PIAS1. Thus, SUMO modification acted as a molecular switch to promote myocardin's role in cardiogenic gene expression.
doi:10.1128/MCB.01160-06
PMCID: PMC1800801  PMID: 17101795

Results 1-2 (2)