Search tips
Search criteria

Results 1-5 (5)

Clipboard (0)

Select a Filter Below

Year of Publication
Document Types
1.  Anti-angiogenic properties of metronomic topotecan in ovarian carcinoma 
Cancer Biology & Therapy  2009;8(16):1596-1603.
Purpose: Metronomic chemotherapy regimens have shown anti-tumor activity by anti-angiogenic mechanisms, however, the efficacy of metronomic topotecan in ovarian cancer is not known and the focus of the current study.
Experimental Design: In vivo dose-finding and therapy experiments with oral metronomic topotecan were performed in an orthotopic model of advanced ovarian cancer. Tumor vascularity (MVD: CD31), proliferation (PCNA), and apoptosis (TUNEL) were examined among treatment arms. In vitro experiments including MTT and western blot analysis were performed to identify specific anti-angiogenic mechanisms of topotecan.
Results: Compared to controls, metronomic (0.5, 1.0 and 1.5 mg/kg; daily) and maximum tolerated therapy (MTD; 7.5 and 15 mg/kg; weekly) dosing regimens reduced tumor growth in dose-finding experiments, but significant morbidity and mortality was observed with higher doses. Metronomic and MTD topotecan therapy significantly reduced tumor growth in both HeyA8 and SKOV3ip1 models: 41-74% (metronomic), and 64-86% (MTD dosing) (p<0.05 for both regiments compared to controls). Compared to controls, the greatest reduction in tumor MVD was noted with metronomic dosing (32-33%; p<0.01). Tumor cell proliferation was reduced (p<0.001 vs. controls) and apoptosis increased in all treatment arms (p<0.01 vs. controls) for both dosing regimens. Endothelial cells demonstrated a significantly higher sensitivity to topotecan using metronomic dosing versus MTD in vitro. Pro-angiogenic regulators Hif-1α and VEGF levels were reduced in vitro (HeyA8 and SKOV3ip1) with topotecan independent of proteasome degradation and topoisomerase I.
Conclusion: Metronomic topotecan may be a novel therapeutic strategy for ovarian carcinoma with significant anti-tumor activity and target modulation of key pro-angiogenic mediators.
PMCID: PMC3916970  PMID: 19738426
ovarian; metronomic; orthotopic; topotecan; angiogenesis
2.  Therapeutic Targeting of ATP7B in Ovarian Carcinoma 
Resistance to platinum chemotherapy remains a significant problem in ovarian carcinoma. Here, we examined the biological mechanisms and therapeutic potential of targeting a critical platinum resistance gene, ATP7B, using both in vitro and in vivo models.
Experimental Design
Expression of ATP7A and ATP7B was examined in ovarian cancer cell lines by real-time reverse transcription-PCR and Western blot analysis. ATP7A and ATP7B gene silencing was achieved with targeted small interfering RNA (siRNA) and its effects on cell viability and DNA adduct formation were examined. For in vivo therapy experiments, siRNA was incorporated into the neutral nanoliposome 1,2-dioleoyl-sn-glycero-3-phosphatidylcholine (DOPC).
ATP7A and ATP7B genes were expressed at higher levels in platinum-resistant cells compared with sensitive cells; however, only differences in ATP7B reached statistical significance. ATP7A gene silencing had no significant effect on the sensitivity of resistant cells to cisplatin, but ATP7B silencing resulted in 2.5-fold reduction of cisplatin IC50 levels and increased DNA adduct formation in cisplatin-resistant cells (A2780-CP20 and RMG2). Cisplatin was found to bind to the NH2-terminal copper-binding domain of ATP7B, which might be a contributing factor to cisplatin resistance. For in vivo therapy experiments, ATP7B siRNA was incorporated into DOPC and was highly effective in reducing tumor growth in combination with cisplatin (70-88% reduction in both models compared with controls). This reduction in tumor growth was accompanied by reduced proliferation, increased tumor cell apoptosis, and reduced angiogenesis.
These data provide a new understanding of cisplatin resistance in cancer cells and may have implications for therapeutic reversal of drug resistance.
PMCID: PMC2752981  PMID: 19470734
3.  14-3-3ζ Overexpression Defines High Risk for Breast Cancer Recurrence and Promotes Cancer Cell Survival 
Cancer research  2009;69(8):3425-3432.
The ubiquitously expressed 14-3-3 proteins are involved in numerous important cellular functions. The loss of 14-3-3σ is a common event in breast cancer; however, the role of other 14-3-3s in breast cancer is unclear. Recently, we found that 14-3-3ζ overexpression occurs in early stage breast diseases and contributes to transformation of human mammary epithelial cells. Here, we show that 14-3-3ζ overexpression also persisted in invasive ductal carcinoma and contributed to the further progression of breast cancer. To examine the clinical impact of 14-3-3ζ overexpression in advanced stage breast cancer, we performed immunohistochemical analysis of 14-3-3ζ expression in primary breast carcinomas. 14-3-3ζ overexpression occurred in 42% of breast tumors and was determined to be an independent prognostic factor for reduced disease-free survival. 14-3-3ζ overexpression combined with ErbB2 overexpression and positive lymph node status identified a subgroup of patients at high risk for developing distant metastasis. To investigate whether 14-3-3ζ overexpression causally promotes breast cancer progression, we overexpressed 14-3-3ζ by stable transfection or reduced 14-3-3ζ expression by siRNA in cancer cell lines. Increased 14-3-3ζ expression enhanced anchorage independent growth and inhibited stress-induced apoptosis, whereas downregulation of 14-3-3ζ reduced anchorage independent growth and sensitized cells to stress-induced apoptosis via the mitochondrial apoptotic pathway. Transient blockade of 14-3-3ζ expression by siRNA in cancer cells effectively reduced the onset and growth of tumor xenografts in vivo. Therefore, 14-3-3ζ overexpression is a novel molecular marker for disease recurrence in breast cancer patients and may serve as an effective therapeutic target in patients whose tumors overexpress 14-3-3ζ.
PMCID: PMC2671640  PMID: 19318578
14-3-3ζ; breast cancer; apoptosis resistance; disease recurrence; prognostic marker
4.  Functional Significance of VEGFR-2 on Ovarian Cancer Cells 
Vascular endothelial growth factor receptor (VEGFR) has recently been discovered on ovarian cancer cells, but its functional significance is unknown and is the focus of the current study. By protein analysis, A2780-par and HeyA8 ovarian cancer cell lines expressed VEGFR-1 and HeyA8 and SKOV3ip1 expressed VEGFR-2. By in situ hybridization (ISH), 85% of human ovarian cancer specimens showed moderate to high VEGFR-2 expression while only 15% showed moderate to high VEGFR-1 expression. By immunofluorescence, little or no VEGFR-2 was detected in normal ovarian surface epithelial cells, whereas expression was detected in 75% of invasive ovarian cancer specimens. To differentiate between the effects of tumor versus host expression of VEGFR, nude mice were injected with SKOV3ip1 cells and treated with either human VEGFR-2 specific antibody (1121B), murine VEGFR-2 specific antibody (DC101), or the combination. Treatment with 1121B reduced SKOV3ip1 cell migration by 68% (p < 0.01) and invasion by 72% (p < 0.01), but exposure to VEGFR-1 antibody had no effect. Treatment with 1121B effectively blocked VEGF-induced phosphorylation of p130Cas. In vivo, treatment with either DC101 or 1121B significantly reduced tumor growth alone and in combination in the SKOV3ip1 and A2774 models. Decreased tumor burden after treatment with DC101 or 1121B correlated with increased tumor cell apoptosis, decreased proliferative index, and decreased microvessel density. These effects were significantly greater in the combination group (p<0.001). We show functionally active VEGFR-2 is present on most ovarian cancer cells. The observed anti-tumor activity of VEGF-targeted therapies may be mediated by both anti-angiogenic and direct anti-tumor effects.
PMCID: PMC2668132  PMID: 19058181
VEGFR; angiogenesis; ovarian carcinoma
5.  Dual targeting of EphA2 and FAK in ovarian carcinoma 
Cancer biology & therapy  2009;8(11):1027-1034.
EphA2 gene silencing has been shown to result in anti-tumor efficacy. Here we considered whether silencing additional targets downstream of EphA2 would further enhance the therapeutic effect. EphA2 targeted siRNA was tested in combination with either FAK or Src targeted siRNA using DOPC nanoliposomes in orthotopic models of ovarian carcinoma. The effects of therapy were determined by changes in tumor weight, proliferation (Ki-67), and microvessel density (CD31). In our initial in vivo study, EphA2 plus FAK silencing resulted in the greatest reduction in tumor growth (by 73%, p < 0.005) as compared to control siRNA alone. In the SKOV3ip1 and HeyA8 ovarian cancer models, EphA2 siRNA-DOPC treatment resulted in a 50 to 67% decrease in tumor growth (p < 0.02, for both), and FAK siRNA-DOPC resulted in a 61 to 62% decrease in tumor growth (p < 0.009, p < 0.05, respectively). EphA2 plus FAK siRNA-DOPC treatment resulted in a significant reduction (SKOV3ip1: 76%, p < 0.007, HeyA8: 90%, p < 0.003) in tumor growth compared to control siRNA-DOPC. Combination treatment with EphA2 + FAK siRNA-DOPC resulted in significant decreases in tumor cell proliferation (p < 0.001) and microvessel density compared to control siRNA-DOPC (80%; p < 0.001), or the monotherapy groups (p values <0.001). These data suggest that the anti-tumor efficacy of in vivo EphA2 targeting is enhanced in combination with FAK silencing. Dual targeting of EphA2 and FAK may have therapeutic implications for ovarian cancer management.
PMCID: PMC2748749  PMID: 19395869
EphA2; FAK; ovarian cancer; siRNA therapy

Results 1-5 (5)