PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-24 (24)
 

Clipboard (0)
None

Select a Filter Below

Journals
more »
Year of Publication
Document Types
1.  Health Workforce Equity in Urban Community Health Service of China 
PLoS ONE  2014;9(12):e115988.
Objectives
To reveal the equity of health workforce distribution in urban community health service (CHS), and to provide evidence for further development of community health service in China.
Methods
A community-based, cross-sectional study was conducted in China from September to December 2011. In the study, 190 CHS centers were selected from 10 provinces of China via stratified multistage cluster sampling. Human resources profiles and basic characteristics of each CHS centers were collected. Lorenz curves and Gini Coefficient were used to measure the inequality in the distribution of health workforce in community health service centers by population size and geographical area. Wilcoxon rank test for paired samples was used to analyze the differences in equity between different health indicators.
Results
On average, there were 7.37 health workers, including 3.25 doctors and 2.32 nurses per 10,000 population ratio. Significant differences were found in all indicators across the samples, while Beijing, Shandong and Zhejiang ranked the highest among these provinces. The Gini coefficients for health workers, doctors and nurses per 10,000 population ratio were 0.39, 0.44, and 0.48, respectively. The equity of doctors per 10,000 population ratio (G = 0.39) was better than that of doctors per square kilometer (G = 0.44) (P = 0.005). Among the total 6,573 health workers, 1,755(26.7%) had undergraduate degree or above, 2,722(41.4%)had junior college degree and 215(3.3%) had high school education. Significant inequity was found in the distribution of workers with undergraduate degree or above (G = 0.52), which was worse than that of health works per 10000 population (P<0.001).
Conclusions
Health workforce inequity was found in this study, especially in quality and geographic distribution. These findings suggest a need for more innovative policies to improve health equity in Chinese urban CHS centers.
doi:10.1371/journal.pone.0115988
PMCID: PMC4281229  PMID: 25551449
2.  Targeted High-Throughput Sequencing Identifies Pathogenic Mutations in KCNQ4 in Two Large Chinese Families with Autosomal Dominant Hearing Loss 
PLoS ONE  2014;9(8):e103133.
Autosomal dominant non-syndromic hearing loss (ADNSHL) is highly heterogeneous, among them, KCNQ4 is one of the most frequent disease-causing genes. More than twenty KCNQ4 mutations have been reported, but none of them were detected in Chinese mainland families. In this study, we identified a novel KCNQ4 mutation in a five generation Chinese family with 84 members and a known KCNQ4 mutation in a six generation Chinese family with 66 members. Mutation screening of 30 genes for ADNSHL was performed in the probands from thirty large Chinese families with ADNSHL by targeted region capture and high-throughput sequencing. The candidate variants and the co-segregation of the phenotype were verified by polymerase chain reaction (PCR) amplification and Sanger sequencing in all ascertained family members. Then we identified a novel KCNQ4 mutation p.W275R in exon 5 and a known KCNQ4 mutation p.G285S in exon 6 in two large Chinese ADNSHL families segregating with post-lingual high frequency-involved and progressive sensorineural hearing loss. This is the first report of KCNQ4 mutation in Chinese mainland families. KCNQ4, a member of voltage-gated potassium channel family, is likely to be a common gene in Chinese patients with ADNSHL. The results also support that the combination of targeted enrichment and high-throughput sequencing is a valuable molecular diagnostic tool for autosomal dominant hereditary deafness.
doi:10.1371/journal.pone.0103133
PMCID: PMC4130520  PMID: 25116015
3.  Kisspeptins Modulate the Biology of Multiple Populations of Gonadotropin-Releasing Hormone Neurons during Embryogenesis and Adulthood in Zebrafish (Danio rerio) 
PLoS ONE  2014;9(8):e104330.
Kisspeptin1 (product of the Kiss1 gene) is the key neuropeptide that gates puberty and maintains fertility by regulating the gonadotropin-releasing hormone (GnRH) neuronal system in mammals. Inactivating mutations in Kiss1 and the kisspeptin receptor (GPR54/Kiss1r) are associated with pubertal failure and infertility. Kiss2, a paralogous gene for kiss1, has been recently identified in several vertebrates including zebrafish. Using our transgenic zebrafish model system in which the GnRH3 promoter drives expression of emerald green fluorescent protein, we investigated the effects of kisspeptins on development of the GnRH neuronal system during embryogenesis and on electrical activity during adulthood. Quantitative PCR showed detectable levels of kiss1 and kiss2 mRNA by 1 day post fertilization, increasing throughout embryonic and larval development. Early treatment with Kiss1 or Kiss2 showed that both kisspeptins stimulated proliferation of trigeminal GnRH3 neurons located in the peripheral nervous system. However, only Kiss1, but not Kiss2, stimulated proliferation of terminal nerve and hypothalamic populations of GnRH3 neurons in the central nervous system. Immunohistochemical analysis of synaptic vesicle protein 2 suggested that Kiss1, but not Kiss2, increased synaptic contacts on the cell body and along the terminal nerve-GnRH3 neuronal processes during embryogenesis. In intact brain of adult zebrafish, whole-cell patch clamp recordings of GnRH3 neurons from the preoptic area and hypothalamus revealed opposite effects of Kiss1 and Kiss2 on spontaneous action potential firing frequency and membrane potential. Kiss1 increased spike frequency and depolarized membrane potential, whereas Kiss2 suppressed spike frequency and hyperpolarized membrane potential. We conclude that in zebrafish, Kiss1 is the primary stimulator of GnRH3 neuronal development in the embryo and an activator of stimulating hypophysiotropic neuron activities in the adult, while Kiss2 plays an additional role in stimulating embryonic development of the trigeminal neuronal population, but is an RFamide that inhibits electrical activity of hypophysiotropic GnRH3 neurons in the adult.
doi:10.1371/journal.pone.0104330
PMCID: PMC4122407  PMID: 25093675
4.  Treatment of MSCs with Wnt1a-conditioned medium activates DP cells and promotes hair follicle regrowth 
Scientific Reports  2014;4:5432.
Hair loss (alopecia) is a common problem for people. The dermal papilla is the key signaling center that regulates hair growth and it engage in crosstalk with the microenvironment, including Wnt signaling and stem cells. In this study, we explored the effects of bone marrow mesenchymal stem cell overexpression of Wnt1a on mouse hair follicle regeneration. Wnt-CM accelerated hair follicle progression from telogen to anagen and enhanced the ALP expression in the DP area. Moreover, the hair induction-related genes were upregulated, as demonstrated by qRT-PCR. Wnt-CM treatment restored and increased DP cell expression of genes downregulated by dihydrotestosterone treatment, as demonstrated by qRT-PCR assays. Our study reveals that BM-MSC-generated Wnt1a promotes the DP's ability to induce hair cycling and regeneration.
doi:10.1038/srep05432
PMCID: PMC4069670  PMID: 24961246
5.  A Novel DFNA36 Mutation in TMC1 Orthologous to the Beethoven (Bth) Mouse Associated with Autosomal Dominant Hearing Loss in a Chinese Family 
PLoS ONE  2014;9(5):e97064.
Mutations in the transmembrane channel-like gene 1 (TMC1) can cause both DFNA36 and DFNB7/11 hearing loss. More than thirty DFNB7/11 mutations have been reported, but only three DFNA36 mutations were reported previously. In this study, we found a large Chinese family with 222 family members showing post-lingual, progressive sensorineural hearing loss which were consistent with DFNA36 hearing loss. Auditory brainstem response (ABR) test of the youngest patient showed a special result with nearly normal threshold but prolonged latency, decreased amplitude, and the abnormal waveform morphology. Exome sequencing of the proband found four candidate variants in known hearing loss genes. Sanger sequencing in all family members found a novel variant c.1253T>A (p.M418K) in TMC1 at DFNA36 that co-segregated with the phenotype. This mutation in TMC1 is orthologous to the mutation found in the hearing loss mouse model named Bth ten years ago. In another 51 Chinese autosomal dominant hearing loss families, we screened the segments containing the dominant mutations of TMC1 and no functional variants were found. TMC1 is expressed in the hair cells in inner ear. Given the already known roles of TMC1 in the mechanotransduction in the cochlea and its expression in inner ear, our results may provide an interesting perspective into its function in inner ear.
doi:10.1371/journal.pone.0097064
PMCID: PMC4020765  PMID: 24827932
6.  General Practice On-the-Job Training in Chinese Urban Community: A Qualitative Study on Needs and Challenges 
PLoS ONE  2014;9(4):e94301.
Background
On-the-job training is an important strategy for general practitioners to deliver appropriately community health services in China. The development of basic professional competence for general practitioners is the main goal of on-the-job training program. The aim of this study was to explore the needs of and the challenges to on-the-job training for general practitioners, and to provide advices for policy-makers to carry out this program more effectively.
Methods
We conducted 3 nominal group techniques, 17 in-depth interviews and 3 focus groups to identify the status of, needs of and challenges to on-the-job training for general practitioners in Liaoning, Ningxia, and Fujian provinces from September 2011 until December 2011. Audiotapes and transcripts were analyzed to identify major themes. Content analysis of the data was completed from January 2012 to March 2012.
Results
Basic theoretical knowledge and clinical skills were the main needs for general practitioners during on-the-job training. The challenges during training included the time contradiction between work and training, deficiencies of qualified preceptors, and lack of training funds. Participants gave recommendations how to resolve the above problems.
Conclusions
In order to improve the outcomes of general practice on-the-job training, it is necessary for government officials to resolve the contradiction between work and training, train preceptors continuously, and increase financial support in the training program.
doi:10.1371/journal.pone.0094301
PMCID: PMC3984120  PMID: 24728399
7.  Manufacturing Mesenchymal Stromal Cells for Phase I Clinical Trials 
Cytotherapy  2013;15(4):416-422.
Mesenchymal stromal cells (MSCs) are multipotent progenitor cells capable of differentiating into adipocytes, osteoblasts, and chondroblasts as well as secreting a vast array of soluble mediators. This potentially makes MSCs important mediators of a variety of therapeutic applications. They are actively under evaluation for immunomodulatory purposes such as graft-versus host disease (GvHD) and Crohn’s disease, as well as regenerative applications such as stroke and congestive heart failure. Here we report our method of generating clinical-grade MSCs together with suggestions gathered from manufacturing experience in our Good Manufacturing Practices (GMP) facility.
doi:10.1016/j.jcyt.2012.09.007
PMCID: PMC3611961  PMID: 23480951
Clinical Trials; Good manufacturing practices (GMP); Mesenchymal stromal cell (MSC); Phase I
8.  Effects of Deep Tillage and Straw Returning on Soil Microorganism and Enzyme Activities 
The Scientific World Journal  2014;2014:451493.
Two field experiments were conducted for two years with the aim of studying the effects of deep tillage and straw returning on soil microorganism and enzyme activity in clay and loam soil. Three treatments, (1) conventional tillage (CT), shallow tillage and straw returning; (2) deep tillage (DT), deep tillage and straw returning; and (3) deep tillage with no straw returning (DNT), were carried out in clay and loam soil. The results showed that deep tillage and straw returning increased the abundance of soil microorganism and most enzyme activities. Deep tillage was more effective for increasing enzyme activities in clay, while straw returning was more effective in loam. Soil microorganism abundance and most enzyme activities decreased with the increase of soil depth. Deep tillage mainly affected soil enzyme activities in loam at the soil depth of 20–30 cm and in clay at the depth of 0–40 cm. Straw returning mainly affected soil microorganism and enzyme activities at the depths of 0–30 cm and 0–40 cm, respectively.
doi:10.1155/2014/451493
PMCID: PMC3984811  PMID: 24982955
10.  Exome Sequencing and Linkage Analysis Identified Tenascin-C (TNC) as a Novel Causative Gene in Nonsyndromic Hearing Loss 
PLoS ONE  2013;8(7):e69549.
In this study, a five-generation Chinese family (family F013) with progressive autosomal dominant hearing loss was mapped to a critical region spanning 28.54 Mb on chromosome 9q31.3-q34.3 by linkage analysis, which was a novel DFNA locus, assigned as DFNA56. In this interval, there were 398 annotated genes. Then, whole exome sequencing was applied in three patients and one normal individual from this family. Six single nucleotide variants and two indels were found co-segregated with the phenotypes. Then using mass spectrum (Sequenom, Inc.) to rank the eight sites, we found only the TNC gene be co-segregated with hearing loss in 53 subjects of F013. And this missense mutation (c.5317G>A, p.V1773M ) of TNC located exactly in the critical linked interval. Further screening to the coding region of this gene in 587 subjects with nonsyndromic hearing loss (NSHL) found a second missense mutation, c.5368A>T (p. T1796S), co-segregating with phenotype in the other family. These two mutations located in the conserved region of TNC and were absent in the 387 normal hearing individuals of matched geographical ancestry. Functional effects of the two mutations were predicted using SIFT and both mutations were deleterious. All these results supported that TNC may be the causal gene for the hearing loss inherited in these families. TNC encodes tenascin-C, a member of the extracellular matrix (ECM), is present in the basilar membrane (BM), and the osseous spiral lamina of the cochlea. It plays an important role in cochlear development. The up-regulated expression of TNC gene in tissue repair and neural regeneration was seen in human and zebrafish, and in sensory receptor recovery in the vestibular organ after ototoxic injury in birds. Then the absence of normal tenascin-C was supposed to cause irreversible injuries in cochlea and caused hearing loss.
doi:10.1371/journal.pone.0069549
PMCID: PMC3728356  PMID: 23936043
11.  Infusion of Mesenchymal Stem Cells Ameliorates Hyperglycemia in Type 2 Diabetic Rats 
Diabetes  2012;61(6):1616-1625.
Infusion of mesenchymal stem cells (MSCs) has been shown to effectively lower blood glucose in diabetic individuals, but the mechanism involved could not be adequately explained by their potential role in promoting islet regeneration. We therefore hypothesized that infused MSCs might also contribute to amelioration of the insulin resistance of peripheral insulin target tissues. To test the hypothesis, we induced a diabetic rat model by high-fat diet/streptozotocin (STZ) administration, performed MSC infusion during the early phase (7 days) or late phase (21 days) after STZ injection, and then evaluated the therapeutic effects of MSC infusion and explored the possible mechanisms involved. MSC infusion ameliorated hyperglycemia in rats with type 2 diabetes (T2D). Infusion of MSCs during the early phase not only promoted β-cell function but also ameliorated insulin resistance, whereas infusion in the late phase merely ameliorated insulin resistance. Infusion of MSCs resulted in an increase of GLUT4 expression and an elevation of phosphorylated insulin receptor substrate 1 (IRS-1) and Akt (protein kinase B) in insulin target tissues. This is the first report of MSC treatment improving insulin sensitivity in T2D. These data indicate that multiple roles and mechanisms are involved in the efficacy of MSCs in ameliorating hyperglycemia in T2D.
doi:10.2337/db11-1141
PMCID: PMC3357293  PMID: 22618776
12.  Culturing on Wharton's Jelly Extract Delays Mesenchymal Stem Cell Senescence through p53 and p16INK4a/pRb Pathways 
PLoS ONE  2013;8(3):e58314.
Mesenchymal stem cells (MSCs) hold great therapeutic potential. However, MSCs undergo replication senescence during the in vitro expansion process. Wharton's jelly from the human umbilical cord harbors a large number of MSCs. In this study, we hypothesized that Wharton's jelly would be beneficial for in vitro expansion of MSCs. Wharton's jelly extract (WJEs), which is mainly composed of extracellular matrix and cytokines, was prepared as coating substrate. Human MSCs were isolated and cultured on WJE-coated plates. Although the proliferation capacity of cells was not augmented by WJE in early phase culture, adynamic growth in late-phase culture was clearly reduced, suggesting that the replicative senescence of MSCs was efficiently slowed by WJE. This was confirmed by β-galactosidase staining and telomere length measurements of MSCs in late-phase culture. In addition, the decreased differentiation ability of MSCs after long-term culture was largely ameliorated by WJE. Reactive oxygen species (ROS), p53, and p16INK4a/pRb expression increased with passaging. Analysis at the molecular level revealed that WJE-based culture efficiently suppressed the enhancement of intracellular ROS, p53, and p16INK4a/pRb in MSCs. These data demonstrated that WJE provided an ideal microenvironment for MSCs culture expansion in vitro preserved MSC properties by delaying MSCs senescence, and allowed large numbers of MSCs to be obtained for basic research and clinical therapies.
doi:10.1371/journal.pone.0058314
PMCID: PMC3596399  PMID: 23516461
13.  Early Development of the Gonadotropin-Releasing Hormone Neuronal Network in Transgenic Zebrafish 
Understanding development of gonadotropin-releasing hormone (GnRH) neuronal circuits is fundamental to our understanding of reproduction, but not yet well understood. Most studies have been focused on GnRH neurons located in the hypothalamus and preoptic area (POA), which directly regulate the pituitary-gonadal axis. In zebrafish (Danio rerio), two forms of GnRH have been identified: GnRH2 and GnRH3. GnRH3 neurons in this species plays two roles: hypophysiotropic and neuromodulatory, depending on their location. GnRH3 neurons in the ventral telencephalon, POA, and hypothalamus control pituitary-gonadal function; in other areas (e.g., terminal nerve), they are neuromodulatory and without direct action on reproduction. To investigate the biology of GnRH neurons, a stable line of transgenic zebrafish was generated in which the GnRH3 promoter drives expression of a bright variant of green fluorescent protein (Emerald GFP, or EMD). This provides unprecedented sensitivity in detecting and imaging GnRH3 neurons during early embryogenesis in the transparent embryo. Using timelapse confocal imaging to monitor the time course of GnRH3:EMD expression in the live embryo, we describe the emergence and development of GnRH3 neurons in the olfactory region, hypothalamus, POA, and trigeminal ganglion. By 50 h post fertilization, these diverse groups of GnRH3 neurons project broadly in the central and peripheral nervous systems and make anatomical connections with each other. Immunohistochemistry of synaptic vesicle protein 2 (a marker of synaptic transmission) in this transgenic model suggests synaptic formation is occurring during early development of the GnRH3 neural network. Electrophysiology reveals early emergence of responsiveness to the stimulatory effects of kisspeptin in terminal nerve GnRH3 neurons. Overall, our findings reveal that the GnRH3 neuronal system is comprised of multiple populations of neurons as a complicated network.
doi:10.3389/fendo.2013.00107
PMCID: PMC3757539  PMID: 24009601
brain; development; embryo; gonadotropin-releasing hormone; kisspeptin; neuron; teleost
14.  A Facile and Specific Assay for Quantifying MicroRNA by an Optimized RT-qPCR Approach 
PLoS ONE  2012;7(10):e46890.
Background
The spatiotemporal expression patterns of microRNAs (miRNAs) are important to the verification of their predicted function. RT-qPCR is the accepted technique for the quantification of miRNA expression; however, stem-loop RT-PCR and poly(T)-adapter assay, the two most frequently used methods, are not very convenient in practice and have poor specificity, respectively.
Results
We have developed an optimal approach that integrates these two methods and allows specific and rapid detection of tiny amounts of sample RNA and reduces costs relative to other techniques. miRNAs of the same sample are polyuridylated and reverse transcribed into cDNAs using a universal poly(A)-stem-loop RT primer and then used as templates for SYBR® Green real-time PCR. The technique has a dynamic range of eight orders of magnitude with a sensitivity of up to 0.2 fM miRNA or as little as 10 pg of total RNA. Virtually no cross-reaction is observed among the closely-related miRNA family members and with miRNAs that have only a single nucleotide difference in this highly specific assay. The spatial constraint of the stem-loop structure of the modified RT primer allowed detection of miRNAs directly from cell lysates without laborious total RNA isolation, and the poly(U) tail made it possible to use multiplex RT reactions of mRNA and miRNAs in the same run.
Conclusions
The cost-effective RT-qPCR of miRNAs with poly(A)-stem-loop RT primer is simple to perform and highly specific, which is especially important for samples that are precious and/or difficult to obtain.
doi:10.1371/journal.pone.0046890
PMCID: PMC3465266  PMID: 23071657
15.  Effects of Kisspeptin1 on Electrical Activity of an Extrahypothalamic Population of Gonadotropin-Releasing Hormone Neurons in Medaka (Oryzias latipes) 
PLoS ONE  2012;7(5):e37909.
Kisspeptin (product of the kiss1 gene) is the most potent known activator of the hypothalamo-pituitary-gonadal axis. Both kiss1 and the kisspeptin receptor are highly expressed in the hypothalamus of vertebrates, and low doses of kisspeptin have a robust and long-lasting stimulatory effect on the rate of action potential firing of hypophysiotropic gonadotropin releasing hormone-1 (GnRH1) neurons in mice. Fish have multiple populations of GnRH neurons distinguished by their location in the brain and the GnRH gene that they express. GnRH3 neurons located in the terminal nerve (TN) associated with the olfactory bulb are neuromodulatory and do not play a direct role in regulating pituitary-gonadal function. In medaka fish, the electrical activity of TN-GnRH3 neurons is modulated by visual cues from conspecifics, and is thought to act as a transmitter of information from the external environment to the central nervous system. TN-GnRH3 neurons also play a role in sexual motivation and arousal states, making them an important population of neurons to study for understanding coordination of complex behaviors. We investigated the role of kisspeptin in regulating electrical activity of TN-GnRH3 neurons in adult medaka. Using electrophysiology in an intact brain preparation, we show that a relatively brief treatment with 100 nM of kisspeptin had a long-lasting stimulatory effect on the electrical activity of an extrahypothalamic population of GnRH neurons. Dose-response analysis suggests a relatively narrow activational range of this neuropeptide. Further, blocking action potential firing with tetrodotoxin and blocking synaptic transmission with a low Ca2+/high Mg2+ solution inhibited the stimulatory action of kisspeptin on electrical activity, indicating that kisspeptin is acting indirectly through synaptic regulation to excite TN-GnRH3 neurons. Our findings provide a new perspective on kisspeptin's broader functions within the central nervous system, through its regulation of an extrahypothalamic population of GnRH neurons involved in multiple neuromodulatory functions.
doi:10.1371/journal.pone.0037909
PMCID: PMC3359290  PMID: 22649563
16.  Preparation of Aplysia Sensory-motor Neuronal Cell Cultures 
The nervous system of the marine mollusk Aplysia californica is relatively simple, consisting of approximately 20,000 neurons. The neurons are large (up to 1 mm in diameter) and identifiable, with distinct sizes, shapes, positions and pigmentations, and the cell bodies are externally exposed in five paired ganglia distributed throughout the body of the animal. These properties have allowed investigators to delineate the circuitry underlying specific behaviors in the animal1. The monosynaptic connection between sensory and motor neurons is a central component of the gill-withdrawal reflex in the animal, a simple defensive reflex in which the animal withdraws its gill in response to tactile stimulation of the siphon. This reflex undergoes forms of non-associative and associative learning, including sensitization, habituation and classical conditioning. Of particular benefit to the study of synaptic plasticity, the sensory-motor synapse can be reconstituted in culture, where well-characterized stimuli elicit forms of plasticity that have direct correlates in the behavior of the animal2,3. Specifically, application of serotonin produces a synaptic strengthening that, depending on the application protocol, lasts for minutes (short-term facilitation), hours (intermediate-term facilitation) or days (long-term facilitation). In contrast, application of the peptide transmitter FMRFamide produces a synaptic weakening or depression that, depending on the application protocol, can last from minutes to days (long-term depression). The large size of the neurons allows for repeated sharp electrode recording of synaptic strength over periods of days together with microinjection of expression vectors, siRNAs and other compounds to target specific signaling cascades and molecules and thereby identify the molecular and cell biological steps that underlie the changes in synaptic efficacy.
An additional advantage of the Aplysia culture system comes from the fact that the neurons demonstrate synapse-specificity in culture4,5. Thus, sensory neurons do not form synapses with themselves (autapses) or with other sensory neurons, nor do they form synapses with non-target identified motor neurons in culture. The varicosities, sites of synaptic contact between sensory and motor neurons, are large enough (2-7 microns in diameter) to allow synapse formation (as well as changes in synaptic morphology) with target motor neurons to be studied at the light microscopic level.
In this video, we demonstrate each step of preparing sensory-motor neuron cultures, including anesthetizing adult and juvenile Aplysia, dissecting their ganglia, protease digestion of the ganglia, removal of the connective tissue by microdissection, identification of both sensory and motor neurons and removal of each cell type by microdissection, plating of the motor neuron, addition of the sensory neuron and manipulation of the sensory neurite to form contact with the cultured motor neuron.
doi:10.3791/1355
PMCID: PMC2794885  PMID: 19506547
17.  LRP16 Integrates into NF-κB Transcriptional Complex and Is Required for Its Functional Activation 
PLoS ONE  2011;6(3):e18157.
Background
Nuclear factor κB (NF-κB)-mediated pathways have been widely implicated in cell survival, development and tumor progression. Although the molecular events of determining NF-κB translocation from cytoplasm to nucleus have been extensively documented, the regulatory mechanisms of NF-κB activity inside the nucleus are still poorly understood. Being a special member of macro domain proteins, LRP16 was previously identified as a coactivator of both estrogen receptor and androgen receptor, and as an interactor of NF-κB coactivator UXT. Here, we investigated the regulatory role of LRP16 on NF-κB activation.
Methodology
GST pull-down and coimmunoprecipitation (CoIP) assays assessed protein-protein interactions. The functional activity of NF-κB was assessed by luciferase assays, changes in expression of its target genes, and its DNA binding ability. Annexin V staining and flow cytometry analysis were used to evaluate cell apoptosis. Immunohistochemical staining of LRP16 and enzyme-linked immunosorbent assay-based evaluation of active NF-κB were performed on primary human gastric carcinoma samples.
Results
We demonstrate that LRP16 integrates into NF-κB transcriptional complex through associating with its p65 component. RNA interference knockdown of the endogenous LRP16 in cells leads to impaired NF-κB activity and significantly attenuated NF-κB-dependent gene expression. Mechanistic analysis revealed that knockdown of LRP16 did not affect tumor necrosis factor α (TNF-α)-induced nuclear translocation of NF-κB, but blunted the formation or stabilization of functional NF-κB/p300/CREB-binding protein transcription complex in the nucleus. In addition, knockdown of LRP16 also sensitizes cells to apoptosis induced by TNF-α. Finally, a positive link between LRP16 expression intensity in nuclei of tumor cells and NF-κB activity was preliminarily established in human gastric carcinoma specimens.
Conclusions
Our findings not only indicate that LRP16 is a crucial regulator for NF-κB activation inside the nucleus, but also suggest that LRP16 may be an important contributor to the aberrant activation of NF-κB in tumors.
doi:10.1371/journal.pone.0018157
PMCID: PMC3069058  PMID: 21483817
18.  Preparation of Aplysia Sensory-motor Neuronal Cell Cultures 
The nervous system of the marine mollusk Aplysia californica is relatively simple, consisting of approximately 20,000 neurons. The neurons are large (up to 1 mm in diameter) and identifiable, with distinct sizes, shapes, positions and pigmentations, and the cell bodies are externally exposed in five paired ganglia distributed throughout the body of the animal. These properties have allowed investigators to delineate the circuitry underlying specific behaviors in the animal1. The monosynaptic connection between sensory and motor neurons is a central component of the gill-withdrawal reflex in the animal, a simple defensive reflex in which the animal withdraws its gill in response to tactile stimulation of the siphon. This reflex undergoes forms of non-associative and associative learning, including sensitization, habituation and classical conditioning. Of particular benefit to the study of synaptic plasticity, the sensory-motor synapse can be reconstituted in culture, where well-characterized stimuli elicit forms of plasticity that have direct correlates in the behavior of the animal2,3. Specifically, application of serotonin produces a synaptic strengthening that, depending on the application protocol, lasts for minutes (short-term facilitation), hours (intermediate-term facilitation) or days (long-term facilitation). In contrast, application of the peptide transmitter FMRFamide produces a synaptic weakening or depression that, depending on the application protocol, can last from minutes to days (long-term depression). The large size of the neurons allows for repeated sharp electrode recording of synaptic strength over periods of days together with microinjection of expression vectors, siRNAs and other compounds to target specific signaling cascades and molecules and thereby identify the molecular and cell biological steps that underlie the changes in synaptic efficacy.
An additional advantage of the Aplysia culture system comes from the fact that the neurons demonstrate synapse-specificity in culture4,5. Thus, sensory neurons do not form synapses with themselves (autapses) or with other sensory neurons, nor do they form synapses with non-target identified motor neurons in culture. The varicosities, sites of synaptic contact between sensory and motor neurons, are large enough (2–7 microns in diameter) to allow synapse formation (as well as changes in synaptic morphology) with target motor neurons to be studied at the light microscopic level.
In this video, we demonstrate each step of preparing sensory-motor neuron cultures, including anesthetizing adult and juvenile Aplysia, dissecting their ganglia, protease digestion of the ganglia, removal of the connective tissue by microdissection, identification of both sensory and motor neurons and removal of each cell type by microdissection, plating of the motor neuron, addition of the sensory neuron and manipulation of the sensory neurite to form contact with the cultured motor neuron.
doi:10.3791/1355
PMCID: PMC2794885  PMID: 19506547
19.  Synapse- and Stimulus-Specific Local Translation During Long-Term Neuronal Plasticity 
Science (New York, N.Y.)  2009;324(5934):1536-1540.
Long-term memory and synaptic plasticity require changes in gene expression and yet can occur in a synapse-specific manner. mRNA localization and regulated translation at synapses are thus critical for establishing synapse specificity. Using live cell microscopy of photoconvertible fluorescent protein translational reporters, we directly visualized local translation at synapses during long-term facilitation of Aplysia sensory-motor synapses. Translation of the reporter required multiple applications of serotonin, was spatially restricted to stimulated synapses, was transcript- and stimulus-specific, and occurred during long-term facilitation but not during long-term depression of sensory-motor synapses. Translational regulation only occurred in the presence of a chemical synapse and required calcium signaling in the postsynaptic motor neuron. Thus highly regulated local translation occurs at synapses during long-term plasticity and requires trans-synaptic signals.
doi:10.1126/science.1173205
PMCID: PMC2821090  PMID: 19443737
20.  Keratin 18 attenuates estrogen receptor α-mediated signaling by sequestering LRP16 in cytoplasm 
BMC Cell Biology  2009;10:96.
Background
Oncogenesis in breast cancer is often associated with excess estrogen receptor α(ERα) activation and overexpression of its coactivators. LRP16 is both an ERα target gene and an ERα coactivator, and plays a crucial role in ERα activation and proliferation of MCF-7 breast cancer cells. However, the regulation of the functional availability of this coactivator protein is not yet clear.
Results
Yeast two-hybrid screening, GST pulldown and coimmunoprecipitation (CoIP) identified the cytoplasmic intermediate filament protein keratin 18 (K18) as a novel LRP16-interacting protein. Fluorescence analysis revealed that GFP-tagged LRP16 was primarily localized in the nuclei of mock-transfected MCF-7 cells but was predominantly present in the cytoplasm of K18-transfected cells. Immunoblotting analysis demonstrated that the amount of cytoplasmic LRP16 was markedly increased in cells overexpressing K18 whereas nuclear levels were depressed. Conversely, knockdown of endogenous K18 expression in MCF-7 cells significantly decreased the cytoplasmic levels of LRP16 and increased levels in the nucleus. CoIP failed to detect any interaction between K18 and ERα, but ectopic expression of K18 in MCF-7 cells significantly blunted the association of LRP16 with ERα, attenuated ERα-activated reporter gene activity, and decreased estrogen-stimulated target gene expression by inhibiting ERα recruitment to DNA. Furthermore, BrdU incorporation assays revealed that K18 overexpression blunted the estrogen-stimulated increase of S-phase entry of MCF-7 cells. By contrast, knockdown of K18 in MCF-7 cells significantly increased ERα-mediated signaling and promoted cell cycle progression.
Conclusions
K18 can effectively associate with and sequester LRP16 in the cytoplasm, thus attenuating the final output of ERα-mediated signaling and estrogen-stimulated cell cycle progression of MCF-7 breast cancer cells. Loss of K18 increases the functional availability of LRP16 to ERα and promotes the proliferation of ERα-positive breast tumor cells. K18 plays an important functional role in regulating the ERα signaling pathway.
doi:10.1186/1471-2121-10-96
PMCID: PMC2804594  PMID: 20035625
21.  Human Y Chromosome Base-Substitution Mutation Rate Measured by Direct Sequencing in a Deep-Rooting Pedigree 
Current Biology  2009;19(17):1453-1457.
Summary
Understanding the key process of human mutation is important for many aspects of medical genetics and human evolution. In the past, estimates of mutation rates have generally been inferred from phenotypic observations or comparisons of homologous sequences among closely related species [1–3]. Here, we apply new sequencing technology to measure directly one mutation rate, that of base substitutions on the human Y chromosome. The Y chromosomes of two individuals separated by 13 generations were flow sorted and sequenced by Illumina (Solexa) paired-end sequencing to an average depth of 11× or 20×, respectively [4]. Candidate mutations were further examined by capillary sequencing in cell-line and blood DNA from the donors and additional family members. Twelve mutations were confirmed in ∼10.15 Mb; eight of these had occurred in vitro and four in vivo. The latter could be placed in different positions on the pedigree and led to a mutation-rate measurement of 3.0 × 10−8 mutations/nucleotide/generation (95% CI: 8.9 × 10−9–7.0 × 10−8), consistent with estimates of 2.3 × 10−8–6.3 × 10−8 mutations/nucleotide/generation for the same Y-chromosomal region from published human-chimpanzee comparisons [5] depending on the generation and split times assumed.
doi:10.1016/j.cub.2009.07.032
PMCID: PMC2748900  PMID: 19716302
EVO_ECOL
22.  FHL2 interacts with and acts as a functional repressor of Id2 in human neuroblastoma cells 
Nucleic Acids Research  2009;37(12):3996-4009.
Inhibitor of differentiation 2 (Id2) is a natural inhibitor of the basic helix–loop–helix transcription factors. Although Id2 is well known to prevent differentiation and promote cell-cycle progression and tumorigenesis, the molecular events that regulate Id2 activity remain to be investigated. Here, we identified that Four-and-a-half LIM-only protein 2 (FHL2) is a novel functional repressor of Id2. Moreover, we demonstrated that FHL2 can directly interact with all members of the Id family (Id1–4) via an N-terminal loop–helix structure conserved in Id proteins. FHL2 antagonizes the inhibitory effect of Id proteins on basic helix–loop–helix protein E47-mediated transcription, which was abrogated by the deletion mutation of Ids that disrupted their interaction with FHL2. We also showed a competitive nature between FHL2 and E47 for binding Id2, whereby FHL2 prevents the formation of the Id2–E47 heterodimer, thus releasing E47 to DNA and restoring its transcriptional activity. FHL2 expression was remarkably up-regulated during retinoic acid-induced differentiation of neuroblastoma cells, during which the expression of Id2 was opposite to that. Ectopic FHL2 expression in neuroblastoma cells markedly reduces the transcriptional and cell-cycle promoting functions of Id2. Altogether, these results indicate that FHL2 is an important repressor of the oncogenic activity of Id2 in neuroblastoma cells.
doi:10.1093/nar/gkp332
PMCID: PMC2709579  PMID: 19417068
23.  Id2 promotes the invasive growth of MCF-7 and SKOV-3 cells by a novel mechanism independent of dimerization to basic helix-loop-helix factors 
BMC Cancer  2009;9:75.
Background
Inhibitor of differentiation 2 (Id2) is a critical factor for cell proliferation and differentiation in normal vertebrate development. Most of the biological function of Id2 has been ascribed to its helix-loop-helix motif. Overexpression of Id2 is frequently observed in various human tumors, but its role for invasion potential in tumor cells is dispute. We aimed to reveal the role of Id2 in invasion potential in poorly invasive and estrogen receptor α (ERα)-positive MCF-7 and SKOV-3 cancer cells.
Methods
MCF-7 and SKOV-3 cells were stably transfected with the wild-type, degradation-resistant full-length or helix-loop-helix (HLH)-deleted Id2, respectively. Protein levels of Id2 and its mutants and E-cadherin were determined by western blot analysis and mRNA levels of Id2 and its mutants were determined by RT-PCR. The effects of Id2 and its mutants on cell proliferation were determined by [3H]-thymidine incorporation assay and the 3- [4, 5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromide (MTT) dye method. The in vitro invasion potential of cells was evaluated by Transwell assay. Cell motility was assessed by scratch wound assay. The promoter activity of E-cadherin was determined by cotransfection and luciferase assays.
Results
Ectopic transfection of the wild-type Id2 markedly increased the protein and mRNA expression of Id2 in MCF-7 and SKOV-3 cells; the protein level but not mRNA level was further increased by transfection with the degradation-resistant Id2 form. The ectopic expression of Id2 or its mutants did not alter proliferation of either MCF-7 or SKOV-3 cells. Transfection of the wild-type Id2 significantly induced the invasion potential and migratory capacity of cells, which was further augmented by transfection with the degradation-resistant full-length or HLH-deleted Id2. E-cadherin protein expression and transactivation of the proximal E-cadherin promoter were markedly suppressed by the degradation-resistant full-length or HLH-deleted Id2 but not wild-type Id2. Ectopic expression of E-cadherin in MCF-7 and SKOV-3 cells only partially blunted the invasion potential induced by the degradation-resistant HLH-deleted Id2.
Conclusion
Overexpression of Id2 in ERα-positive epithelial tumor cells indeed increases the cells' invasive potential through a novel mechanism independent of dimerization to basic helix-loop-helix factors. E-cadherin contributes only in part to Id2-induced cell invasion when Id2 is accumulated to a higher level in some specific cell types.
doi:10.1186/1471-2407-9-75
PMCID: PMC2654660  PMID: 19257909
24.  Resealing of Electroporation of Porcine Epidermis using Phospholipids and Poloxamers 
The resealing of porcine epidermis after electroporation is investigated. Porcine epidermis was subjected to electroporation (30 pulses at 100 V, 1 msec and at 1 Hz) in a vertical diffusion apparatus, in the presence of 2 mg/ml dimyristoylphosphatiylserine, to produce a long lasting permeable state. Resealing treatments include incubation in 0.0625–0.25 mM poloxamer P188, or incorporation of phosphatidylcholines (PC) and/or cationic lipids with additional pulses. The recovery of electric resistance of the epidermis samples after electroporation with or without resealing treatments was monitored. The transports of carboxyfluorescein and glucose were measured during the recovery process. Both P188 and PC were effective in resealing in terms of electric conductance and transport, with P188 reacting more rapidly and completely. P188 mediated lipid exchange between stratum corneum lipid particles was measured by FRET. Lipid reorganization facilitated by P188 and PC is suggested to be a major resealing mechanism of electroporation damage.
doi:10.1016/j.ijpharm.2006.12.006
PMCID: PMC2040332  PMID: 17267148
Electroporation; Transdermal; Drug Delivery; Lipids; Poloxamer; Recovery

Results 1-24 (24)