Search tips
Search criteria

Results 1-10 (10)

Clipboard (0)

Select a Filter Below

Year of Publication
Document Types
author:("rabat, Rashmi")
Muscle & nerve  2009;39(5):591-602.
The availability of animal models for Duchenne muscular dystrophy has led to extensive preclinical research on potential therapeutics. Few studies have focused on reliability and sensitivity of endpoints for mdx mouse drug trials. Therefore, we sought to compare a wide variety of reported and novel endpoint measures in exercised mdx and normal control mice at 10, 20, and 40 weeks of age. Statistical analysis as well as power calculations for expected effect sizes in mdx preclinical drug trials across different ages showed that body weight, normalized grip strength, horizontal activity, rest time, cardiac function measurements, blood pressure, total central/peripheral nuclei per fiber, and serum creatine kinase are the most effective measurements for detecting drug-induced changes. These data provide an experimental basis upon which standardization of preclinical drug testing can be developed.
PMCID: PMC4116326  PMID: 19260102
Duchenne muscular dystrophy; mdx mouse; preclinical trials; statistical analysis; phenotyping; muscle function tests; exercise; echocardiography
2.  The molecular basis of skeletal muscle weakness in a mouse model of inflammatory myopathy 
Arthritis and rheumatism  2012;64(11):3750-3759.
It is generally believed that muscle weakness in patients with polymyositis and dermatomyositis is due to autoimmune and inflammatory processes. However, it has been observed that there is a poor correlation between the suppression of inflammation and a recovery of muscle function in patients. We have therefore hypothesized that non-immune mechanisms also contribute to muscle weakness. In particular, it has been suggested that an acquired deficiency of AMP deaminase (AMPD1) may be responsible for muscle weakness in myositis.
We have used comprehensive functional, behavioral, histological, molecular, enzymatic and metabolic assessments before and after the onset of inflammation in MHC class I mouse model of autoimmune inflammatory myositis.
We found that muscle weakness and metabolic disturbances were detectable in the mice prior to the appearance of infiltrating mononuclear cells. Force contraction analysis of muscle function revealed that weakness was correlated with AMDP1 expression and was myositis-specific. We also demonstrated that decreasing AMPD1 expression results in decreased muscle strength in healthy mice. Fiber typing suggested that fast-twitch muscles are converted to slow-twitch muscles as myositis progresses, and microarray results indicated that AMPD1 and other purine nucleotide pathway genes are suppressed, along with genes essential to glycolysis.
These data suggest that an AMPD1 deficiency is acquired prior to overt muscle inflammation and is responsible, at least in part, for the muscle weakness that occurs in the mouse model of myositis. AMPD1 is therefore a potential therapeutic target in myositis.
PMCID: PMC3485437  PMID: 22806328
3.  The role of tumor necrosis factor-α-related apoptosis-inducing ligand (TRAIL) in mediating autophagy in myositis skeletal muscle: A potential non-immune mechanism of muscle damage 
Arthritis and rheumatism  2011;63(11):3448-3457.
Multinucleated cells are relatively resistant to classical apoptosis, and the factors initiating cell-death and damage in myositis are not well defined. We hypothesized that non-immune autophagic cell death may play a role in muscle fiber damage. Recent literature indicates that tumor necrosis factor-alpha-related apoptosis inducing ligand (TRAIL) may induce both NFκB (nuclear factor kappa-light chain enhancer of activated B cells) activation and autophagic cell death in other systems. Here, we have investigated its role in cell death and pathogenesis in vitro and in vivo using myositis (human and mouse) muscle tissues.
Gene expression profiling indicated that expression of TRAIL and several autophagy markers was specifically upregulated in myositis muscle tissue; these results were confirmed by immunohistochemistry and immunoblotting. We also analyzed TRAIL-induced cell death (apoptosis and autophagy) and NFκB activation in vitro in cultured cells.
TRAIL was expressed predominantly in muscle fibers of myositis, but not in biopsies from normal or other dystrophic-diseased muscle. Autophagy markers were upregulated in human and mouse models of myositis. TRAIL expression was restricted to regenerating/atrophic areas of muscle fascicles, blood vessels, and infiltrating lymphocytes. TRAIL induced NFκB activation and IκB degradation in cultured cells that are resistant to TRAIL-induced apoptosis but undergo autophagic cell death.
Our data demonstrate that TRAIL is expressed in myositis muscle and may mediate both activation of NFκB and autophagic cell death in myositis. Thus, this non-immune pathway may be an attractive target for therapeutic intervention in myositis.
PMCID: PMC3203318  PMID: 21769834
7.  Functional and Molecular Effects of Arginine Butyrate and Prednisone on Muscle and Heart in the mdx Mouse Model of Duchenne Muscular Dystrophy 
PLoS ONE  2010;5(6):e11220.
The number of promising therapeutic interventions for Duchenne Muscular Dystrophy (DMD) is increasing rapidly. One of the proposed strategies is to use drugs that are known to act by multiple different mechanisms including inducing of homologous fetal form of adult genes, for example utrophin in place of dystrophin.
Methodology/Principal Findings
In this study, we have treated mdx mice with arginine butyrate, prednisone, or a combination of arginine butyrate and prednisone for 6 months, beginning at 3 months of age, and have comprehensively evaluated the functional, biochemical, histological, and molecular effects of the treatments in this DMD model. Arginine butyrate treatment improved grip strength and decreased fibrosis in the gastrocnemius muscle, but did not produce significant improvement in muscle and cardiac histology, heart function, behavioral measurements, or serum creatine kinase levels. In contrast, 6 months of chronic continuous prednisone treatment resulted in deterioration in functional, histological, and biochemical measures. Arginine butyrate-treated mice gene expression profiling experiments revealed that several genes that control cell proliferation, growth and differentiation are differentially expressed consistent with its histone deacetylase inhibitory activity when compared to control (saline-treated) mdx mice. Prednisone and combination treated groups showed alterations in the expression of genes that control fibrosis, inflammation, myogenesis and atrophy.
These data indicate that 6 months treatment with arginine butyrate can produce modest beneficial effects on dystrophic pathology in mdx mice by reducing fibrosis and promoting muscle function while chronic continuous treatment with prednisone showed deleterious effects to skeletal and cardiac muscle. Our results clearly indicate the usefulness of multiple assays systems to monitor both beneficial and toxic effects of drugs with broad range of in vivo activity.
PMCID: PMC2888587  PMID: 20574530
8.  Sexual dimorphism in immune response genes as a function of puberty 
BMC Immunology  2006;7:2.
Autoimmune diseases are more prevalent in females than in males, whereas males have higher mortality associated with infectious diseases. To increase our understanding of this sexual dimorphism in the immune system, we sought to identify and characterize inherent differences in immune response programs in the spleens of male and female mice before, during and after puberty.
After the onset of puberty, female mice showed a higher expression of adaptive immune response genes, while males had a higher expression of innate immune genes. This result suggested a requirement for sex hormones. Using in vivo and in vitro assays in normal and mutant mouse strains, we found that reverse signaling through FasL was directly influenced by estrogen, with downstream consequences of increased CD8+ T cell-derived B cell help (via cytokines) and enhanced immunoglobulin production.
These results demonstrate that sexual dimorphism in innate and adaptive immune genes is dependent on puberty. This study also revealed that estrogen influences immunoglobulin levels in post-pubertal female mice via the Fas-FasL pathway.
PMCID: PMC1402325  PMID: 16504066
9.  Endothelial cell activation and neovascularization are prominent in dermatomyositis 
While vascular and immune abnormalities are common in juvenile and adult dermatomyositis (DM), the molecular changes that contribute to these abnormalities are not clear. Therefore, we investigated pathways that facilitate new blood vessel formation and dendritic cell migration in dermatomyositis.
Muscle biopsies from subjects with DM (9 children and 6 adults) and non-myositis controls (6 children and 7 adults) were investigated by immunohistochemistry using antibodies that recognize existing (anti-CD146) and newly formed blood vessels (anti-αVβ3) and mature dendritic cells (anti-DC-LAMP). Blood vessel quantification was performed by digitalized image analysis. Additional muscle biopsies from subjects with adult DM and non-myositis controls were used for global gene expression profiling experiments.
A significant increase in neovascularization was found in muscle biopsies of DM patients; neovascularization (αVβ3 positive capillaries and vessels per muscle fiber) was much higher in juvenile than in adult DM patients (control vs juvenile DM: Mean ± SE: 0.06 ± 0.01 vs 0.6 ± 0.05; p < 0.0001 and control vs adult DM: Mean ± SE: 0.60 ± 0.1 vs 0.75 ± 0.1; p = 0.051). Gene expression analysis demonstrated that genes that participate not only in angiogenesis but also in leukocyte trafficking and the complement cascade were highly up regulated in DM muscle in comparison to age matched controls. DC-LAMP positive dendritic cells were highly enriched at perivascular inflammatory sites in juvenile and adult DM patients along with molecules that facilitate dendritic cell transmigration and reverse transmigration (CD142 and CD31).
These results suggest active neovascularization and endothelial cell activation in both juvenile and adult DM. It is likely that close association of monocytes with endothelial cells initiate rapid dendritic cell maturation and an autoimmune response in DM.
PMCID: PMC1397829  PMID: 16504012
10.  Membrane Raft-Dependent Regulation of Phospholipase Cγ-1 Activation in T Lymphocytes 
Molecular and Cellular Biology  2001;21(20):6939-6950.
Numerous signaling molecules associate with lipid rafts, either constitutively or after engagement of surface receptors. One such molecule, phospholipase Cγ-1 (PLCγ1), translocates from the cytosol to lipid rafts during T-cell receptor (TCR) signaling. To investigate the role played by lipid rafts in the activation of this molecule in T cells, an influenza virus hemagglutinin A (HA)-tagged PLCγ1 was ectopically expressed in Jurkat T cells and targeted to these microdomains by the addition of a dual-acylation signal. Raft-targeted PLCγ1 was constitutively tyrosine phosphorylated and induced constitutive NF-AT-dependent transcription and interleukin-2 secretion in Jurkat cells. Tyrosine phosphorylation of raft-targeted PLCγ1 did not require Zap-70 or the interaction with the adapters Lat and Slp-76, molecules that are necessary for TCR signaling. In contrast, the Src family kinase Lck was required. Coexpression in HEK 293T cells of PLCγ1-HA with Lck or the Tec family kinase Rlk resulted in preferential phosphorylation of raft-targeted PLCγ1 over wild-type PLCγ1. These data show that localization of PLCγ1 in lipid rafts is sufficient for its activation and demonstrate a role for lipid rafts as microdomains that dynamically segregate and integrate PLCγ1 with other signaling components.
PMCID: PMC99870  PMID: 11564877

Results 1-10 (10)