PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-2 (2)
 

Clipboard (0)
None

Select a Filter Below

Journals
Authors
Year of Publication
Document Types
1.  Comparing and Contrasting the Roles of AMPK and SIRT1 in Metabolic Tissues 
Cell cycle (Georgetown, Tex.)  2008;7(23):3669-3679.
The ability to adapt and respond to nutrients is an ancient cellular function, conserved from unicellular to the most complex multicellular organisms, including mammals. Mammals adapt to changes in nutritional status through the modulation of tissue-specific metabolic pathways so as to maintain energy homeostasis. At least two proteins are activated in response to reduced nutrient availability: AMP-activated protein kinase (AMPK) and NAD+-dependent deacetylase SIRT1. AMPK functions as a sensor of cellular energy status and as a master regulator of metabolism. When ATP levels decrease, AMPK is activated to boost ATP production and to inhibit ATP usage, thus restoring energy balance. Similarly, SIRT1 is activated in response to changes in the energy status to promote transcription of genes that mediate the metabolic response to stress, starvation, or calorie restriction. Several observations support a model where, in response to stress and reduced nutrients, a metabolic pathway is activated within which AMPK and SIRT1 concordantly function to ensure an appropriate cellular response and adaptation to environmental modifications. In this perspective, we compare and contrast the roles of SIRT1 and AMPK in several metabolic tissues and propose a working model of how the AMPK-SIRT1 axis may be regulated to control functions relevant to organismal physiology and pathophysiology.
PMCID: PMC2607479  PMID: 19029811
SIRT1; AMPK; Nampt; PGC1-α; Calorie Restriction; Starvation; Gluconeogenesis; Insulin
2.  Glucose Restriction Inhibits Skeletal Myoblast Differentiation by Activating SIRT1 through AMPK-Mediated Regulation of Nampt 
Developmental cell  2008;14(5):661-673.
SUMMARY
It is intuitive to speculate that nutrient availability may influence differentiation of mammalian cells. Nonetheless, a comprehensive complement of the molecular determinants involved in this process has not been elucidated yet. Here, we have investigated how nutrients (glucose) affect skeletal myogenesis. Glucose restriction (GR) impaired differentiation of skeletal myoblasts and was associated with activation of the AMP-activated protein kinase (AMPK). Activated AMPK was required to promote GR-induced transcription of the NAD+ biosynthetic enzyme Nampt. Indeed, GR augmented the Nampt activity, which consequently modified the intracellular [NAD+]/[NADH] ratio and nicotinamide levels, and mediated inhibition of skeletal myogenesis. Skeletal myoblasts derived from SIRT1+/− heterozygous mice were resistant to the effects of either GR or AMPK activation. These experiments reveal that AMPK, Nampt, and SIRT1 are the molecular components of a functional signaling pathway that allows skeletal muscle cells to sense and react to nutrient availability.
doi:10.1016/j.devcel.2008.02.004
PMCID: PMC2431467  PMID: 18477450

Results 1-2 (2)