Search tips
Search criteria

Results 1-10 (10)

Clipboard (0)

Select a Filter Below

Year of Publication
Document Types
1.  Drosophila Mcm10 Is Required for DNA Replication and Differentiation in the Compound Eye 
PLoS ONE  2014;9(3):e93450.
Mini chromosome maintenance 10 (Mcm10) is an essential protein, which is conserved from S. cerevisiae to Drosophila and human, and is required for the initiation of DNA replication. Knockdown of Drosophila Mcm10 (dMcm10) by RNA interference in eye imaginal discs induces abnormal eye morphology (rough eye phenotype), and the number of ommatidia is decreased in adult eyes. We also observed a delay in the S phase and M phase in eye discs of dMcm10 knockdown fly lines. These results show important roles for dMcm10 in the progression of S and M phases. Furthermore, genome damage and apoptosis were induced by dMcm10 knockdown in eye imaginal discs. Surprisingly, when we used deadpan-lacZ and klingon-lacZ enhancer trap lines to monitor the photoreceptor cells in eye discs, knockdown of dMcm10 by the GMR-GAL4 driver reduced the signals of R7 photoreceptor cells. These data suggest an involvement of dMcm10 in R7 cell differentiation. This involvement appears to be independent of the apoptosis induced by dMcm10 knockdown. Together, these results suggest that dMcm10 knockdown has an effect on DNA replication and R7 cell differentiation.
PMCID: PMC3970972  PMID: 24686397
2.  Functional analysis of Drosophila DNA polymerase ε p58 subunit 
DNA polymerase ε (polε) plays a central role in DNA replication in eukaryotic cells, and has been suggested to the main synthetic polymerase on the leading strand. It is a hetero-tetrameric enzyme, comprising a large catalytic subunit (the A subunit ~250 kDa), a B subunit of ~60 kDa in most species (~80 kDa in budding yeast) and two smaller subunits (each ~20 kDa). In Drosophila, two subunits of polε (dpolε) have been identified. One is the 255 kDa catalytic subunit (dpolεp255), and the other is the 58 kDa subunit (dpolεp58). The functions of the B subunit have been mainly studied in budding yeast and mammalian cell culture, few studies have been performed in the context of an intact multicellular organism and therefore its functions in this context remain poorly understood. To address this we examined the in vivo role of dpolεp58 in Drosophila. A homozygous dpolεp58 mutant is pupal lethal, and the imaginal discs are less developed in the third instar larvae. In the eye discs of this mutant S phases, as measured by BrdU incorporation assays, were significantly reduced. In addition staining with an anti-phospho histone H3 (PH3) antibody, (a marker of M phase), was increased in the posterior region of eye discs, where usually cells stop replicating and start differentiation. These results indicate that dpolεp58 is essential for Drosophila development and plays an important role in progression of S phase in mitotic cell cycles. We also observed that the size of nuclei in salivary gland cells were decreased in dpolεp58 mutant, indicating that dpolεp58 also plays a role in endoreplication. Furthermore we detect a putative functional interaction between dpolε and ORC2 in discs suggesting that polε plays a role in the initiation of DNA replication in Drosophila.
PMCID: PMC3816967  PMID: 24224125
DNA polymerase ε B subunit; Drosophila melanogaster
3.  Drosophila RecQ4 Is Directly Involved in Both DNA Replication and the Response to UV Damage in S2 Cells 
PLoS ONE  2012;7(11):e49505.
The RecQ4 protein shows homology to both the S.cerevisiae DNA replication protein Sld2 and the DNA repair related RecQ helicases. Experimental data also suggest replication and repair functions for RecQ4, but the precise details of its involvement remain to be clarified.
Here we show that depletion of DmRecQ4 by dsRNA interference in S2 cells causes defects consistent with a replication function for the protein. The cells show reduced proliferation associated with an S phase block, reduced BrdU incorporation, and an increase in cells with a subG1 DNA content. At the molecular level we observe reduced chromatin association of DNA polymerase-alpha and PCNA. We also observe increased chromatin association of phosphorylated H2AvD - consistent with the presence of DNA damage and increased apoptosis.
Analysis of DmRecQ4 repair function suggests a direct role in NER, as the protein shows rapid but transient nuclear localisation after UV treatment. Re-localisation is not observed after etoposide or H2O2 treatment, indicating that the involvement of DmRecQ4 in repair is likely to be pathway specific.
Deletion analysis of DmRecQ4 suggests that the SLD2 domain was essential, but not sufficient, for replication function. In addition a DmRecQ4 N-terminal deletion could efficiently re-localise on UV treatment, suggesting that the determinants for this response are contained in the C terminus of the protein. Finally several deletions show differential rescue of dsRNA generated replication and proliferation phenotypes. These will be useful for a molecular analysis of the specific role of DmRecQ4 in different cellular pathways.
PMCID: PMC3500301  PMID: 23166690
4.  Decreased MCM2-6 in Drosophila S2 Cells Does Not Generate Significant DNA Damage or Cause a Marked Increase in Sensitivity to Replication Interference 
PLoS ONE  2011;6(11):e27101.
A reduction in the level of some MCM proteins in human cancer cells (MCM5 in U20S cells or MCM3 in Hela cells) causes a rapid increase in the level of DNA damage under normal conditions of cell proliferation and a loss of viability when the cells are subjected to replication interference. Here we show that Drosophila S2 cells do not appear to show the same degree of sensitivity to MCM2-6 reduction. Under normal cell growth conditions a reduction of >95% in the levels of MCM3, 5, and 6 causes no significant short term alteration in the parameters of DNA replication or increase in DNA damage. MCM depleted cells challenged with HU do show a decrease in the density of replication forks compared to cells with normal levels of MCM proteins, but this produces no consistent change in the levels of DNA damage observed. In contrast a comparable reduction of MCM7 levels has marked effects on viability, replication parameters and DNA damage in the absence of HU treatment.
PMCID: PMC3216938  PMID: 22102875
5.  GINS Inactivation Phenotypes Reveal Two Pathways for Chromatin Association of Replicative α and ε DNA Polymerases in Fission Yeast 
Molecular Biology of the Cell  2009;20(4):1213-1222.
The tetrameric GINS complex, consisting of Sld5-Psf1-Psf2-Psf3, plays an essential role in the initiation and elongation steps of eukaryotic DNA replication, although its biochemical function is unclear. Here we investigate the function of GINS in fission yeast, using fusion of Psf1 and Psf2 subunits to a steroid hormone-binding domain (HBD) to make GINS function conditional on the presence of β-estradiol. We show that inactivation of Psf1-HBD causes a tight but rapidly reversible DNA replication arrest phenotype. Inactivation of Psf2-HBD similarly blocks premeiotic DNA replication and leads to loss of nuclear localization of another GINS subunit, Psf3. Inactivation of GINS has distinct effects on the replication origin association and chromatin binding of two of the replicative DNA polymerases. Inactivation of Psf1 leads to loss of chromatin binding of DNA polymerase ε, and Cdc45 is similarly affected. In contrast, chromatin association of the catalytic subunit of DNA polymerase α is not affected by defective GINS function. We suggest that GINS functions in a pathway that involves Cdc45 and is necessary for DNA polymerase ε chromatin binding, but that a separate pathway sets up the chromatin association of DNA polymerase α.
PMCID: PMC2642745  PMID: 19109429
6.  DNAReplication: a database of information and resources for the eukaryotic DNA replication community 
Nucleic Acids Research  2008;37(Database issue):D837-D839.
DNAReplication (at has been set up as a freely available single resource to facilitate access to information on eukaryotic DNA replication. This database summarizes organism-sorted data on replication proteins in the categories of nomenclature, biochemical properties, motifs, interactions, modifications, structure, cell localization and expression, and general comments. Replication concepts are defined and a general model of the steps in DNA replication is presented. Links to relevant websites and homepages of replication labs are provided. The site also has an interactive section where links to recent replication papers are posted and readers are provided with the facility to post comments about each paper. The interactive and links pages are modified weekly and the whole site is updated annually.
PMCID: PMC2686454  PMID: 18931374
7.  The Human TPR Protein TTC4 Is a Putative Hsp90 Co-Chaperone Which Interacts with CDC6 and Shows Alterations in Transformed Cells 
PLoS ONE  2008;3(3):e1737.
The human TTC4 protein is a TPR (tetratricopeptide repeat) motif-containing protein. The gene was originally identified as being localized in a genomic region linked to breast cancer and subsequent studies on melanoma cell lines revealed point mutations in the TTC4 protein that may be associated with the progression of malignant melanoma.
Methodology/Principle Findings
Here we show that TTC4 is a nucleoplasmic protein which interacts with HSP90 and HSP70, and also with the replication protein CDC6. It has significant structural and functional similarities with a previously characterised Drosophila protein Dpit47. We show that TTC4 protein levels are raised in malignant melanoma cell lines compared to melanocytes. We also see increased TTC4 expression in a variety of tumour lines derived from other tissues. In addition we show that TTC4 proteins bearing some of the mutations previously identified from patient samples lose their interaction with the CDC6 protein.
Based on these results and our previous work with the Drosophila Dpit47 protein we suggest that TTC4 is an HSP90 co-chaperone protein which forms a link between HSP90 chaperone activity and DNA replication. We further suggest that the loss of the interaction with CDC6 or with additional client proteins could provide one route through which TTC4 could influence malignant development of cells.
PMCID: PMC2253824  PMID: 18320024
8.  Differential Requirements for MCM Proteins in DNA Replication in Drosophila S2 Cells 
PLoS ONE  2007;2(9):e833.
The MCM2-7 proteins are crucial components of the pre replication complex (preRC) in eukaryotes. Since they are significantly more abundant than other preRC components, we were interested in determining whether the entire cellular content was necessary for DNA replication in vivo.
Methodology/Principle Findings
We performed a systematic depletion of the MCM proteins in Drosophila S2 cells using dsRNA-interference. Reducing MCM2-6 levels by >95–99% had no significant effect on cell cycle distribution or viability. Depletion of MCM7 however caused an S-phase arrest. MCM2-7 depletion produced no change in the number of replication forks as measured by PCNA loading. We also depleted MCM8. This caused a 30% reduction in fork number, but no significant effect on cell cycle distribution or viability. No additive effects were observed by co-depleting MCM8 and MCM5.
These studies suggest that, in agreement with what has previously been observed for Xenopus in vitro, not all of the cellular content of MCM2-6 proteins is needed for normal cell cycling. They also reveal an unexpected unique role for MCM7. Finally they suggest that MCM8 has a role in DNA replication in S2 cells.
PMCID: PMC1950684  PMID: 17786205
9.  Nearest neighbour analysis of MCM protein complexes in Drosophila melanogaster 
Nucleic Acids Research  2001;29(23):4834-4842.
The MCM proteins are a group of six proteins whose action is vital for DNA replication in eukaryotes. It has been suggested that they constitute the replicative helicase, with a subset of the proteins forming the catalytic helicase (MCM4,6,7) while the others have a loading or control function. In this paper we show that all six MCM proteins are present in equivalent amounts in soluble extracts and on chromatin. We have also analysed soluble and chromatin-associated MCM protein complexes under different conditions. This suggests that all six MCM proteins are always found in a complex with each other, although the interaction between the individual MCM proteins is not equivalent as stringent salt conditions are able to break the intact complex into a number of stable subcomplexes. These data contribute to the ongoing debate about the nature of MCM complexes, supporting the hypothesis that they act as a heterohexamer rather than as a number of different subcomplexes. Finally, using protein–protein cross-linking we have shown that MCM2 interacts directly with MCM5 and MCM6; MCM5 with MCM3 and MCM2; and MCM6 with MCM2 and MCM4. This provides the first direct information about specific subunit contacts in the MCM complex.
PMCID: PMC96677  PMID: 11726693
10.  Localisation of the DmCdc45 DNA replication factor in the mitotic cycle and during chorion gene amplification 
Nucleic Acids Research  2000;28(20):3897-3903.
The cdc45 protein was originally identified in Saccharomyces cerevisiae and shown to be essential for initiation of eukaryotic DNA replication. Subsequent isolation and characterisation of the corresponding genes from fission yeast, Xenopus and mammals also support a replication role for the protein in these species. They further suggest that during the course of its function cdc45 interacts with a number of other replication proteins, including minichromosome maintenance proteins, the origin recognition complex and DNA polymerase α. We have cloned the gene coding for cdc45 protein from Drosophila melanogaster. We have analysed the expression pattern of the cdc45 protein throughout the cell cycle and the life cycle using a combination of indirect immunofluorescence and subcellular fractionation. Our data show that cellular localisation and developmental regulation of the protein is consistent with a role in DNA replication. DmCdc45 is predominantly expressed in proliferating cells. In addition, its subcellular location is nuclear during interphase and the protein shows association with chromatin. The chromatin-associated form of the protein shows a post-translational modification, which may be involved in control of the action of the protein. DmCdc45 shows interactions with mcm proteins, however, the interactions detected show some specificity, perhaps suggesting a preferential association with particular mcm proteins. In addition we show that a stoichiometric mcm interaction may not be obligatory for the function of cdc45 in follicle cell replication, because, unlike the mcm proteins, DmCdc45 localises to the chorion amplification foci in the follicle cells of the ovary.
PMCID: PMC110785  PMID: 11024168

Results 1-10 (10)