Search tips
Search criteria

Results 1-2 (2)

Clipboard (0)

Select a Filter Below

more »
Year of Publication
Document Types
1.  Dosimetric predictors of hypothyroidism in oropharyngeal cancer patients treated with intensity-modulated radiation therapy 
Radiation to the neck has long been associated with an elevated risk of hypothyroidism development. The goal of the present work is to define dosimetric predictors of hypothyroidism in oropharyngeal cancer (OPC) patients treated with intensity-modulated radiation therapy.
Data for 123 patients, with a median follow up of 4.6 years, were retrospectively analyzed. Patients with elevated thyroid-stimulating hormone levels or with a clinical diagnosis were categorized as hypothyroid. Patient demographic parameters, thyroid volume, mean thyroid dose, the percent of thyroid volume receiving minimum specified dose levels (VxxGy), and the absolute thyroid volume spared from specified dose levels (VSxxGy) were analyzed. Normal-tissue complication probability (NTCP) was also calculated using several recently published models.
Thyroid volume and many radiation dosimetric parameters were statistically different in the hypothyroid group. For the patients with initial thyroid volumes of 8 cc or greater, several dosimetric parameters were found to define subgroups at statistically significant lower risk of developing hypothyroidism. Patients with VS45 Gy of at least 3 cc, VS50 Gy at least 5 cc, VS50 Gy at least 6 cc, V50 Gy below 45%, V50 Gy below 55%, or mean thyroid dose below 49 Gy had a 28-38% estimated risk of hypothyroidism at 3 years compared to a 55% risk for the entire study group. Patients with a NTCP of less than 0.75 or 0.8, calculated using recently published models, were also observed to have a lower risk of developing hypothyroidism.
Based on long-term follow up data for OPC patients treated with IMRT, we recommend plan optimization objectives to reduce the volume of thyroid receiving over 45 Gy to significantly decrease the risk of developing hypothyroidism.
Electronic supplementary material
The online version of this article (doi:10.1186/s13014-014-0269-4) contains supplementary material, which is available to authorized users.
PMCID: PMC4265326  PMID: 25476839
Oropharyngeal cancer; Hypothyroidism; Intensity-modulated radiation therapy; Normal tissue toxicity
2.  The PEPR GeneChip data warehouse, and implementation of a dynamic time series query tool (SGQT) with graphical interface 
Nucleic Acids Research  2004;32(Database issue):D578-D581.
Publicly accessible DNA databases (genome browsers) are rapidly accelerating post-genomic research (see, with integrated genomic DNA, gene structure, EST/ splicing and cross-species ortholog data. DNA databases have relatively low dimensionality; the genome is a linear code that anchors all associated data. In contrast, RNA expression and protein databases need to be able to handle very high dimensional data, with time, tissue, cell type and genes, as interrelated variables. The high dimensionality of microarray expression profile data, and the lack of a standard experimental platform have complicated the development of web-accessible databases and analytical tools. We have designed and implemented a public resource of expression profile data containing 1024 human, mouse and rat Affymetrix GeneChip expression profiles, generated in the same laboratory, and subject to the same quality and procedural controls (Public Expression Profiling Resource; PEPR). Our Oracle-based PEPR data warehouse includes a novel time series query analysis tool (SGQT), enabling dynamic generation of graphs and spreadsheets showing the action of any transcript of interest over time. In this report, we demonstrate the utility of this tool using a 27 time point, in vivo muscle regeneration series. This data warehouse and associated analysis tools provides access to multidimensional microarray data through web-based interfaces, both for download of all types of raw data for independent analysis, and also for straightforward gene-based queries. Planned implementations of PEPR will include web-based remote entry of projects adhering to quality control and standard operating procedure (QC/SOP) criteria, and automated output of alternative probe set algorithms for each project (see
PMCID: PMC308738  PMID: 14681485

Results 1-2 (2)