Search tips
Search criteria

Results 1-8 (8)

Clipboard (0)

Select a Filter Below

Year of Publication
Document Types
author:("Wu, danhong")
1.  microPET of Tumor Integrin αvβ3 Expression Using 18F-Labeled PEGylated Tetrameric RGD Peptide (18F-FPRGD4) 
In vivo imaging of αvβ3 expression has important diagnostic and therapeutic applications. Multimeric cyclic RGD peptides are capable of improving the integrin αvβ3–binding affinity due to the polyvalency effect. Here we report an example of 18F-labeled tetrameric RGD peptide for PET of αvβ3 expression in both xenograft and spontaneous tumor models.
The tetrameric RGD peptide E{E[c(RGDyK)]2}2 was derived with amino-3,6,9-trioxaundecanoic acid (mini-PEG; PEG is poly(ethylene glycol)) linker through the glutamate α-amino group. NH2-mini-PEG-E{E[c(RGDyK)]2}2 (PRGD4) was labeled with 18F via the N-succinimidyl-4-18F-fluorobenzoate (18F-SFB) prosthetic group. The receptor-binding characteristics of the tetrameric RGD peptide tracer 18F-FPRGD4 were evaluated in vitro by a cell-binding assay and in vivo by quantitative microPET imaging studies.
The decay-corrected radiochemical yield for 18F-FPRGD4 was about 15%, with a total reaction time of 180 min starting from 18F-F−. The PEGylation had minimal effect on integrin-binding affinity of the RGD peptide. 18F-FPRGD4 has significantly higher tumor uptake compared with monomeric and dimeric RGD peptide tracer analogs. The receptor specificity of 18F-FPRGD4 in vivo was confirmed by effective blocking of the uptake in both tumors and normal organs or tissues with excess c(RGDyK).
The tetrameric RGD peptide tracer 18F-FPRGD4 possessing high integrin-binding affinity and favorable biokinetics is a promising tracer for PET of integrin αvβ3 expression in cancer and other angiogenesis related diseases.
PMCID: PMC4183663  PMID: 17704249
microPET; integrin αvβ3; tetrameric RGD peptide; PEGylation; 18F
2.  Click Chemistry for 18F-Labeling of RGD Peptides and microPET Imaging of Tumor Integrin αvβ3 Expression 
Bioconjugate chemistry  2007;18(6):1987-1994.
The cell adhesion molecule integrin αvβ3 plays a key role in tumor angiogenesis and metastasis. A series of 18F-labeled RGD peptides have been developed for PET of integrin expression based on primary amine reactive prosthetic groups. In this study, we report the use of the Cu(I)-catalyzed Huisgen cycloaddition, also known as a click reaction, to label RGD peptides with 18F by forming 1,2,3-triazoles. Nucleophilic fluorination of a toluenesulfonic alkyne provided 18F-alkyne in high yield (nondecay-corrected yield: 65.0 ± 1.9%, starting from the azeotropically dried 18F-fluoride), which was then reacted with an RGD azide (nondecay-corrected yield: 52.0 ± 8.3% within 45 min including HPLC purification). The 18F-labeled peptide was subjected to microPET studies in murine xenograft models. Murine microPET experiments showed good tumor uptake (2.1 ± 0.4%ID/g at 1 h postinjection (p.i.)) with rapid renal and hepatic clearance of 18F-fluoro-PEG-triazoles-RGD2 (18F-FPTA-RGD2) in a subcutaneous U87MG glioblastoma xenograft model (kidney 2.7 ± 0.8%ID/g; liver 1.9 ± 0.4%ID/g at 1 h p.i.). Metabolic stability of the newly synthesized tracer was also analyzed (intact tracer ranging from 75% to 99% at 1 h p.i.). In brief, the new tracer 18F-FPTA-RGD2 was synthesized with high radiochemical yield and high specific activity. This tracer exhibited good tumor-targeting efficacy and relatively good metabolic stability, as well as favorable in vivo pharmacokinetics. This new 18F labeling method based on click reaction may also be useful for radiolabeling of other biomolecules with azide groups in high yield.
PMCID: PMC4183694  PMID: 18030991
3.  18F-labeled mini-PEG spacered RGD dimer (18F-FPRGD2): synthesis and microPET imaging of αvβ3 integrin expression 
We have previously reported that 18F-FB-E[c(RGDyK)]2 (18F-FRGD2) allows quantitative PET imaging of integrin αvβ3 expression. However, the potential clinical translation was hampered by the relatively low radiochemical yield. The goal of this study was to improve the radiolabeling yield, without compromising the tumor targeting efficiency and in vivo kinetics, by incorporating a hydrophilic bifunctional mini-PEG spacer.
18F-FB-mini-PEG-E[c(RGDyK)]2 (18F-FPRGD2) was synthesized by coupling N-succinimidyl-4-18F-fluorobenzoate (18F-SFB) with NH2-mini-PEG-E[c(RGDyK)]2 (denoted as PRGD2). In vitro receptor binding affinity, metabolic stability, and integrin αvβ3 specificity of the new tracer 18F-FPRGD2 were assessed. The diagnostic value of 18F-FPRGD2 was evaluated in subcutaneous U87MG glioblastoma xenografted mice and in c-neu transgenic mice by quantitative microPET imaging studies.
The decay-corrected radiochemical yield based on 18F-SFB was more than 60% with radiochemical purity of >99%. 18F-FPRGD2 had high receptor binding affinity, metabolic stability, and integrin αvβ3-specific tumor uptake in the U87MG glioma xenograft model comparable to those of 18F-FRGD2. The kidney uptake was appreciably lower for 18F-FPRGD2 compared with 18F-FRGD2 [2.0±0.2%ID/ g for 18F-FPRGD2 vs 3.0±0.2%ID/g for 18F-FRGD2 at 1 h post injection (p.i.)]. The uptake in all the other organs except the urinary bladder was at background level. 18F-FPRGD2 also exhibited excellent tumor uptake in c-neu oncomice (3.6±0.1%ID/g at 30 min p.i.).
Incorporation of a mini-PEG spacer significantly improved the overall radiolabeling yield of 18F-FPRGD2. 18F-FPRGD2 also had reduced renal uptake and similar tumor targeting efficacy as compared with 18F-FRGD2. Further testing and clinical translation of 18F-FRGD2 are warranted.
PMCID: PMC4167588  PMID: 17492285
Integrin αvβ3; Dimeric RGD peptide; Mini-PEG spacer; MicroPET; Fluorine-18
4.  The Synthesis of 18F-FDS and Its Potential Application in Molecular Imaging 
2-Deoxy-2-[18F]fluoro-d-glucose (FDG) is the most commonly used positron emission tomography (PET) tracer for oncological and neurological imaging, but it has limitations on detecting tumor or inflammation in brain gray matter. In this study, we describe the development of 2-deoxy-2-[18F]fluorosorbitol (18F-FDS) and its possible application in lesion detection around brain area.
18F-FDS was obtained by reduction of FDG using NaBH4 (81±4% yield in 30 min). Cell uptake/efflux experiments in cell culture and small animal PET imaging on tumor and inflammation models were performed.
Despite the low accumulation in cell culture, 18F-FDS had good tumor uptake and contrast in the subcutaneous U87MG tumor model (4.54%ID/g at 30 min post-injection). Minimal uptake in the normal mouse brain facilitated good tumor contrast in both U87MG and GL-26 orthotopic tumor models. 18F-FDS also had increased uptake in the inflamed foci of the TPA-induced acute inflammation model.
Because of the ease of synthesis and favorable in vivo kinetics, 18F-FDS may have potential applications in certain cases where FDG is inadequate (e.g., brain tumor).
PMCID: PMC4143166  PMID: 18097725
Positron emission tomography (PET); 2-Deoxy-2-[18F]fluoro-sorbitol (18F-FDS); 2-Deoxy-2-[18F]fluoro-d-glucose (FDG); Brain tumor; Inflammation
5.  64Cu Labeled Sarcophagine Exendin-4 for MicroPET Imaging of Glucagon like Peptide-1 Receptor Expression 
Theranostics  2014;4(8):770-777.
The Glucagon-like peptide 1 receptor (GLP-1R) has become an important target for imaging due to its elevated expression profile in pancreatic islets, insulinoma, and the cardiovascular system. Because native GLP-1 is degraded rapidly by dipeptidyl peptidase-IV (DPP-IV), several studies have conjugated different chelators to a more stable analog of GLP-1 (such as exendin-4) as PET or SPECT imaging agents with various advantages and disadvantages. Based on the recently developed Sarcophagin chelator, here, we describe the construction of GLP-1R targeted PET probes containing monomeric and dimeric exendin-4 subunit. The in vitro binding affinity of BarMalSar-exendin-4 and Mal2Sar-(exendin-4)2 was evaluated in INS-1 cells, which over-express GLP-1R. Mal2Sar-(exendin-4)2 demonstrated around 3 times higher binding affinity compared with BaMalSar-exendin-4. After 64Cu labeling, microPET imaging of 64Cu-BaMalSar-exendin-4 and 64Cu-Mal2Sar-(exendin-4)2 were performed on subcutaneous INS-1 tumors, which were clearly visualized with both probes. The tumor uptake of 64Cu-Mal2Sar-(exendin-4)2 was significantly higher than that of 64Cu-BaMaSarl-exendin-4, which could be caused by polyvalency effect. The receptor specificity of these probes was confirmed by effective blocking of the uptake in both tumor and normal positive organs with 20-fold excess of unlabeled exendin-4. In conclusion, sarcophagine cage conjugated exendin-4 demonstrated persistent and specific uptake in INS-1 insulinoma model. Dimerization of exendin-4 could successfully lead to increased tumor uptake in vivo. Both 64Cu-BaMalSar-exendin-4 and 64Cu-Mal2Sar-(exendin-4)2 hold a great potential for GLP-1R targeted imaging.
PMCID: PMC4063975  PMID: 24955138
exendin-4 dimer; Sarcophagine; PET; 64Cu; insulinoma
6.  Genome Sequence of Corynebacterium glutamicum ATCC 14067, Which Provides Insight into Amino Acid Biosynthesis in Coryneform Bacteria 
Journal of Bacteriology  2012;194(3):742-743.
We report the genome sequence of Corynebacterium glutamicum ATCC 14067 (once named Brevibacterium flavum), which is useful for taxonomy research and further molecular breeding in amino acid production. Preliminary comparison with those of the reported coryneform strains revealed some notable differences that might be related to the difficulties in molecular manipulation.
PMCID: PMC3264075  PMID: 22247536
7.  Genome Sequence of Corynebacterium glutamicum S9114, a Strain for Industrial Production of Glutamate 
Journal of Bacteriology  2011;193(21):6096-6097.
Here we report the genome sequence of Corynebacterium glutamicum S9114, an industrial producer widely used in production of glutamate in China. Preliminary comparison with the sequences of the Corynebacterium glutamicum strains ATCC 13032 and R revealed some notable mutagenesis that might be related to the high yield of glutamate.
PMCID: PMC3194899  PMID: 21994927
8.  Synthesis of a potent and selective 18F-labeled δ-opioid receptor antagonist derived from the Dmt-Tic pharmacophore for PET imaging 
Journal of medicinal chemistry  2008;51(6):1817-1823.
H-Dmt-Tic-ε-Lys(Z)-OH (1) was used in the synthesis of 18F-labeled opioids for positron emission tomography (PET) imaging by coupling N-succinimidyl-4-[18F]fluorobenzoate ([18F]SFB) with Boc-Dmt-Tic-ε-Lys(Z)-OH under slightly basic conditions at 37 °C for 15 min, deprotected with TFA and HPLC purification in 120 min with a decay-corrected radiochemical 25–30% yield of [18F]-1 (n = 5) and specific activity ca. 46 GBq/µmol. Autoradiography uptake of [18F]-1 in striatum and cortex was blocked by 1 and UFP-501 demonstrating specific binding to δ-opioid receptors. MicroPET imaging revealed the absence of [18F]-1 in rat brain, suggesting its suitability for imaging peripheral δ-opioid receptors.
PMCID: PMC2667121  PMID: 18311909

Results 1-8 (8)