PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-6 (6)
 

Clipboard (0)
None

Select a Filter Below

Journals
Year of Publication
Document Types
1.  Effects of Angiopoietin-1 on Hemorrhagic Transformation and Cerebral Edema after Tissue Plasminogen Activator Treatment for Ischemic Stroke in Rats 
PLoS ONE  2014;9(6):e98639.
An angiogenesis factor, angiopoietin-1 (Ang1), is associated with the blood-brain barrier (BBB) disruption after focal cerebral ischemia. However, whether hemorrhagic transformation and cerebral edema after tissue plasminogen activator (tPA) treatment are related to the decrease in Ang1 expression in the BBB remains unknown. We hypothesized that administering Ang1 might attenuate hemorrhagic transformation and cerebral edema after tPA treatment by stabilizing blood vessels and inhibiting hyperpermeability. Sprague-Dawley rats subjected to thromboembolic focal cerebral ischemia were assigned to a permanent ischemia group (permanent middle cerebral artery occlusion; PMCAO) and groups treated with tPA at 1 h or 4 h after ischemia. Endogenous Ang1 expression was observed in pericytes, astrocytes, and neuronal cells. Western blot analyses revealed that Ang1 expression levels on the ischemic side of the cerebral cortex were decreased in the tPA-1h, tPA-4h, and PMCAO groups as compared to those in the control group (P = 0.014, 0.003, and 0.014, respectively). Ang1-positive vessel densities in the tPA-4h and PMCAO groups were less than that in the control group (p = 0.002 and <0.001, respectively) as well as that in the tPA-1h group (p = 0.047 and 0.005, respectively). These results suggest that Ang1-positive vessel density was maintained when tPA was administered within the therapeutic time window (1 h), while it was decreased when tPA treatment was given after the therapeutic time window (4 h). Administering Ang1 fused with cartilage oligomeric protein (COMP) to supplement this decrease has the potential to suppress hemorrhagic transformation as measured by hemoglobin content in a whole cerebral homogenate (p = 0.007) and cerebral edema due to BBB damage (p = 0.038), as compared to administering COMP protein alone. In conclusion, Ang1 might be a promising target molecule for developing vasoprotective therapies for controlling hemorrhagic transformation and cerebral edema after tPA treatment.
doi:10.1371/journal.pone.0098639
PMCID: PMC4045756  PMID: 24896569
2.  Daytime sleepiness in Japanese patients with multiple system atrophy: prevalence and determinants 
BMC Neurology  2012;12:130.
Background
The recent SLEEMSA study that evaluated excessive daytime sleepiness (EDS) in Caucasian patients with multiple system atrophy (MSA) demonstrated that EDS was more frequent in patients (28%) than in healthy subjects (2%). However, the prevalence and determinants of EDS in other ethnic populations have not been reported to date.
Methods
We performed a single-hospital prospective study on patients with probable MSA. To ascertain the prevalence and determinants of EDS in Japanese MSA patients, we assessed the patients’ degree of daytime sleepiness by using the Japanese version of the Epworth Sleepiness Scale (ESS). In addition, we investigated the effects of sleep-disordered breathing (SDB) and abnormal periodic leg movements in sleep (PLMS), which were measured by polysomnography, on the patients’ ESS scores.
Results
A total of 25 patients with probable MSA (21 patients with cerebellar MSA and 4 patients with parkinsonian MSA) were included in this study. All patients underwent standard polysomnography. The mean ESS score was 6.2 ± 0.9, and EDS was identified in 24% of the patients. SDB and abnormal PLMS were identified in 24 (96%) and 11 (44%) patients, respectively. The prevalences of EDS in patients with SDB and abnormal PLMS were 25% and 18%, respectively. No correlations were observed between ESS scores and the parameters of SDB or abnormal PLMS.
Conclusions
The frequency of EDS in Japanese patients with MSA was similar to that in Caucasian MSA patients. SDB and abnormal PLMS were frequently observed in MSA patients, although the severities of these factors were not correlated with EDS. Further investigations using objective sleep tests need to be performed.
doi:10.1186/1471-2377-12-130
PMCID: PMC3517378  PMID: 23116490
Multiple system atrophy; Excessive daytime sleepiness; Epworth Sleepiness Scale; Sleep-disordered breathing; Abnormal periodic leg movements in sleep
3.  Inhibition of VEGF signaling pathway attenuates hemorrhage after tPA treatment 
An angiogenic factor, vascular endothelial growth factor (VEGF), might be associated with the blood–brain barrier (BBB) disruption after focal cerebral ischemia; however, it remains unknown whether hemorrhagic transformation (HT) after tissue plasminogen activator (tPA) treatment is related to the activation of VEGF signaling pathway in BBB. Here, we hypothesized that inhibition of VEGF signaling pathway can attenuate HT after tPA treatment. Rats subjected to thromboembolic focal cerebral ischemia were assigned to a permanent ischemia group and groups treated with tPA at 1 or 4 hours after ischemia. Anti-VEGF neutralizing antibody or control antibody was administered simultaneously with tPA. At 24 hours after ischemia, we evaluated the effects of the antibody on the VEGF expression, matrix metalloproteinase-9 (MMP-9) activation, degradation of BBB components, and HT. Delayed tPA treatment at 4 hours after ischemia promoted expression of VEGF in BBB, MMP-9 activation, degradation of BBB components, and HT. Compared with tPA and control antibody, combination treatment with tPA and the anti-VEGF neutralizing antibody significantly attenuated VEGF expression in BBB, MMP-9 activation, degradation of BBB components, and HT. It also improved motor outcome and mortality. Inhibition of VEGF signaling pathway may be a promising therapeutic strategy for attenuating HT after tPA treatment.
doi:10.1038/jcbfm.2011.9
PMCID: PMC3130331  PMID: 21304556
hemorrhagic transformation; ischemia; rat; tPA; VEGF
4.  Successful twin pregnancy in a patient with parkin-associated autosomal recessive juvenile parkinsonism 
BMC Neurology  2011;11:72.
Background
Pregnancy in patients with Parkinson disease is a rare occurrence. To the best of our knowledge, the effect of pregnancy as well as treatment in genetically confirmed autosomal recessive juvenile parkinsonism (ARJP) has never been reported. Here, we report the first case of pregnancy in a patient with ARJP associated with a parkin gene mutation, ARJP/PARK2.
Case presentation
A 27-year-old woman with ARJP/PARK2 was diagnosed as having a spontaneous dichorionic/diamniotic twin pregnancy. Exacerbation of motor disability was noted between ovulation and menstruation before pregnancy as well as during late pregnancy, suggesting that her parkinsonism might have been influenced by fluctuations in the levels of endogenous sex hormones. During the organogenesis period, she was only treated with levodopa/carbidopa, although she continued to receive inpatient hospital care for assistance in the activities of daily living. After the organogenesis period, she was administered sufficient amounts of antiparkinsonian drugs. She delivered healthy male twins, and psychomotor development of both the babies was normal at the age of 2 years.
Conclusion
Pregnancy may worsen the symptoms of ARJP/PARK2, although appropriate treatments with antiparkinsonian drugs and adequate assistance in the activities of daily living might enable successful pregnancy and birth of healthy children.
doi:10.1186/1471-2377-11-72
PMCID: PMC3135525  PMID: 21682904
5.  Inhibiting caspase-3 activity blocks beta-catenin degradation after focal ischemia in rat 
Neuroreport  2008;19(8):821-824.
Beta-catenin can be cleaved by caspase-3 or degraded by activated glycogen synthase kinase-3β via phosphorylating β-catenin. We tested the hypothesis that β-catenin undergoes degradation after stroke, and its degradation is dependent on caspase activity. Stroke was generated by permanent middle cerebral artery occlusion and 1h of transient bilateral common carotid artery occlusion in rats. Active caspase-3 was expressed in the ischemic cortex from 5 to 48 h after stroke, whereas β-catenin markedly degraded at 24 and 48 h after stroke. The caspase 3-specific inhibitor, Z-DQMD-FMK, attenuated β-catenin degradation, but it did not affect phosphorylation of both β-catenin and glycogen synthase kinase-3β. In conclusion, β-catenin degraded after stroke, and its degradation was caspase-3 dependent.
doi:10.1097/WNR.0b013e3282ffda72
PMCID: PMC2744604  PMID: 18463494
β-catenin; caspase-3; focal ischemia; glycogen synthase kinase-3β; stroke
6.  Severe neurological phenotypes of Q129 DRPLA transgenic mice serendipitously created by en masse expansion of CAG repeats in Q76 DRPLA mice 
Human Molecular Genetics  2008;18(4):723-736.
We herein provide a thorough description of new transgenic mouse models for dentatorubral–pallidoluysian atrophy (DRPLA) harboring a single copy of the full-length human mutant DRPLA gene with 76 and 129 CAG repeats. The Q129 mouse line was unexpectedly obtained by en masse expansion based on the somatic instability of 76 CAG repeats in vivo. The mRNA expression levels of both Q76 and Q129 transgenes were each 80% of that of the endogenous mouse gene, whereas only the Q129 mice exhibited devastating progressive neurological phenotypes similar to those of juvenile-onset DRPLA patients. Electrophysiological studies of the Q129 mice demonstrated age-dependent and region-specific presynaptic dysfunction in the globus pallidus and cerebellum. Progressive shrinkage of distal dendrites of Purkinje cells and decreased currents through α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid and γ-aminobutyrate type A receptors in CA1 neurons were also observed. Neuropathological studies of the Q129 mice revealed progressive brain atrophy, but no obvious neuronal loss, associated with massive neuronal intranuclear accumulation (NIA) of mutant proteins with expanded polyglutamine stretches starting on postnatal day 4, whereas NIA in the Q76 mice appeared later with regional specificity to the vulnerable regions of DRPLA. Expression profile analyses demonstrated age-dependent down-regulation of genes, including those relevant to synaptic functions and CREB-dependent genes. These results suggest that neuronal dysfunction without neuronal death is the essential pathophysiologic process and that the age-dependent NIA is associated with nuclear dysfunction including transcriptional dysregulations. Thus, our Q129 mice should be highly valuable for investigating the mechanisms of disease pathogenesis and therapeutic interventions.
doi:10.1093/hmg/ddn403
PMCID: PMC2638829  PMID: 19039037

Results 1-6 (6)