PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (72)
 

Clipboard (0)
None

Select a Filter Below

Year of Publication
1.  Targeting coagulation factor XII as a novel therapeutic option in brain trauma 
Annals of Neurology  2016;79(6):970-982.
Objective
Traumatic brain injury is a major global public health problem for which specific therapeutic interventions are lacking. There is, therefore, a pressing need to identify innovative pathomechanism‐based effective therapies for this condition. Thrombus formation in the cerebral microcirculation has been proposed to contribute to secondary brain damage by causing pericontusional ischemia, but previous studies have failed to harness this finding for therapeutic use. The aim of this study was to obtain preclinical evidence supporting the hypothesis that targeting factor XII prevents thrombus formation and has a beneficial effect on outcome after traumatic brain injury.
Methods
We investigated the impact of genetic deficiency of factor XII and acute inhibition of activated factor XII with a single bolus injection of recombinant human albumin‐fused infestin‐4 (rHA‐Infestin‐4) on trauma‐induced microvascular thrombus formation and the subsequent outcome in 2 mouse models of traumatic brain injury.
Results
Our study showed that both genetic deficiency of factor XII and an inhibition of activated factor XII in mice minimize trauma‐induced microvascular thrombus formation and improve outcome, as reflected by better motor function, reduced brain lesion volume, and diminished neurodegeneration. Administration of human factor XII in factor XII–deficient mice fully restored injury‐induced microvascular thrombus formation and brain damage.
Interpretation
The robust protective effect of rHA‐Infestin‐4 points to a novel treatment option that can decrease ischemic injury after traumatic brain injury without increasing bleeding tendencies. Ann Neurol 2016;79:970–982
doi:10.1002/ana.24655
PMCID: PMC5074329  PMID: 27043916
2.  The Inflammatory Role of Platelets: Translational Insights from Experimental Studies of Autoimmune Disorders 
Beyond their indispensable role in hemostasis, platelets have shown to affect the development of inflammatory disorders, as they have been epidemiologically and mechanistically linked to diseases featuring an inflammatory reaction in inflammatory diseases like multiple sclerosis, rheumatoid arthritis and inflammatory bowel disorders. The identification of novel molecular mechanisms linking inflammation and to platelets has highlighted them as new targets for therapeutic interventions. In particular, genetic and pharmacological studies have identified an important role for platelets in neuroinflammation. This review summarizes the main molecular links between platelets and inflammation, focusing on immune regulatory factors, receptors, cellular targets and signaling pathways by which they can amplify inflammatory reactions and that make them potential therapeutic targets.
doi:10.3390/ijms17101723
PMCID: PMC5085754  PMID: 27754414
platelets; autoimmunity; neuroinflammation
3.  CEACAM1 mediates B cell aggregation in central nervous system autoimmunity 
Scientific Reports  2016;6:29847.
B cell aggregates in the central nervous system (CNS) have been associated with rapid disease progression in patients with multiple sclerosis (MS). Here we demonstrate a key role of carcinoembryogenic antigen-related cell adhesion molecule1 (CEACAM1) in B cell aggregate formation in MS patients and a B cell-dependent mouse model of MS. CEACAM1 expression was increased on peripheral blood B cells and CEACAM1+ B cells were present in brain infiltrates of MS patients. Administration of the anti-CEACAM1 antibody T84.1 was efficient in blocking aggregation of B cells derived from MS patients. Along these lines, application of the monoclonal anti-CEACAM1 antibody mCC1 was able to inhibit CNS B cell aggregate formation and significantly attenuated established MS-like disease in mice in the absence of any adverse effects. CEACAM1 was co-expressed with the regulator molecule T cell immunoglobulin and mucin domain −3 (TIM-3) on B cells, a novel molecule that has recently been described to induce anergy in T cells. Interestingly, elevated coexpression on B cells coincided with an autoreactive T helper cell phenotype in MS patients. Overall, these data identify CEACAM1 as a clinically highly interesting target in MS pathogenesis and open new therapeutic avenues for the treatment of the disease.
doi:10.1038/srep29847
PMCID: PMC4951702  PMID: 27435215
4.  Combined [18F]DPA-714 micro-positron emission tomography and autoradiography imaging of microglia activation after closed head injury in mice 
Background
Traumatic brain injury (TBI) is a major cause of death and disability. Neuroinflammation contributes to acute damage after TBI and modulates long-term evolution of degenerative and regenerative responses to injury. The aim of the present study was to evaluate the relationship of microglia activation to trauma severity, brain energy metabolism, and cellular reactions to injury in a mouse closed head injury model using combined in vivo PET imaging, ex vivo autoradiography, and immunohistochemistry.
Methods
A weight-drop closed head injury model was used to produce a mixed diffuse and focal TBI or a purely diffuse mild TBI (mTBI) in C57BL6 mice. Lesion severity was determined by evaluating histological damage and functional outcome using a standardized neuroscore (NSS), gliosis, and axonal injury by immunohistochemistry. Repeated intra-individual in vivo μPET imaging with the specific 18-kDa translocator protein (TSPO) radioligand [18F]DPA-714 was performed on day 1, 7, and 16 and [18F]FDG-μPET imaging for energy metabolism on days 2–5 after trauma using freshly synthesized radiotracers. Immediately after [18F]DPA-714-μPET imaging on days 7 and 16, cellular identity of the [18F]DPA-714 uptake was confirmed by exposing freshly cut cryosections to film autoradiography and successive immunostaining with antibodies against the microglia/macrophage marker IBA-1.
Results
Functional outcome correlated with focal brain lesions, gliosis, and axonal injury. [18F]DPA-714-μPET showed increased radiotracer uptake in focal brain lesions on days 7 and 16 after TBI and correlated with reduced cerebral [18F]FDG uptake on days 2–5, with functional outcome and number of IBA-1 positive cells on day 7. In autoradiography, [18F]DPA-714 uptake co-localized with areas of IBA1-positive staining and correlated strongly with both NSS and the number of IBA1-positive cells, gliosis, and axonal injury. After mTBI, numbers of IBA-1 positive cells with microglial morphology increased in both brain hemispheres; however, uptake of [18F]DPA-714 was not increased in autoradiography or in μPET imaging.
Conclusions
[18F]DPA-714 uptake in μPET/autoradiography correlates with trauma severity, brain metabolic deficits, and microglia activation after closed head TBI.
doi:10.1186/s12974-016-0604-9
PMCID: PMC4897946  PMID: 27266706
Neuroinflammation; TBI; IBA-1; Immunohistochemistry; Focal; Diffuse; Weight drop; TSPO; PET; Autoradiography
5.  Blood coagulation factor XII drives adaptive immunity during neuroinflammation via CD87-mediated modulation of dendritic cells 
Nature Communications  2016;7:11626.
Aberrant immune responses represent the underlying cause of central nervous system (CNS) autoimmunity, including multiple sclerosis (MS). Recent evidence implicated the crosstalk between coagulation and immunity in CNS autoimmunity. Here we identify coagulation factor XII (FXII), the initiator of the intrinsic coagulation cascade and the kallikrein–kinin system, as a specific immune cell modulator. High levels of FXII activity are present in the plasma of MS patients during relapse. Deficiency or pharmacologic blockade of FXII renders mice less susceptible to experimental autoimmune encephalomyelitis (a model of MS) and is accompanied by reduced numbers of interleukin-17A-producing T cells. Immune activation by FXII is mediated by dendritic cells in a CD87-dependent manner and involves alterations in intracellular cyclic AMP formation. Our study demonstrates that a member of the plasmatic coagulation cascade is a key mediator of autoimmunity. FXII inhibition may provide a strategy to combat MS and other immune-related disorders.
Factor XII initiates the intrinsic blood coagulation cascade and the kinin system. Here the authors show that Factor XII is elevated in the blood of multiple sclerosis patients, activates dendritic cells via CD87 and cAMP, and its blockade inhibits immunopathology in a mouse model of the disease.
doi:10.1038/ncomms11626
PMCID: PMC4873982  PMID: 27188843
7.  Non-Vitamin K Oral Anticoagulants in Stroke Patients: Practical Issues 
Journal of Stroke  2016;18(2):138-145.
Non-vitamin-K oral anticoagulants (NOACs) represent a major advance in the prevention of stroke in patients with atrial fibrillation (AF), offering a similar, if not superior, efficacy and safety profile and several practical advantages over oral vitamin K antagonists (VKAs). The rapid onset of action of the NOACs, their relatively short half-live, and the availability of specific reversal agents may be advantageous when managing acute ischemic strokes, and in the post-stroke, post-transient ischemic attack, and post-intracranial hemorrhage settings. In this review article, we offer practical guidance on the use of NOACs in these settings, focusing on managing the acute event and on initiating or resuming anticoagulation for secondary prevention. We also assess the use of NOACs to prevent stroke and bleeding in patients with AF who have chronic kidney disease, are elderly, or cognitively impaired, and we offer guidance on optimizing the use of NOACs and VKAs in these patient groups in the absence of evidence-based guidelines.
doi:10.5853/jos.2016.00157
PMCID: PMC4901954  PMID: 27165264
Anticoagulants; Atrial fibrillation; Stroke; Transient ischemic attack
8.  Report on the 7th scientific meeting of the Association for the Advancement of Young Academics in Neurology (NEUROWIND e.V.) held in Motzen, Germany, October 30–November 1, 2015 
From October 30–November 1, 2015, the 7th NEUROWIND e.V. meeting was held in Motzen, Brandenburg, Germany. Seventy doctoral students and postdocs from over 25 different groups working in German and Swiss University Hospitals or Research Institutes attended the meeting to discuss their latest experiments and findings in the fields of neuroimmunology, neurodegeneration and neurovascular research. This meeting report summarizes the many diverse presentations and the new preclinical to clinical neurology research data that were shared by the participants at the meeting.
doi:10.1186/s13231-016-0017-y
PMCID: PMC4793526
9.  Immunohistochemical Analysis of Cerebral Thrombi Retrieved by Mechanical Thrombectomy from Patients with Acute Ischemic Stroke 
Mechanical thrombectomy is a novel treatment option for patients with acute ischemic stroke (AIS). Only a few studies have previously suggested strategies to categorize retrieved clots according to their histologic composition. However, these reports did not analyze potential biomarkers that are of importance in stroke-related inflammation. We therefore histopathologically investigated 37 intracerebral thrombi mechanically retrieved from patients with AIS, and focused on the composition of immune cells and platelets. We also conducted correlation analyses of distinctive morphologic patterns (erythrocytic, serpentine, layered, red, white, mixed appearance) with clinical parameters. Most T cells and monocytes were detected in erythrocytic and red clots, in which the distribution of these cells was random. In contrast, von Willebrand factor (vWF)-positive areas co-localized with regions of fibrin and collagen. While clots with huge amounts of vWF seem to be associated with a high National Institute of Health Stroke Scale score at admission, histologic findings could not predict the clinical outcome at discharge. In summary, we provide the first histologic description of mechanically retrieved intracerebral thrombi regarding biomarkers relevant for inflammation in ischemic stroke.
doi:10.3390/ijms17030298
PMCID: PMC4813162  PMID: 26927082
immune cells; lymphocytes; mechanical thrombectomy; ischemic stroke; inflammation; thrombus formation
10.  The Coagulation Factor XIIa Inhibitor rHA-Infestin-4 Improves Outcome after Cerebral Ischemia/Reperfusion Injury in Rats 
PLoS ONE  2016;11(1):e0146783.
Background and Purpose
Ischemic stroke provokes severe brain damage and remains a predominant disease in industrialized countries. The coagulation factor XII (FXII)-driven contact activation system plays a central, but not yet fully defined pathogenic role in stroke development. Here, we investigated the efficacy of the FXIIa inhibitor rHA-Infestin-4 in a rat model of ischemic stroke using both a prophylactic and a therapeutic approach.
Methods
For prophylactic treatment, animals were treated intravenously with 100 mg/kg rHA-Infestin-4 or an equal volume of saline 15 min prior to transient middle cerebral artery occlusion (tMCAO) of 90 min. For therapeutic treatment, 100 mg/kg rHA-Infestin-4, or an equal volume of saline, was administered directly after the start of reperfusion. At 24 h after tMCAO, rats were tested for neurological deficits and blood was drawn for coagulation assays. Finally, brains were removed and analyzed for infarct area and edema formation.
Results
Within prophylactic rHA-Infestin-4 treatment, infarct areas and brain edema formation were reduced accompanied by better neurological scores and survival compared to controls. Following therapeutic treatment, neurological outcome and survival were still improved although overall effects were less pronounced compared to prophylaxis.
Conclusions
With regard to the central role of the FXII-driven contact activation system in ischemic stroke, inhibition of FXIIa may represent a new and promising treatment approach to prevent cerebral ischemia/reperfusion injury.
doi:10.1371/journal.pone.0146783
PMCID: PMC4731395  PMID: 26815580
11.  The NKG2D – IL-15 signaling pathway contributes to T-cell mediated pathology in inflammatory myopathies 
Oncotarget  2015;6(41):43230-43243.
NKG2D is an activating receptor on T cells, which has been implicated in the pathogenesis of autoimmune diseases. T cells are critically involved in idiopathic inflammatory myopathies (IIM) and have been proposed as specific therapeutic targets. However, the mechanisms underlying T cell-mediated progressive muscle destruction in IIM remain to be elucidated. We here determined the involvement of the NKG2D – IL-15 signaling pathway. Primary human myoblasts expressed NKG2D ligands, which were further upregulated upon inflammatory stimuli. In parallel, shedding of the soluble NKG2D ligand MICA (sMICA) decreased upon inflammation potentially diminishing inhibition of NKG2D signaling. Membrane-related expression of IL-15 by myoblasts induced differentiation of naïve CD8+ T cells into highly activated, cytotoxic CD8+NKG2Dhigh T cells demonstrating NKG2D-dependent lysis of myoblasts in vitro. CD8+NKG2Dhigh T cell frequencies were increased in the peripheral blood of polymyositis (PM) patients and correlated with serum creatinine kinase concentrations, while serum sMICA levels were not significantly changed. In muscle biopsy specimens from PM patients expression of the NKG2D ligand MICA/B was upregulated, IL-15 was expressed by muscle cells, CD68+ macrophages as well as CD4+ T cells, and CD8+NKG2D+ cells were frequently detected within inflammatory infiltrates arguing for a local signaling circuit in the inflammatory muscle milieu. In conclusion, the NKG2D – IL-15 signaling pathway contributes to progressive muscle destruction in IIM potentially opening new therapeutic avenues.
PMCID: PMC4791228  PMID: 26646698
NKG2D; IL-15; polymyositis; idiopathic inflammatory myopathies; T cell activation; Pathology Section
12.  Cerebrospinal Fluid JC Virus Antibody Index for Diagnosis of Natalizumab-Associated Progressive Multifocal Leukoencephalopathy 
Annals of neurology  2014;76(6):792-801.
Objective
Progressive multifocal leukoencephalopathy (PML), caused by JC virus (JCV), can occur in patients receiving natalizumab for multiple sclerosis (MS). JCV detection by quantitative polymerase chain reaction (qPCR) in cerebrospinal fluid (CSF), or brain biopsy, is required for probable or definite diagnosis of PML. However, in some patients only low levels of JCV DNA (<100 copies/ml) are present in CSF, making the diagnosis challenging. Our objective was to assess the complementary value of a CSF JCV antibody index (AIJCV) in the diagnosis of natalizumab-associated PML.
Methods
AIJCV was assessed in 37 cases of natalizumab-associated PML and 89 MS-patients treated with natalizumab without PML. Sera and CSF were tested in a capture enzyme-linked immunosorbent assay, using JCV-VP1 fused to glutathione S-transferase as antigen. Albumin levels and total immunoglobulin G concentration were determined by immunonephelometry, and the AIJCV was calculated as published.
Results
Twenty-six of 37 (70%) patients with natalizumab-associated PML exhibited an AIJCV > 1.5, whereas this was seen in none of the controls (p < 0.0001). At time of the first positive qPCR for JCV DNA, 11 of 20 (55%) patients with natalizumab-associated PML had an AIJCV > 1.5. JCV DNA levels of <100 copies/ml were seen in 14 (70%) of these 20 patients, of whom 8 (57%) demonstrated an AIJCV > 1.5.
Interpretation
Determination of the AIJCV could be an added tool in the diagnostic workup for PML and should be included in the case definition of natalizumab-associated PML.
doi:10.1002/ana.24153
PMCID: PMC4194179  PMID: 24729444
13.  Fingolimod (FTY720-P) Does Not Stabilize the Blood–Brain Barrier under Inflammatory Conditions in an in Vitro Model 
Breakdown of the blood-brain barrier (BBB) is an early hallmark of multiple sclerosis (MS), a progressive inflammatory disease of the central nervous system. Cell adhesion in the BBB is modulated by sphingosine-1-phosphate (S1P), a signaling protein, via S1P receptors (S1P1). Fingolimod phosphate (FTY720-P) a functional S1P1 antagonist has been shown to improve the relapse rate in relapsing-remitting MS by preventing the egress of lymphocytes from lymph nodes. However, its role in modulating BBB permeability—in particular, on the tight junction proteins occludin, claudin 5 and ZO-1—has not been well elucidated to date. In the present study, FTY720-P did not change the transendothelial electrical resistance in a rat brain microvascular endothelial cell (RBMEC) culture exposed to inflammatory conditions and thus did not decrease endothelial barrier permeability. In contrast, occludin was reduced in RBMEC culture after adding FTY720-P. Additionally, FTY720-P did not alter the amount of endothelial matrix metalloproteinase (MMP)-9 and MMP-2 in RBMEC cultures. Taken together, our observations support the assumption that S1P1 plays a dual role in vascular permeability, depending on its ligand. Thus, S1P1 provides a mechanistic basis for FTY720-P-associated disruption of endothelial barriers—such as the blood-retinal barrier—which might result in macular edema.
doi:10.3390/ijms161226177
PMCID: PMC4691120  PMID: 26690412
FTY720-P; blood-brain barrier; rat brain microvascular endothelial cell culture; inflammation; tight junctions
14.  Adherence to oral anticoagulant therapy in secondary stroke prevention – impact of the novel oral anticoagulants 
Background
Oral anticoagulant therapy (OAT) potently prevents strokes in patients with atrial fibrillation. Vitamin K antagonists (VKA) have been the standard of care for long-term OAT for decades, but non-VKA oral anticoagulants (NOAC) have recently been approved for this indication, and raised many questions, among them their influence on medication adherence. We assessed adherence to VKA and NOAC in secondary stroke prevention.
Methods
All patients treated from October 2011 to September 2012 for ischemic stroke or transient ischemic attack with a subsequent indication for OAT, at three academic hospitals were entered into a prospective registry, and baseline data and antithrombotic treatment at discharge were recorded. At the 1-year follow-up, we assessed the adherence to different OAT strategies and patients’ adherence to their respective OAT. We noted OAT changes, reasons to change treatment, and factors that influence persistence to the prescribed OAT.
Results
In patients discharged on OAT, we achieved a fatality corrected response rate of 73.3% (n=209). A total of 92% of these patients received OAT at the 1-year follow-up. We observed good adherence to both VKA and NOAC (VKA, 80.9%; NOAC, 74.8%; P=0.243) with a statistically nonsignificant tendency toward a weaker adherence to dabigatran. Disability at 1-year follow-up was an independent predictor of lower adherence to any OAT after multivariate analysis, whereas the choice of OAT did not have a relevant influence.
Conclusion
One-year adherence to OAT after stroke is strong (>90%) and patients who switch therapy most commonly switch toward another OAT. The 1-year adherence rates to VKA and NOAC in secondary stroke prevention do not differ significantly between both therapeutic strategies.
doi:10.2147/PPA.S88994
PMCID: PMC4664488  PMID: 26648702
stroke; prevention; vitamin K antagonists; non-VKA oral anticoagulants; adherence
15.  Characterization of Peripheral Immune Cell Subsets in Patients with Acute and Chronic Cerebrovascular Disease: A Case-Control Study 
Immune cells (IC) play a crucial role in murine stroke pathophysiology. However, data are limited on the role of these cells in ischemic stroke in humans. We therefore aimed to characterize and compare peripheral IC subsets in patients with acute ischemic stroke/transient ischemic attack (AIS/TIA), chronic cerebrovascular disease (CCD) and healthy volunteers (HV). We conducted a case-control study of patients with AIS/TIA (n = 116) or CCD (n = 117), and HV (n = 104) who were enrolled at the University Hospital Würzburg from 2010 to 2013. We determined the expression and quantity of IC subsets in the three study groups and performed correlation analyses with demographic and clinical parameters. The quantity of several IC subsets differed between the AIS/TIA, CCD, and HV groups. Several clinical and demographic variables independently predicted the quantity of IC subsets in patients with AIS/TIA. No significant changes in the quantity of IC subsets occurred within the first three days after AIS/TIA. Overall, these findings strengthen the evidence for a pathophysiologic role of IC in human ischemic stroke and the potential use of IC-based biomarkers for the prediction of stroke risk. A comprehensive description of IC kinetics is crucial to enable the design of targeted treatment strategies.
doi:10.3390/ijms161025433
PMCID: PMC4632808  PMID: 26512654
biomarker; immune cells; leukocytes; lymphocytes; monocytes; regulatory T cells; ischemic stroke; chronic cerebrovascular disease; thromboinflammation
16.  The brain antigen-specific B cell response correlates with glatiramer acetate responsiveness in relapsing-remitting multiple sclerosis patients 
Scientific Reports  2015;5:14265.
B cells have only recently begun to attract attention in the immunopathology of multiple sclerosis (MS). Suitable markers for the prediction of treatment success with immunomodulatory drugs are still missing. Here we evaluated the B cell response to brain antigens in n = 34 relapsing-remitting MS (RRMS) patients treated with glatiramer acetate (GA) using the enzyme-linked immunospot technique (ELISPOT). Our data demonstrate that patients can be subdivided into responders that show brain-specific B cell reactivity in the blood and patients without this reactivity. Only in patients that classified as B cell responders, there was a significant positive correlation between treatment duration and the time since last relapse in our study. This correlation was GA-specific because it was absent in a control group that consisted of interferon-ß (IFN-β)-treated RRMS patients (n = 23). These data suggest that GA has an effect on brain-reactive B cells in a subset of patients and that only this subset benefits from treatment. The detection of brain-reactive B cells is likely to be a suitable tool to identify drug responders.
doi:10.1038/srep14265
PMCID: PMC4585696  PMID: 26387426
18.  A combined pre-clinical meta-analysis and randomized confirmatory trial approach to improve data validity for therapeutic target validation 
Scientific Reports  2015;5:13428.
Biomedical research suffers from a dramatically poor translational success. For example, in ischemic stroke, a condition with a high medical need, over a thousand experimental drug targets were unsuccessful. Here, we adopt methods from clinical research for a late-stage pre-clinical meta-analysis (MA) and randomized confirmatory trial (pRCT) approach. A profound body of literature suggests NOX2 to be a major therapeutic target in stroke. Systematic review and MA of all available NOX2-/y studies revealed a positive publication bias and lack of statistical power to detect a relevant reduction in infarct size. A fully powered multi-center pRCT rejects NOX2 as a target to improve neurofunctional outcomes or achieve a translationally relevant infarct size reduction. Thus stringent statistical thresholds, reporting negative data and a MA-pRCT approach can ensure biomedical data validity and overcome risks of bias.
doi:10.1038/srep13428
PMCID: PMC4550831  PMID: 26310318
19.  Animal models of ischemic stroke and their application in clinical research 
This review outlines the most frequently used rodent stroke models and discusses their strengths and shortcomings. Mimicking all aspects of human stroke in one animal model is not feasible because ischemic stroke in humans is a heterogeneous disorder with a complex pathophysiology. The transient or permanent middle cerebral artery occlusion (MCAo) model is one of the models that most closely simulate human ischemic stroke. Furthermore, this model is characterized by reliable and well-reproducible infarcts. Therefore, the MCAo model has been involved in the majority of studies that address pathophysiological processes or neuroprotective agents. Another model uses thromboembolic clots and thus is more convenient for investigating thrombolytic agents and pathophysiological processes after thrombolysis. However, for many reasons, preclinical stroke research has a low translational success rate. One factor might be the choice of stroke model. Whereas the therapeutic responsiveness of permanent focal stroke in humans declines significantly within 3 hours after stroke onset, the therapeutic window in animal models with prompt reperfusion is up to 12 hours, resulting in a much longer action time of the investigated agent. Another major problem of animal stroke models is that studies are mostly conducted in young animals without any comorbidity. These models differ from human stroke, which particularly affects elderly people who have various cerebrovascular risk factors. Choosing the most appropriate stroke model and optimizing the study design of preclinical trials might increase the translational potential of animal stroke models.
doi:10.2147/DDDT.S56071
PMCID: PMC4494187  PMID: 26170628
permanent and transient middle cerebral artery occlusion; photothrombosis; endothelin-1; microsphere/macrosphere; thromboembolic clot model; rat; mouse
20.  Interferon Beta-1a (AVONEX®) as a Treatment Option for Untreated Patients with Multiple Sclerosis (AXIOM): A Prospective, Observational Study 
The efficacy and safety of first-line disease-modifying therapies (DMT) for relapsing-remitting multiple sclerosis (RRMS) has been demonstrated in pivotal, randomized trials, but these studies do not reflect the routine care setting where treatment gaps or switches are common. The Avonex as Treatment Option for Untreated MS Patients (AXIOM) trial assessed the efficacy of newly-initiated intramuscular interferon beta-1a (IM IFNb-1a) after a treatment-free interval, with particular consideration of the previous course of disease and therapy. The AXIOM trial was an open, 12-month, observational, non-interventional study with a retrospective and a prospective part conducted in Germany. RRMS patients with a treatment-free interval of at least three months were included and treated with IFNb-1a for up to 12 months. Relapse rate, disability progression, injection-related parameters and quality of life observed during the prospective part were compared with retrospectively-collected data. Two hundred and thirty five RRMS patients participated in AXIOM. The mean relapse rate decreased from 1.1 in the three months before baseline to 0.2 per quarter during the twelve-month observational period; the Multiple Sclerosis Functional Composite score improved during twelve months of IM IFNb-1a treatment, while the Expanded Disability Status Scale score did not change over the course of this study. Compared to previous DMTs (IM IFNb-1a, subcutaneous IFNb-1a (SC IFNb-1a), SC IFNb-1b, glatiramer acetate), the patients experienced less injection site reactions and flu-like symptoms, with a stated improved quality of life. IM IFNb-1a was effective and well accepted in RRMS patients with no or discontinued previous therapy. These results from the routine care setting may inform optimization of DMT treatment in RRMS, but need confirmation in further studies.
doi:10.3390/ijms160715271
PMCID: PMC4519899  PMID: 26154767
relapsing-remitting multiple sclerosis; disease-modifying therapy; injection site reactions; quality of life; efficacy
22.  Case-Control Study of Platelet Glycoprotein Receptor Ib and IIb/IIIa Expression in Patients with Acute and Chronic Cerebrovascular Disease 
PLoS ONE  2015;10(3):e0119810.
Background
Animal models have been instrumental in defining thrombus formation, including the role of platelet surface glycoprotein (GP) receptors, in acute ischemic stroke (AIS). However, the involvement of GP receptors in human ischemic stroke pathophysiology and their utility as biomarkers for ischemic stroke risk and severity requires elucidation.
Aims
To determine whether platelet GPIb and GPIIb/IIIa receptors are differentially expressed in patients with AIS and chronic cerebrovascular disease (CCD) compared with healthy volunteers (HV) and to identify predictors of GPIb and GPIIb/IIIa expression.
Methods
This was a case—control study of 116 patients with AIS or transient ischemic attack (TIA), 117 patients with CCD, and 104 HV who were enrolled at our University hospital from 2010 to 2013. Blood sampling was performed once in the CCD and HV groups, and at several time points in patients with AIS or TIA. Linear regression and analysis of variance were used to analyze correlations between platelet GPIb and GPIIb/IIIa receptor numbers and demographic and clinical parameters.
Results
GPIb and GPIIb/IIIa receptor numbers did not significantly differ between the AIS, CCD, and HV groups. GPIb receptor expression level correlated significantly with the magnitude of GPIIb/IIIa receptor expression and the neutrophil count. In contrast, GPIIb/IIIa receptor numbers were not associated with peripheral immune-cell sub-population counts. C-reactive protein was an independent predictor of GPIIb/IIIa (not GPIb) receptor numbers.
Conclusions
Platelet GPIb and GPIIb/IIIa receptor numbers did not distinguish between patient or control groups in this study, negating their potential use as a biomarker for predicting stroke risk.
doi:10.1371/journal.pone.0119810
PMCID: PMC4352011  PMID: 25748430
23.  Report on the 6th scientific meeting of the “Verein zur Förderung des Wissenschaftlichen Nachwuchses in der Neurologie” (NEUROWIND e.V.) held in Motzen, Germany, Oct. 31th – Nov. 2nd, 2014 
From October 31th – November 2nd, 2014, the 6th NEUROWIND e.V. meeting was held in Motzen, Brandenburg, Germany. 70 doctoral students and postdocs from over 25 different groups working in German and Swiss university hospitals or research institutes attended the meeting to discuss their latest experiments and findings in the fields of neuroimmunology, neurodegeneration and neurovascular research. The meeting was regarded as a very well organized platform to support research of young investigators in Germany and all participants enjoyed the stimulating environment for lively in depth discussions.
According to the major aim of NEUROWIND e.V. to support younger researchers in Germany the 4th NEUROWIND YOUNG SCIENTIST AWARD for experimental neurology was awarded to Michael Breckwoldt on his work in the group of Thomas Misgeld (Institute of Neuronal Cell Biology, Technische Universität München, Germany). The successful project was published in Nature Medicine entitled “Multiparametric optical analysis of mitochondrial redox signals during neuronal physiology and pathology in vivo”. This outstanding paper deals with a molecular imaging approach in living mice to optically analyze the role of mitochondrial redox signals in axons in health and disease. The award is endowed with 20.000 Euro sponsored by Merck Serono GmbH, Darmstadt, Germany (unrestricted educational grant).
This year’s keynote lecture was given by Bernhard Hemmer, Head of the Department of Neurology at the Klinikum rechts der Isar, Technische Universität München. Dr. Hemmer highlighted the particular role of B cells and (auto)antibodies in multiple sclerosis (MS). As a new highlight Dr. Urbahns, head of global discovery technologies at Merck research laboratories, gave insights from research practice in the pharmaceutical industry and introduced a shift in the view on present-day drug discovery paradigms.
doi:10.1186/s13231-014-0013-z
PMCID: PMC4302105  PMID: 25898363
24.  Editorial: Mechanisms of neuroinflammation and inflammatory neurodegeneration in acute brain injury 
doi:10.3389/fncel.2015.00300
PMCID: PMC4525058  PMID: 26300735
stroke; intracerebral hemorrhage; traumatic brain injury; neuroinflammation; leukocytes
25.  Categorization of multiple sclerosis relapse subtypes by B cell profiling in the blood 
Introduction
B cells are attracting increasing attention in the pathogenesis of multiple sclerosis (MS). B cell-targeted therapies with monoclonal antibodies or plasmapheresis have been shown to be successful in a subset of patients. Here, patients with either relapsing-remitting (n = 24) or secondary progressive (n = 6) MS presenting with an acute clinical relapse were screened for their B cell reactivity to brain antigens and were re-tested three to nine months later. Enzyme-linked immunospot technique (ELISPOT) was used to identify brain-reactive B cells in peripheral blood mononuclear cells (PBMC) directly ex vivo and after 96 h of polyclonal stimulation. Clinical severity of symptoms was determined using the Expanded Disability Status Scale (EDSS).
Results
Nine patients displayed B cells in the blood producing brain-specific antibodies directly ex vivo. Six patients were classified as B cell positive donors only after polyclonal B cell stimulation. In 15 patients a B cell response to brain antigens was absent. Based on the autoreactive B cell response we categorized MS relapses into three different patterns. Patients who displayed brain-reactive B cell responses both directly ex vivo and after polyclonal stimulation (pattern I) were significantly younger than patients in whom only memory B cell responses were detectable or entirely absent (patterns II and III; p = 0.003). In one patient a conversion to a positive B cell response as measured directly ex vivo and subsequently also after polyclonal stimulation was associated with the development of a clinical relapse. The evaluation of the predictive value of a brain antigen-specific B cell response showed that seven of eight patients (87.5%) with a pattern I response encountered a clinical relapse during the observation period of 10 months, compared to two of five patients (40%) with a pattern II and three of 14 patients (21.4%) with a pattern III response (p = 0.0005; hazard ratio 6.08 (95% confidence interval 1.87-19.77).
Conclusions
Our data indicate actively ongoing B cell-mediated immunity against brain antigens in a subset of MS patients that may be causative of clinical relapses and provide new diagnostic and therapeutic options for a subset of patients.
doi:10.1186/s40478-014-0138-2
PMCID: PMC4177072  PMID: 25597707
B cells; ELISPOT; MS; Predictive value; Relapse

Results 1-25 (72)