Search tips
Search criteria

Results 1-24 (24)

Clipboard (0)

Select a Filter Below

Year of Publication
more »
1.  Discovery of Plant Phenolic Compounds That Act as Type III Secretion System Inhibitors or Inducers of the Fire Blight Pathogen, Erwinia amylovora 
Applied and Environmental Microbiology  2013;79(18):5424-5436.
Erwinia amylovora causes a devastating disease called fire blight in rosaceous plants. The type III secretion system (T3SS) is one of the important virulence factors utilized by E. amylovora in order to successfully infect its hosts. By using a green fluorescent protein (GFP) reporter construct combined with a high-throughput flow cytometry assay, a library of phenolic compounds and their derivatives was studied for their ability to alter the expression of the T3SS. Based on the effectiveness of the compounds on the expression of the T3SS pilus, the T3SS inhibitors 4-methoxy-cinnamic acid (TMCA) and benzoic acid (BA) and one T3SS inducer, trans-2-(4-hydroxyphenyl)-ethenylsulfonate (EHPES), were chosen for further study. Both the T3SS inhibitors (TMCA and BA) and the T3SS inducer (EHPES) were found to alter the expression of T3SS through the HrpS-HrpL pathway. Additionally, TMCA altered T3SS expression through the rsmBEa-RsmAEa system. Finally, we found that TMCA and BA weakened the hypersensitive response (HR) in tobacco by suppressing the T3SS of E. amylovora. In our study, we identified phenolic compounds that specifically targeted the T3SS. The T3SS inhibitor may offer an alternative approach to antimicrobial therapy by targeting virulence factors of bacterial pathogens.
PMCID: PMC3754148  PMID: 23770912
2.  SlyA Regulates Type III Secretion System (T3SS) Genes in Parallel with the T3SS Master Regulator HrpL in Dickeya dadantii 3937 
The hypersensitive response and pathogenicity (hrp) genes of Dickeya dadantii 3937 encode a type III secretion system (T3SS) which is essential for its full virulence. Previous studies of the T3SS regulation in D. dadantii 3937 revealed that the expression of the hrp genes is regulated by a master regulator, HrpL, through the HrpX-HrpY-HrpS-HrpL and GacS-GacA-rsmB-RsmA pathways. In this work, we identified a novel regulator of the SlyA/MarR family, SlyA, which regulates hrp genes of the HrpL regulon in parallel with HrpL in D. dadantii. SlyA regulates the T3SS in a two-tier manner. It negatively regulates the expression of hrpL by downregulating hrpS and upregulating rsmA. Interestingly, concomitant with its downregulation of the hrpL, SlyA positively regulates the expression of hrpA and hrpN, two hrp genes located in the HrpL regulon. In contrast to Pectobacterium carotovorum, the expression of slyA is not controlled by ExpR and ExpI in D. dadantii 3937. We further show that SlyA is involved in controlling swimming motility and pellicle formation in D. dadantii 3937.
PMCID: PMC3318817  PMID: 22267675
3.  Derivatives of Plant Phenolic Compound Affect the Type III Secretion System of Pseudomonas aeruginosa via a GacS-GacA Two-Component Signal Transduction System 
Antibiotic therapy is the most commonly used strategy to control pathogenic infections; however, it has contributed to the generation of antibiotic-resistant bacteria. To circumvent this emerging problem, we are searching for compounds that target bacterial virulence factors rather than their viability. Pseudomonas aeruginosa, an opportunistic human pathogen, possesses a type III secretion system (T3SS) as one of the major virulence factors by which it secretes and translocates T3 effector proteins into human host cells. The fact that this human pathogen also is able to infect several plant species led us to screen a library of phenolic compounds involved in plant defense signaling and their derivatives for novel T3 inhibitors. Promoter activity screening of exoS, which encodes a T3-secreted toxin, identified two T3 inhibitors and two T3 inducers of P. aeruginosa PAO1. These compounds alter exoS transcription by affecting the expression levels of the regulatory small RNAs RsmY and RsmZ. These two small RNAs are known to control the activity of carbon storage regulator RsmA, which is responsible for the regulation of the key T3SS regulator ExsA. As RsmY and RsmZ are the only targets directly regulated by GacA, our results suggest that these phenolic compounds affect the expression of exoS through the GacSA-RsmYZ-RsmA-ExsA regulatory pathway.
PMCID: PMC3256035  PMID: 21968370
4.  Hpa2 Required by HrpF To Translocate Xanthomonas oryzae Transcriptional Activator-Like Effectors into Rice for Pathogenicity▿† 
Applied and Environmental Microbiology  2011;77(11):3809-3818.
Xanthomonas oryzae pv. oryzicola, the causative agent of bacterial leaf streak, injects a plethora of effectors through the type III secretion system (T3SS) into rice cells to cause disease. The T3SS, encoded by the hrp genes, is essential for the pathogen to elicit the hypersensitive response (HR) in nonhost tobacco and for pathogenicity in host rice. Whether or not a putative lytic transglycosylase, Hpa2, interacts with a translocon protein, HrpF, to facilitate bacterial pathogenicity remains unknown. Here we demonstrated that both the hpa2 and hrpF genes are required for the pathogenicity of X. oryzae pv. oryzicola strain RS105 in rice but not for HR induction in tobacco. The expression of hpa2 was positively regulated by HrpG and HrpD6 but not by HrpX. In vivo secretion and subcellular localization analyses confirmed that Hpa2 secretion is dependent on HpaB (a T3SS exit protein) and that Hpa2 binds to the host cell membrane. Protein-protein assays demonstrated that Hpa2 interacts with HrpF. In planta translocation of AvrXa10 indicated that the mutation in hpa2 and hrpF inhibits the injection of the HpaB-dependent transcriptional activator-like (TAL) effector into rice. These findings suggest that Hpa2 and HrpF form a complex to translocate T3S effectors into plant cells for pathogenesis in host rice.
PMCID: PMC3127602  PMID: 21478322
5.  Topological data analysis of Escherichia coli O157:H7 and non-O157 survival in soils 
Shiga toxin-producing E. coli O157:H7 and non-O157 have been implicated in many foodborne illnesses caused by the consumption of contaminated fresh produce. However, data on their persistence in soils are limited due to the complexity in datasets generated from different environmental variables and bacterial taxa. There is a continuing need to distinguish the various environmental variables and different bacterial groups to understand the relationships among these factors and the pathogen survival. Using an approach called Topological Data Analysis (TDA); we reconstructed the relationship structure of E. coli O157 and non-O157 survival in 32 soils (16 organic and 16 conventionally managed soils) from California (CA) and Arizona (AZ) with a multi-resolution output. In our study, we took a community approach based on total soil microbiome to study community level survival and examining the network of the community as a whole and the relationship between its topology and biological processes. TDA produces a geometric representation of complex data sets. Network analysis showed that Shiga toxin negative strain E. coli O157:H7 4554 survived significantly longer in comparison to E. coli O157:H7 EDL 933, while the survival time of E. coli O157:NM was comparable to that of E. coli O157:H7 EDL 933 in all of the tested soils. Two non-O157 strains, E. coli O26:H11 and E. coli O103:H2 survived much longer than E. coli O91:H21 and the three strains of E. coli O157. We show that there are complex interactions between E. coli strain survival, microbial community structures, and soil parameters.
PMCID: PMC4155871  PMID: 25250242
Shiga toxin; contamination; survival time; fresh produce; organic; conventional
6.  Effects of 14-Alpha-Lipoyl Andrographolide on Quorum Sensing in Pseudomonas aeruginosa 
Antimicrobial Agents and Chemotherapy  2012;56(12):6088-6094.
In Pseudomonas aeruginosa, the quorum-sensing (QS) system is closely related to biofilm formation. We previously demonstrated that 14-alpha-lipoyl andrographolide (AL-1) has synergistic effects on antibiofilm and antivirulence factors (pyocyanin and exopolysaccharide) of P. aeruginosa when combined with conventional antibiotics, while it has little inhibitory effect on its growth. However, its molecular mechanism remains elusive. Here we investigated the effect of AL-1 on QS systems, especially the Las and Rhl systems. This investigation showed that AL-1 can inhibit LasR–3-oxo-C12-homoserine lactone (HSL) interactions and repress the transcriptional level of QS-regulated genes. Reverse transcription (RT)-PCR data showed that AL-1 significantly reduced the expression levels of lasR, lasI, rhlR, and rhlI in a dose-dependent manner. AL-1 not only decreased the expression level of Psl, which is positively regulated by the Las system, but also increased the level of secretion of ExoS, which is negatively regulated by the Rhl system, indicating that AL-1 has multiple effects on both the Las and Rhl systems. It is no wonder that AL-1 showed synergistic effects with other antimicrobial agents in the treatment of P. aeruginosa infections.
PMCID: PMC3497202  PMID: 22802260
7.  Assimilable Organic Carbon (AOC) in Soil Water Extracts Using Vibrio harveyi BB721 and Its Implication for Microbial Biomass 
PLoS ONE  2012;7(5):e28519.
Assimilable organic carbon (AOC) is commonly used to measure the growth potential of microorganisms in water, but has not yet been investigated for measuring microbial growth potential in soils. In this study, a simple, rapid, and non-growth based assay to determine AOC in soil was developed using a naturally occurring luminous strain Vibrio harveyi BB721 to determine the fraction of low molecular weight organic carbon in soil water extract. Calibration of the assay was achieved by measuring the luminescence intensity of starved V. harveyi BB721 cells in the late exponential phase with a concentration range from 0 to 800 µg l−1 glucose (equivalent to 0–16.0 mg glucose C kg−1 soil) with the detection limit of 10 µg l−1 equivalent to 0.20 mg glucose C kg−1 soil. Results showed that bioluminescence was proportional to the concentration of glucose added to soil. The luminescence intensity of the cells was highly pH dependent and the optimal pH was about 7.0. The average AOC concentration in 32 soils tested was 2.9±2.2 mg glucose C kg−1. Our data showed that AOC levels in soil water extracts were significantly correlated (P<0.05) with microbial biomass determined as microbial biomass carbon, indicating that the AOC concentrations determined by the method developed might be a good indicator of soil microbial biomass. Our findings provide a new approach that may be used to determine AOC in environmental samples using a non-growth bioluminescence based assay. Understanding the levels of AOC in soil water extract provides new insights into our ability to estimate the most available carbon pool to bacteria in soil that may be easily assimilated into cells for many metabolic processes and suggest possible the links between AOC, microbial regrowth potential, and microbial biomass in soils.
PMCID: PMC3322128  PMID: 22679477
8.  Fructose-Bisphophate Aldolase Exhibits Functional Roles between Carbon Metabolism and the hrp System in Rice Pathogen Xanthomonas oryzae pv. oryzicola 
PLoS ONE  2012;7(2):e31855.
Fructose-bisphophate aldolase (FbaB), is an enzyme in glycolysis and gluconeogenesis in living organisms. The mutagenesis in a unique fbaB gene of Xanthomonas oryzae pv. oryzicola, the causal agent of rice bacterial leaf streak, led the pathogen not only unable to use pyruvate and malate for growth and delayed its growth when fructose was used as the sole carbon source, but also reduced extracellular polysaccharide (EPS) production and impaired bacterial virulence and growth in rice. Intriguingly, the fbaB promoter contains an imperfect PIP-box (plant-inducible promoter) (TTCGT-N9-TTCGT). The expression of fbaB was negatively regulated by a key hrp regulatory HrpG and HrpX cascade. Base substitution in the PIP-box altered the regulation of fbaB with the cascade. Furthermore, the expression of fbaB in X. oryzae pv. oryzicola RS105 strain was inducible in planta rather than in a nutrient-rich medium. Except other hrp-hrc-hpa genes, the expression of hrpG and hrpX was repressed and the transcripts of hrcC, hrpE and hpa3 were enhanced when fbaB was deleted. The mutation in hrcC, hrpE or hpa3 reduced the ability of the pathogen to acquire pyruvate and malate. In addition, bacterial virulence and growth in planta and EPS production in RΔfbaB mutant were completely restored to the wild-type level by the presence of fbaB in trans. This is the first report to demonstrate that carbohydrates, assimilated by X. oryzae pv. oryzicola, play critical roles in coordinating hrp gene expression through a yet unknown regulator.
PMCID: PMC3285194  PMID: 22384086
9.  Genome Sequence of the Plant-Pathogenic Bacterium Dickeya dadantii 3937▿ 
Journal of Bacteriology  2011;193(8):2076-2077.
Dickeya dadantii is a plant-pathogenic enterobacterium responsible for the soft rot disease of many plants of economic importance. We present here the sequence of strain 3937, a strain widely used as a model system for research on the molecular biology and pathogenicity of this group of bacteria.
PMCID: PMC3133054  PMID: 21217001
10.  Persistence of Escherichia coli O157:H7 and Its Mutants in Soils 
PLoS ONE  2011;6(8):e23191.
The persistence of Shiga toxin-producing E. coli O157:H7 in the environment poses a serious threat to public health. However, the role of Shiga toxins and other virulence factors in the survival of E. coli O157:H7 is poorly defined. The aim of this study was to determine if the virulence factors, stx1, stx2, stx1–2, and eae in E. coli O157:H7 EDL933 play any significant role in the growth of this pathogen in rich media and in soils. Isogenic deletion mutants that were missing one of four virulence factors, stx1, stx2, stx1–2, and eae in E. coli O157:H7 EDL933 were constructed, and their growth in rich media and survival in soils with distinct texture and chemistry were characterized. The survival data were successfully analyzed using Double Weibull model, and the modeling parameters of the mutant strains were not significantly different from those of the wild type. The calculated Td (time needed to reach the detection limit, 100 CFU/g soil) for loamy sand, sandy loam, and silty clay was 32, 80, and 110 days, respectively. It was also found that Td was positively correlated with soil structure (e.g. clay content), and soil chemistry (e.g. total nitrogen, total carbon, and water extractable organic carbon). The results of this study showed that the possession of Shiga toxins and intimin in E. coli O157:H7 might not play any important role in its survival in soils. The double deletion mutant of E. coli O157:H7 (stx1−stx2−) may be a good substitute to use for the investigation of transport, fate, and survival of E. coli O157:H7 in the environment where the use of pathogenic strains are prohibited by law since the mutants showed the same characteristics in both culture media and environmental samples.
PMCID: PMC3149627  PMID: 21826238
11.  Commensal Effect of Pectate Lyases Secreted from Dickeya dadantii on Proliferation of Escherichia coli O157:H7 EDL933 on Lettuce Leaves ▿  
The outbreaks caused by enterohemorrhagic Escherichia coli O157:H7 on leafy greens have raised serious and immediate food safety concerns. It has been suggested that several phytopathogens aid in the persistence and proliferation of the human enteropathogens in the phyllosphere. In this work, we examined the influence of virulence mechanisms of Dickeya dadantii 3937, a broad-host-range phytopathogen, on the proliferation of the human pathogen E. coli O157:H7 EDL933 (EDL933) on postharvest lettuce by coinoculation of EDL933 with D. dadantii 3937 derivatives that have mutations in virulence-related genes. A type II secretion system (T2SS)-deficient mutant of D. dadantii 3937, A1919 (ΔoutC), lost the capability to promote the multiplication of EDL933, whereas Ech159 (ΔrpoS), a stress-responsive σ factor RpoS-deficient mutant, increased EDL933 proliferation on lettuce leaves. A spectrophotometric enzyme activity assay revealed that A1919 (ΔoutC) was completely deficient in the secretion of pectate lyases (Pels), which play a major role in plant tissue maceration. In contrast to A1919 (ΔoutC), Ech159 (ΔrpoS) showed more than 2-fold-greater Pel activity than the wild-type D. dadantii 3937. Increased expression of pelD (encodes an endo-pectate lyase) was observed in Ech159 (ΔrpoS) in planta. These results suggest that the pectinolytic activity of D. dadantii 3937 is the dominant determinant of enhanced EDL933 proliferation on the lettuce leaves. In addition, RpoS, the general stress response σ factor involved in cell survival in suboptimal conditions, plays a role in EDL933 proliferation by controlling the production of pectate lyases in D. dadantii 3937.
PMCID: PMC3019694  PMID: 21075884
12.  Genome-Wide Identification of HrpL-Regulated Genes in the Necrotrophic Phytopathogen Dickeya dadantii 3937 
PLoS ONE  2010;5(10):e13472.
Dickeya dadantii is a necrotrophic pathogen causing disease in many plants. Previous studies have demonstrated that the type III secretion system (T3SS) of D. dadantii is required for full virulence. HrpL is an alternative sigma factor that binds to the hrp box promoter sequence of T3SS genes to up-regulate their expression.
Methodology/Principal Findings
To explore the inventory of HrpL-regulated genes of D. dadantii 3937 (3937), transcriptome profiles of wild-type 3937 and a hrpL mutant grown in a T3SS-inducing medium were examined. Using a cut-off value of 1.5, significant differential expression was observed in sixty-three genes, which are involved in various cellular functions such as type III secretion, chemotaxis, metabolism, regulation, and stress response. A hidden Markov model (HMM) was used to predict candidate hrp box binding sites in the intergenic regions of 3937, including the promoter regions of HrpL-regulated genes identified in the microarray assay. In contrast to biotrophic phytopathgens such as Pseudomonas syringae, among the HrpL up-regulated genes in 3937 only those within the T3SS were found to contain a hrp box sequence. Moreover, direct binding of purified HrpL protein to the hrp box was demonstrated for hrp box-containing DNA fragments of hrpA and hrpN using the electrophoretic mobility shift assay (EMSA). In this study, a putative T3SS effector DspA/E was also identified as a HrpL-upregulated gene, and shown to be translocated into plant cells in a T3SS-dependent manner.
We provide the genome-wide study of HrpL-regulated genes in a necrotrophic phytopathogen (D. dadantii 3937) through a combination of transcriptomics and bioinformatics, which led to identification of several effectors. Our study indicates the extent of differences for T3SS effector protein inventory requirements between necrotrophic and biotrophic pathogens, and may allow the development of different strategies for disease control for these different groups of pathogens.
PMCID: PMC2957411  PMID: 20976052
13.  Quantification of Persistence of Escherichia coli O157:H7 in Contrasting Soils 
Persistence of Escherichia coli (E. coli) O157:H7 in the environment is a major concern to vegetable and fruit growers where farms and livestock production are in close proximity. The objectives were to determine the effects of preplant fumigation treatment on the survival of E. coli O157:H7 in two soils and the effects of indigenous bacterial populations on the survival of this pathogen. Real-time PCR and plate counts were used to quantify the survival of E. coli O157:H7 in two contrasting soils after fumigation with methyl bromide (MeBr) and methyl iodide (MeI). Ten days after fumigation, E. coli O157:H7 counts were significantly lower (P = .0001) in fumigated soils than in the non-fumigated. Direct comparison between MeBr and MeI within each soil indicated that these two fumigants showed similar impacts on E. coli O157:H7 survival. Microbial species diversity as determined by DGGE was significantly higher in clay soil than sandy soil and this resulted in higher initial decline in population in clay soil than in sandy soil. This study shows that if soil is contaminated with E. coli O157:H7, fumigation alone may not eliminate the pathogen, but may cause decrease in microbial diversity which may enhance the survival of the pathogen.
PMCID: PMC2943103  PMID: 20871863
14.  The Plant Phenolic Compound p-Coumaric Acid Represses Gene Expression in the Dickeya dadantii Type III Secretion System▿ †  
The type III secretion system (T3SS) is a major virulence factor in many gram-negative bacterial pathogens. This secretion system translocates effectors directly into the cytosol of eukaryotic host cells, where the effector proteins facilitate bacterial pathogenesis by interfering with host cell signal transduction and other cellular processes. Plants defend themselves against bacterial pathogens by recognizing either the type 3 effectors or their actions and initiating a cascade of defense responses that often results in programmed cell death of the plant cell being attacked. Here we show that a plant phenolic compound, p-coumaric acid (PCA), represses the expression of T3SS genes of the plant pathogen Dickeya dadantii, suggesting that plants can also defend against bacterial pathogens by manipulating the expression of the T3SS. PCA repressed the expression of T3SS regulatory genes through the HrpX/Y two-component system, a core regulator of the T3SS, rather than through the global regulator GacS/A, which indirectly regulates the T3SS. A further analysis of several PCA analogs suggests that the para positioning of the hydroxyl group in the phenyl ring and the double bond of PCA may be important for its biological activity.
PMCID: PMC2648153  PMID: 19114532
15.  Correction: Type III Secretion System Genes of Dickeya dadantii 3937 Are Induced by Plant Phenolic Acids 
PLoS ONE  2008;3(9):10.1371/annotation/91170966-226f-4678-999e-22f2c4a6bb8d.
PMCID: PMC2645288
16.  Type III Secretion System Genes of Dickeya dadantii 3937 Are Induced by Plant Phenolic Acids 
PLoS ONE  2008;3(8):e2973.
Dickeya dadantii is a broad-host range phytopathogen. D. dadantii 3937 (Ech3937) possesses a type III secretion system (T3SS), a major virulence factor secretion system in many Gram-negative pathogens of plants and animals. In Ech3937, the T3SS is regulated by two major regulatory pathways, HrpX/HrpY-HrpS-HrpL and GacS/GacA-rsmB-RsmA pathways. Although the plant apoplast environment, low pH, low temperature, and absence of complex nitrogen sources in media have been associated with the induction of T3SS genes of phytobacteria, no specific inducer has yet been identified.
Methodology/Principal Findings
In this work, we identified two novel plant phenolic compounds, o-coumaric acid (OCA) and t-cinnamic acid (TCA), that induced the expression of T3SS genes dspE (a T3SS effector), hrpA (a structural protein of the T3SS pilus), and hrpN (a T3SS harpin) in vitro. Assays by qRT-PCR showed higher amounts of mRNA of hrpL (a T3SS alternative sigma factor) and rsmB (an untranslated regulatory RNA), but not hrpS (a σ54-enhancer binding protein) of Ech3937 when these two plant compounds were supplemented into minimal medium (MM). However, promoter activity assays using flow cytometry showed similar promoter activities of hrpN in rsmB mutant Ech148 grown in MM and MM supplemented with these phenolic compounds. Compared with MM alone, only slightly higher promoter activities of hrpL were observed in bacterial cells grown in MM supplemented with OCA/TCA.
The induction of T3SS expression by OCA and TCA is moderated through the rsmB-RsmA pathway. This is the first report of plant phenolic compounds that induce the expression T3SS genes of plant pathogenic bacteria.
PMCID: PMC2494611  PMID: 18698421
17.  Global Effect of Indole-3-Acetic Acid Biosynthesis on Multiple Virulence Factors of Erwinia chrysanthemi 3937▿  
Production of the plant hormone indole-3-acetic acid (IAA) is widespread among plant-associated microorganisms. The non-gall-forming phytopathogen Erwinia chrysanthemi 3937 (strain Ech3937) possesses iaaM (ASAP16562) and iaaH (ASAP16563) gene homologues. In this work, the null knockout iaaM mutant strain Ech138 was constructed. The IAA production by Ech138 was reduced in M9 minimal medium supplemented with l-tryptophan. Compared with wild-type Ech3937, Ech138 exhibited reduced ability to produce local maceration, but its multiplication in Saintpaulia ionantha was unaffected. The pectate lyase production of Ech138 was diminished. Compared with wild-type Ech3937, the expression levels of an oligogalacturonate lyase gene, ogl, and three endopectate lyase genes, pelD, pelI, and pelL, were reduced in Ech138 as determined by a green fluorescent protein-based fluorescence-activated cell sorting promoter activity assay. In addition, the transcription of type III secretion system (T3SS) genes, dspE (a putative T3SS effector) and hrpN (T3SS harpin), was found to be diminished in the iaaM mutant Ech138. Compared with Ech3937, reduced expression of hrpL (a T3SS alternative sigma factor) and gacA but increased expression of rsmA in Ech138 was also observed, suggesting that the regulation of T3SS and pectate lyase genes by IAA biosynthesis might be partially due to the posttranscriptional regulation of the Gac-Rsm regulatory pathway.
PMCID: PMC1828641  PMID: 17189441
18.  Harpin Mediates Cell Aggregation in Erwinia chrysanthemi 3937 
Journal of Bacteriology  2006;188(6):2280-2284.
The hypersensitive response elicitor harpin (HrpN) of soft rot pathogen Erwinia chrysanthemi strains 3937 and EC16 is secreted via the type III secretion system and remains cell surface bound. Strain 3937 HrpN is essential for cell aggregation, but the C-terminal one-third of the protein is not required for aggregative activity.
PMCID: PMC1428125  PMID: 16513758
19.  Survival of the biocontrol agents Brevibacillus brevis ZJY-1 and Bacillus subtilis ZJY-116 on the spikes of barley in the field*  
Fusarium head blight (FHB) caused by Fusarium graminearum is a devastating disease that results in extensive yield losses to wheat and barley. A green fluorescent protein (GFP) expressing plasmid pRP22-GFP was constructed for monitoring the colonization of two biocontrol agents, Brevibacillus brevis ZJY-1 and Bacillus subtilis ZJY-116, on the spikes of barley and their effect on suppression of FHB. Survival and colonization of the Brevibacillus brevis ZJY-1 and Bacillus subtilis ZJY-116 strains on spikes of barley were observed by tracking the bacterial transformants with GFP expression. Our field study revealed that plasmid pRP22-GFP was stably maintained in the bacterial strains without selective pressure. The retrieved GFP-tagged strains showed that the bacterial population fluctuation accorded with that of the rain events. Furthermore, both biocontrol strains gave significant protection against FHB on spikes of barley in fields. The greater suppression of barley FHB disease was resulted from the treatment of barley spikes with biocontrol agents before inoculation with F. graminearum.
PMCID: PMC1389858  PMID: 16052710
GFP; Survival; Brevibacillus brevis and Bacillus subtilis; Spikes; Barley; Biocontrol
20.  The Erwinia chrysanthemi Type III Secretion System Is Required for Multicellular Behavior 
Journal of Bacteriology  2005;187(2):639-648.
Enterobacterial animal pathogens exhibit aggregative multicellular behavior, which is manifested as pellicles on the culture surface and biofilms at the surface-liquid-air interface. Pellicle formation behavior requires production of extracellular polysaccharide, cellulose, and protein filaments, known as curli. Protein filaments analogous to curli are formed by many protein secretion systems, including the type III secretion system (TTSS). Here, we demonstrate that Erwinia chrysanthemi, which does not carry curli genes, requires the TTSS for pellicle formation. These data support a model where cellulose and generic protein filaments, which consist of either curli or TTSS-secreted proteins, are required for enterobacterial aggregative multicellular behavior. Using this assay, we found that hrpY, which encodes a two-component system response regulator homolog, is required for activity of hrpS, which encodes a σ54-dependent enhancer-binding protein homolog. In turn, hrpS is required for activity of the sigma factor homolog hrpL, which activates genes encoding TTSS structural and secreted proteins. Pellicle formation was temperature dependent and pellicles did not form at 36°C, even though TTSS genes were expressed at this temperature. We found that cellulose is a component of the E. chrysanthemi pellicle but that pellicle formation still occurs in a strain with an insertion in a cellulose synthase subunit homolog. Since the TTSS, but not the cellulose synthase subunit, is required for E. chrysanthemi pellicle formation, this inexpensive assay can be used as a high throughput screen for TTSS mutants or inhibitors.
PMCID: PMC543537  PMID: 15629935
21.  Impact of Fumigants on Soil Microbial Communities 
Agricultural soils are typically fumigated to provide effective control of nematodes, soilborne pathogens, and weeds in preparation for planting of high-value cash crops. The ability of soil microbial communities to recover after treatment with fumigants was examined using culture-dependent (Biolog) and culture-independent (phospholipid fatty acid [PLFA] analysis and denaturing gradient gel electrophoresis [DGGE] of 16S ribosomal DNA [rDNA] fragments amplified directly from soil DNA) approaches. Changes in soil microbial community structure were examined in a microcosm experiment following the application of methyl bromide (MeBr), methyl isothiocyanate, 1,3-dichloropropene (1,3-D), and chloropicrin. Variations among Biolog fingerprints showed that the effect of MeBr on heterotrophic microbial activities was most severe in the first week and that thereafter the effects of MeBr and the other fumigants were expressed at much lower levels. The results of PLFA analysis demonstrated a community shift in all treatments to a community dominated by gram-positive bacterial biomass. Different 16S rDNA profiles from fumigated soils were quantified by analyzing the DGGE band patterns. The Shannon-Weaver index of diversity, H, was calculated for each fumigated soil sample. High diversity indices were maintained between the control soil and the fumigant-treated soils, except for MeBr (H decreased from 1.14 to 0.13). After 12 weeks of incubation, H increased to 0.73 in the MeBr-treated samples. Sequence analysis of clones generated from unique bands showed the presence of taxonomically unique clones that had emerged from the MeBr-treated samples and were dominated by clones closely related to Bacillus spp. and Heliothrix oregonensis. Variations in the data were much higher in the Biolog assay than in the PLFA and DGGE assays, suggesting a high sensitivity of PLFA analysis and DGGE in monitoring the effects of fumigants on soil community composition and structure. Our results indicate that MeBr has the greatest impact on soil microbial communities and that 1,3-D has the least impact.
PMCID: PMC93007  PMID: 11425748
22.  From rags to riches: insights from the first genomic sequence of a plant pathogenic bacterium 
Genome Biology  2000;1(3):reviews1019.1-reviews1019.4.
The recently published genomic sequence of Xylella fastidiosa is the first for a free-living plant pathogen and provides clues to mechanisms of pathogenesis and survival in insect vectors. The sequence data should lead to improved control of this pathogen.
PMCID: PMC138861  PMID: 11178244
23.  Rhizosphere Microbial Community Structure in Relation to Root Location and Plant Iron Nutritional Status 
Root exudate composition and quantity vary in relation to plant nutritional status, but the impact of the differences on rhizosphere microbial communities is not known. To examine this question, we performed an experiment with barley (Hordeum vulgare) plants under iron-limiting and iron-sufficient growth conditions. Plants were grown in an iron-limiting soil in root box microcosms. One-half of the plants were treated with foliar iron every day to inhibit phytosiderophore production and to alter root exudate composition. After 30 days, the bacterial communities associated with different root zones, including the primary root tips, nonelongating secondary root tips, sites of lateral root emergence, and older roots distal from the tip, were characterized by using 16S ribosomal DNA (rDNA) fingerprints generated by PCR-denaturing gradient gel electrophoresis (DGGE). Our results showed that the microbial communities associated with the different root locations produced many common 16S rDNA bands but that the communities could be distinguished by using correspondence analysis. Approximately 40% of the variation between communities could be attributed to plant iron nutritional status. A sequence analysis of clones generated from a single 16S rDNA band obtained at all of the root locations revealed that there were taxonomically different species in the same band, suggesting that the resolving power of DGGE for characterization of community structure at the species level is limited. Our results suggest that the bacterial communities in the rhizosphere are substantially different in different root zones and that a rhizosphere community may be altered by changes in root exudate composition caused by changes in plant iron nutritional status.
PMCID: PMC91828  PMID: 10618246
24.  Mutations Affecting Hyphal Colonization and Pyoverdine Production in Pseudomonads Antagonistic toward Phytophthora parasitica 
In previous studies, Pseudomonas putida 06909 and Pseudomonas fluorescens 09906 suppressed populations of Phytophthora parasitica in the citrus rhizosphere, suggesting that these bacteria may be useful in biological control of citrus root rot. In this study we investigated the mechanisms of antagonism between the bacteria and the fungus. Both bacteria colonized Phytophthora hyphae and inhibited the fungus on agar media. A hyphal column assay was developed to measure the colonization of bacteria on fungal hyphae and to enrich for colonization-deficient mutants. In this way we identified Tn5 mutants of each pseudomonad that were not able to colonize the hyphae and inhibit fungal growth in vitro. Colonization-deficient mutants were nonmotile and lacked flagella. Survival of nonmotile mutants in a citrus soil was similar to survival of a random Tn5 mutant over a 52-day period. Additional screening of random Tn5 mutants of both pseudomonads for loss of fungal inhibition in vitro yielded two distinct types of mutants. Mutants of the first type were deficient in production of pyoverdines and in inhibition of the fungus in vitro, although they still colonized fungal hyphae. Mutants of the second type lacked flagella and were not able to colonize the hyphae or inhibit fungal growth. No role was found for antibiotic production by the two bacteria in the inhibition of the fungus. Our results suggest that both hyphal colonization and pyoverdine production are important in the inhibition of Phytophthora parasitica by P. fluorescens and P. putida in vitro.
PMCID: PMC201336  PMID: 16349177

Results 1-24 (24)