PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (172)
 

Clipboard (0)
None

Select a Filter Below

Journals
more »
Year of Publication
more »
1.  Exploring time- and frequency- dependent functional connectivity and brain networks during deception with single-trial event-related potentials 
Scientific Reports  2016;6:37065.
To better characterize the cognitive processes and mechanisms that are associated with deception, wavelet coherence was employed to evaluate functional connectivity between different brain regions. Two groups of subjects were evaluated for this purpose: 32 participants were required to either tell the truth or to lie when facing certain stimuli, and their electroencephalogram signals on 12 electrodes were recorded. The experimental results revealed that deceptive responses elicited greater connectivity strength than truthful responses, particularly in the θ band on specific electrode pairs primarily involving connections between the prefrontal/frontal and central regions and between the prefrontal/frontal and left parietal regions. These results indicate that these brain regions play an important role in executing lying responses. Additionally, three time- and frequency-dependent functional connectivity networks were proposed to thoroughly reflect the functional coupling of brain regions that occurs during lying. Furthermore, the wavelet coherence values for the connections shown in the networks were extracted as features for support vector machine training. High classification accuracy suggested that the proposed network effectively characterized differences in functional connectivity between the two groups of subjects over a specific time-frequency area and hence could be a sensitive measurement for identifying deception.
doi:10.1038/srep37065
PMCID: PMC5105133  PMID: 27833159
2.  Differences in Bacterial Diversity and Communities Between Glacial Snow and Glacial Soil on the Chongce Ice Cap, West Kunlun Mountains 
Scientific Reports  2016;6:36548.
A detailed understanding of microbial ecology in different supraglacial habitats is important due to the unprecedented speed of glacier retreat. Differences in bacterial diversity and community structure between glacial snow and glacial soil on the Chongce Ice Cap were assessed using 454 pyrosequencing. Based on rarefaction curves, Chao1, ACE, and Shannon indices, we found that bacterial diversity in glacial snow was lower than that in glacial soil. Principal coordinate analysis (PCoA) and heatmap analysis indicated that there were major differences in bacterial communities between glacial snow and glacial soil. Most bacteria were different between the two habitats; however, there were some common bacteria shared between glacial snow and glacial soil. Some rare or functional bacterial resources were also present in the Chongce Ice Cap. These findings provide a preliminary understanding of the shifts in bacterial diversity and communities from glacial snow to glacial soil after the melting and inflow of glacial snow into glacial soil.
doi:10.1038/srep36548
PMCID: PMC5109912  PMID: 27811967
3.  LncRNAs H19 and HULC, activated by oxidative stress, promote cell migration and invasion in cholangiocarcinoma through a ceRNA manner 
Background
Long non-coding RNAs (lncRNAs) are known to play important roles in different cell contexts, including cancers. However, little is known about lncRNAs in cholangiocarcinoma (CCA), a cholangiocyte malignancy with poor prognosis, associated with chronic inflammation and damage to the biliary epithelium. The aim of the study is to identify if any lncRNA might associate with inflammation or oxidative stress in CCA and regulate the disease progression.
Methods
In this study, RNA-seqs datasets were used to identify aberrantly expressed lncRNAs. Small interfering RNA and overexpressed plasmids were used to modulate the expression of lncRNAs, and luciferase target assay RNA immunoprecipitation (RIP) was performed to explore the mechanism of miRNA-lncRNA sponging.
Results
We firstly analyzed five available RNA-seqs datasets to investigate aberrantly expressed lncRNAs which might associate with inflammation or oxidative stress. We identified that two lncRNAs, H19 and HULC, were differentially expressed among all the samples under the treatment of hypoxic or inflammatory factors, and they were shown to be stimulated by short-term oxidative stress responses to H2O2 and glucose oxidase in CCA cell lines. Further studies revealed that these two lncRNAs promoted cholangiocyte migration and invasion via the inflammation pathway. H19 and HULC functioned as competing endogenous RNAs (ceRNAs) by sponging let-7a/let-7b and miR-372/miR-373, respectively, which activate pivotal inflammation cytokine IL-6 and chemokine receptor CXCR4.
Conclusions
Our study revealed that H19 and HULC, up-regulated by oxidative stress, regulate CCA cell migration and invasion by targeting IL-6 and CXCR4 via ceRNA patterns of sponging let-7a/let-7b and miR-372/miR-373, respectively. The results suggest that these lncRNAs might be the chief culprits of CCA pathogenesis and progression. The study provides new insight into the mechanism linking lncRNA function with CCA and may serve as novel targets for the development of new countermeasures of CCA.
Electronic supplementary material
The online version of this article (doi:10.1186/s13045-016-0348-0) contains supplementary material, which is available to authorized users.
doi:10.1186/s13045-016-0348-0
PMCID: PMC5093965  PMID: 27809873
Inflammation response; Oxidative stress; ceRNA; Cholangiocarcinoma; Migration and invasion
4.  A 90-Day Feeding Study in Rats to Assess the Safety of Genetically Engineered Pork 
PLoS ONE  2016;11(11):e0165843.
Our laboratory recently produced genetically engineered (GE) Meishan pigs containing a ZFN-edited myostatin loss-of-function mutant. These GE pigs develop and grow as normal as wild type pigs but produce pork with greater lean yield and lower fat mass. To assess any potential subchronic toxicity risks of this GE pork, a 90-day feeding study was conducted in Sprague-Dawley rats. Rats were randomly divided into five groups, and fed for 90 days with basic diet and basic diets formulated with low dose and high dose pork prepared from wild type pigs and GE pigs, respectively. Animal behaviors and clinical signs were monitored twice daily, and body weight and food consumption were measured and recorded weekly. At days 45 and 90, blood tests (lipid panel, electrolytes, parameters related to liver and kidney functions, and complete blood counts) were performed. Additionally, gross pathology and histopathological analyses were performed for major organs in each group. Data analysis shows that there were no significant differences in growth rate, food consumption, and blood test parameters between rat groups fed with GE pork and wild type pork. Although differences in some liver function parameters (such as aspartate aminotransferase, total proteins, albumin, and alkaline phosphatase) and white blood cell counts (such as lymphocyte percentage and monocyte percentage) were observed between rats fed with high dose GE pork and basic diet, all test results in rats fed with GE pork are in the normal range. Additionally, there are no apparent lesions noted in all organs isolated from rats in all five feeding groups on days 45 and 90. Overall, our results clearly indicate that food consumption of GE pork produced by ZFN-edited myostatin loss-of-function mutant pigs did not have any long-term adverse effects on the health status in rats.
doi:10.1371/journal.pone.0165843
PMCID: PMC5094721  PMID: 27812153
5.  The Intoxication Effects of Methanol and Formic Acid on Rat Retina Function 
Journal of Ophthalmology  2016;2016:4087096.
Objective. To explore the potential effects of methanol and its metabolite, formic acid, on rat retina function. Methods. Sprague-Dawley rats were divided into 3- and 7-day groups and a control. Experimental groups were given methanol and the control group were provided saline by gavage. Retinal function of each group was assessed by electroretinogram. Concentrations of methanol and formic acid were detected by GC/HS and HPLC, respectively. Results. The a and b amplitudes of methanol treated groups decreased and latent periods delayed in scotopic and photopic ERG recordings. The summed amplitudes of oscillatory potentials (OPs) of groups B and C decreased and the elapsed time delayed. The amplitudes of OS1, OS3, OS4, and OS5 of group B and OS3, OS4, and OS5 of group C decreased compared with the control group. The IPI1 of group B and IPI1-4 of group C were broader compared with the control group and the IPI1-4 and ET of group B were broader than group C. Conclusions. Both of scotopic and photopic retinal functions were impaired by methanol poisoning, and impairment was more serious in the 7-day than in the 3-day group. OPs, especially later OPs and IPI2, were more sensitive to methanol intoxication than other eletroretinogram subcomponents.
doi:10.1155/2016/4087096
PMCID: PMC5027045  PMID: 27688906
6.  Stability and Safety of an AAV Vector for Treating RPGR-ORF15 X-Linked Retinitis Pigmentosa 
Human Gene Therapy  2015;26(9):593-602.
Our collaborative successful gene replacement therapy using AAV vectors expressing a variant of human RPGR-ORF15 in two canine models provided therapeutic proof of concept for translation into human treatment. The ORF15 sequence contained within this AAV vector, however, has ORF15 DNA sequence variations compared to the published sequence that are likely due to its unusual composition of repetitive purine nucleotides. This mutability is a concern for AAV vector production and safety when contemplating a human trial. In this study, we establish the safety profile of AAV-hIRBP-hRPGR and AAV-hGRK1-hRPGR vectors used in the initial canine proof-of-principle experiments by demonstrating hRPGR-ORF15 sequence stability during all phases of manipulation, from plasmid propagation to vector production to its stability in vivo after subretinal administration to animals. We also evaluate potential toxicity in vivo by investigating protein expression, retinal structure and function, and vector biodistribution. Expression of hRPGR is detected in the inner segments and synaptic terminals of photoreceptors and is restricted to the connecting cilium when the vector is further diluted. Treated eyes exhibit no toxicity as assessed by retinal histopathology, immunocytochemistry, optical coherence tomography, fundoscopy, electroretinogram, and vector biodistribution. Therefore, the hRPGR-ORF15 variant in our AAV vectors appears to be a more stable form than the endogenous hRPGR cDNA when propagated in vitro. Its safety profile presented here in combination with its proven efficacy supports future gene therapy clinical trials.
doi:10.1089/hum.2015.035
PMCID: PMC4575541  PMID: 26076799
7.  Identification of HRAS as cancer-promoting gene in gastric carcinoma cell aggressiveness 
American Journal of Cancer Research  2016;6(9):1935-1948.
Gastric carcinoma is one of the most lethal malignancies of cancers and its prognosis remains dismal due to the paucity of effective therapeutic targets. Herein, we showed that HRAS is markedly up-regulated in gastric carcinoma. Prognostic analysis indicated that HRAS expression might be a prognostic indicator for the survival of patients with gastric carcinoma. Ectopic expression of HRAS in gastric carcinoma cells accelerated proliferation, migration, invasion, angiogenesis, and clone formation ability of gastric carcinoma cells in vitro. Furthermore, HRAS over-expressing significantly promoted the tumorigenicity of gastric carcinoma cells in vivo whereas silencing endogenous HRAS caused opposite outcomes. Moreover, we demonstrated that HRAS enhanced gastric carcinoma aggressiveness by activating VEGFA/PI3K/AKT pathway and Raf-1 signaling. Together, our results provide new evidence that HRAS overexpression promotes the progression of gastric carcinoma and might represent a novel therapeutic target for its treatment.
PMCID: PMC5043104  PMID: 27725900
HRAS; gastric carcinoma; growth; angiogenesis
8.  Circulating histones are major mediators of systemic inflammation and cellular injury in patients with acute liver failure 
Cell Death & Disease  2016;7(9):e2391-.
Acute liver failure (ALF) is a life-threatening systemic disorder. Here we investigated the impact of circulating histones, recently identified inflammatory mediators, on systemic inflammation and liver injury in murine models and patients with ALF. We analyzed histone levels in blood samples from 62 patients with ALF, 60 patients with chronic liver disease, and 30 healthy volunteers. We incubated patients' sera with human L02 hepatocytes and monocytic U937 cells to assess cellular damage and cytokine production. d-galactosamine plus lipopolysaccharide (GalN/LPS), concanavalin A (ConA), and acetaminophen (APAP) were given to C57BL/6N mice to induce liver injury, respectively, and the pathogenic role of circulating histones was studied. Besides, the protective effect of nonanticoagulant heparin, which can bind histones, was evaluated with in vivo and ex vivo investigations. We observed that circulating histones were significantly increased in patients with ALF, and correlated with disease severity and mortality. Significant systemic inflammation was also pronounced in ALF patients, which were associated with histone levels. ALF patients' sera induced significant L02 cell death and stimulated U937 cells to produce cytokines, which were abrogated by nonanticoagulant heparin. Furthermore, circulating histones were all released remarkably in GalN/LPS, ConA, and APAP-treated mice, and associated with high levels of inflammatory cytokines. Heparin reduced systemic inflammation and liver damage in mice, suggesting that it could interfere with histone-associated liver injury. Collectively, these findings demonstrate that circulating histones are critical mediators of systemic inflammation and cellular damage in ALF, which may be potentially translatable for clinical use.
doi:10.1038/cddis.2016.303
PMCID: PMC5059889  PMID: 27685635
9.  Anti-cancer effect of ursolic acid activates apoptosis through ROCK/PTEN mediated mitochondrial translocation of cofilin-1 in prostate cancer 
Oncology Letters  2016;12(4):2880-2885.
Ursolic acid is a type of pentacyclic triterpene compound with multiple pharmacological activities including cancer resistance, protection from liver injury, antisepsis, anti-inflammation and antiviral activity. The present study aimed to investigate the anticancer effect of ursolic acid. Ursolic acid activates cell apoptosis and its pro-apoptotic mechanism remains to be fully elucidated. Cell Counting kit-8 assays, flow cytometric analysis and analysis of caspase-3 and caspase-9 activity were used to estimate the anticancer effect of ursolic acid on DU145 prostate cancer cells. The protein expression of cytochrome c, rho-associated protein kinase (ROCK), phosphatase and tensin homolog (PTEN) and cofilin-1 were examined using western blot analysis. In the present study, ursolic acid significantly suppressed cell growth and induced apoptosis, as well as increasing caspase-3 and caspase-9 activities of DU145 cells. Furthermore, cytoplasmic and mitochondrial cytochrome c protein expression was significantly activated and suppressed, respectively, by ursolic acid. Ursolic acid significantly suppressed the ROCK/PTEN signaling pathway and inhibited cofilin-1 protein expression in DU145 cells. The results of the present study indicate that the anticancer effect of ursolic acid activates cell apoptosis through ROCK/PTEN mediated mitochondrial translocation of cofilin-1 in prostate cancer.
doi:10.3892/ol.2016.5015
PMCID: PMC5038386  PMID: 27698874
ursolic acid; prostate cancer; cytochrome c; rho-associated protein kinase/phosphatase and tensin homolog; cofilin-1
10.  A simple prognostic score system predicts the prognosis of solitary large hepatocellular carcinoma following hepatectomy 
Medicine  2016;95(31):e4296.
Abstract
Solitary large hepatocellular carcinomas (SLHCC) form a heterogeneous group of patients with different survival probabilities. The aim of our study was to develop a simple prognostic index for identifying prognostic subgroups of SLHCC patients.
A retrospective analysis of clinical data from 268 patients with operable SLHCC was conducted to investigate prognostic factors and to construct a score system based on risk factors. A Cox proportional hazard regression analysis was used to evaluate the variables associated with prognosis. Survival analyses were performed using Kaplan–Meier survival curves.
Three variables remained in the final multivariate model: platelet to lymphocyte ratio (PLR), microvascular invasion (MVI), and tumor size with hazard ratios equal to 1.004 (95% confidence interval: 1.001–1.006), 1.092 (1.044–1.142), and 2.233 (1.125–2.233), respectively. A score of 1 was assigned to each risk factor. Patient scores were determined based on these risk factors; thus, the scores ranged between 0 and 3. Ultimately, three categories (0, 1–2, 3) were defined. Patients with scores of 3 had a 5-year survival rate of 25.4%, whereas patients with a score of 0 had a 5-year survival rate of 52.1%. The prognosis significantly worsened as the score increased. Similar results were found among cirrhotic and noncirrhotic patients.
Our simple prognostic index successfully predicts SLHCC survival.
doi:10.1097/MD.0000000000004296
PMCID: PMC4979787  PMID: 27495033
HCC; hepatectomy; prognosis; prognostic score system
11.  Acupuncture for musculoskeletal pain: A meta-analysis and meta-regression of sham-controlled randomized clinical trials 
Scientific Reports  2016;6:30675.
The aims of this systematic review were to study the analgesic effect of real acupuncture and to explore whether sham acupuncture (SA) type is related to the estimated effect of real acupuncture for musculoskeletal pain. Five databases were searched. The outcome was pain or disability immediately (≤1 week) following an intervention. Standardized mean differences (SMDs) with 95% confidence intervals were calculated. Meta-regression was used to explore possible sources of heterogeneity. Sixty-three studies (6382 individuals) were included. Eight condition types were included. The pooled effect size was moderate for pain relief (59 trials, 4980 individuals, SMD −0.61, 95% CI −0.76 to −0.47; P < 0.001) and large for disability improvement (31 trials, 4876 individuals, −0.77, −1.05 to −0.49; P < 0.001). In a univariate meta-regression model, sham needle location and/or depth could explain most or all heterogeneities for some conditions (e.g., shoulder pain, low back pain, osteoarthritis, myofascial pain, and fibromyalgia); however, the interactions between subgroups via these covariates were not significant (P < 0.05). Our review provided low-quality evidence that real acupuncture has a moderate effect (approximate 12-point reduction on the 100-mm visual analogue scale) on musculoskeletal pain. SA type did not appear to be related to the estimated effect of real acupuncture.
doi:10.1038/srep30675
PMCID: PMC4965798  PMID: 27471137
13.  Gene Therapy for MERTK-Associated Retinal Degenerations 
MERTK-associated retinal degenerations are thought to have defects in phagocytosis of shed outer segment membranes by the retinal pigment epithelium (RPE), as do the rodent models of these diseases. We have subretinally injected an RPE-specific AAV2 vector, AAV2-VMD2-hMERTK, to determine whether this would provide long-term photoreceptor rescue in the RCS rat, which it did for up to 6.5 months, the longest time point examined. Moreover, we found phagosomes in the RPE in the rescued regions of RCS retinas soon after the onset of light. The same vector also had a major protective effect in Mertk-null mice, with a concomitant increase in ERG response amplitudes in the vector-injected eyes. These findings suggest that planned clinical trials with this vector will have a favorable outcome.
doi:10.1007/978-3-319-17121-0_65
PMCID: PMC4942279  PMID: 26427450
Gene therapy; Retinal degeneration; MERTK; Phagocytosis; Treatment
14.  Vitreal delivery of AAV vectored Cnga3 restores cone function in CNGA3−/−/Nrl−/− mice, an all-cone model of CNGA3 achromatopsia† 
Human Molecular Genetics  2015;24(13):3699-3707.
The CNGA3−/−/Nrl−/− mouse is a cone-dominant model with Cnga3 channel deficiency, which partially mimics the all cone foveal structure of human achromatopsia 2 with CNGA3 mutations. Although subretinal (SR) AAV vector administration can transfect retinal cells efficiently, the injection-induced retinal detachment can cause retinal damage, particularly when SR vector bleb includes the fovea. We therefore explored whether cone function–structure could be rescued in CNGA3−/−/Nrl−/− mice by intravitreal (IVit) delivery of tyrosine to phenylalanine (Y-F) capsid mutant AAV8. We find that AAV-mediated CNGA3 expression can restore cone function and rescue structure following IVit delivery of AAV8 (Y447, 733F) vector. Rescue was assessed by restoration of the cone-mediated electroretinogram (ERG), optomotor responses, and cone opsin immunohistochemistry. Demonstration of gene therapy in a cone-dominant mouse model by IVit delivery provides a potential alternative vector delivery mode for safely transducing foveal cones in achromatopsia patients and in other human retinal diseases affecting foveal function.
doi:10.1093/hmg/ddv114
PMCID: PMC4459390  PMID: 25855802
15.  MicroRNA-375 suppresses human colorectal cancer metastasis by targeting Frizzled 8 
Oncotarget  2016;7(26):40644-40656.
microRNAs are aberrantly expressed during the development and progression of a variety of human cancers, including colorectal cancer (CRC). Of these microRNAs, microRNA-375 (miR-375) was previously observed to be downregulated in human colorectal cancer(CRC) plasma and tissues, but its functions are largely unknown. Here, we investigated the impact of miR-375 on CRC metastasis. Specifically, miR-375 expression was significantly decreased in human CRC tissues compared with their matched noncancerous tissues (NCTs), and low levels of miR-375 predicted tumor metastatic potential. The up-regulation of miR-375 suppressed colorectal cancer cell migration and invasion in vitro and reduced tumor metastases in murine models established by both orthotopic implantation and spleen injection. Furthermore, we identified Frizzled 8 (FZD8) as a direct target of miR-375 in CRC, and miR-375 negatively regulated Wnt/β-catenin signaling by suppressing FZD8. More importantly, FZD8 expression inversely correlated with overall survival in human CRC patients and is a likely independent predictor of survival. Therefore, we concluded that miR-375 functions as a tumor-suppressive microRNA by directly acting upon FZD8, which may serve as a new therapeutic target to inhibit tumor metastasis in CRC.
doi:10.18632/oncotarget.9811
PMCID: PMC5130033  PMID: 27276676
colorectal cancer; microRNA-375; metastasis; FZD8
16.  Self-templated synthesis of novel carbon nanoarchitectures for efficient electrocatalysis 
Scientific Reports  2016;6:28049.
The cost-efficient large-scale production of novel carbon nanostructure with high performance is still a challenge, restricting their applications in catalysis. Herein, we present a low-cost one-pot and one-step approach for the synthesis of both N-doped graphene (NG) and N-doped carbon nanotubes (NCNTs) from self-templated organic nanoplates. By varying the FeCl3 concentration in the precursor, we can control the formation of graphene or CNTs. To the best of our knowledge, this is the first example for the controllable synthesis of graphene or CNTs by varying the precursors’ compositions. This provides a simple and cost-effective route for the large-scale production of both NG and NCNTs for applications in catalysis. By example, we show how these unique structured nanocarbons can be applied in electrocatalysis for oxygen reduction reaction (ORR). The obtained NG and NCNTs show excellent ORR activities with long-term stability under alkaline conditions. The unique porous nanostructure, abundant defects, homogeneous N-doping and high N-content in the NG and NCNTs can provide abundant active sites, leading to the excellent ORR performance. This research not only displayed a simple and cost-effective approach for the large-scale production of novel carbon nanoarchitectures, but also revealed the exceptional application potential of these nanocarbons for electrocatalysis.
doi:10.1038/srep28049
PMCID: PMC4908410  PMID: 27301537
17.  Metastatic renal cell carcinoma: the first report of unilateral fundus hemorrhage induced by sorafenib 
Oncotarget  2016;7(23):35181-35187.
Background
Renal cell carcinoma (RCC) is the most common type of kidney tumor with increasing incidence. Tyrosine Kinase Inhibitors (TKIs) are considered important treatment in the management of metastatic RCC. Some previous studies demonstrated that sorafenib treatment is associated with a significantly increased risk of potentially life-threatening adverse events, like bleeding. But bleeding at the fundus site is the rarest type of hemorrhage. As for TKIs' risk of bleeding, how we distinguish the degree of bleeding and what optimal strategies should we take to manage bleeding, needs to be studied systematically.
Results
With a long-term exposure (17 months) to sorafenib, he experienced blurred vision in his right eye and was hospitalized. The patient's diagnosis was central retinal vein occlusion (CRVO) of the right eye. Unfortunately sorafenib was terminated.
Materials and Methods
The authors describe the first case of unilateral fundus hemorrhage induced by sorafenib. A 42-year-old man was diagnosed metastatic left RCC, with clinical stage and prognostic risk being assessed as T4N1M1 and intermediate. He received a radical left nephrectomy and retroperitoneal lymph node dissection, with taking the oral multi-targeted TKI, sorafenib (800 mg daily) from 7 months to 7 days before the surgery and 7 days after the surgery restarting again until the occurrence of fundus hemorrhage.
Conclusions
In this patient, long-term exposure to sorafenib possibly has increased the risk of fundus hemorrhage. This article provides us a previously undescribed morbidity associated with sorafenib, which reminds us of understanding the risk of bleeding and how this complication might be managed systematically.
doi:10.18632/oncotarget.9285
PMCID: PMC5085219  PMID: 27174916
RCC; sorafenib; TKIs; CRVO; unilateral
18.  Pharmacological inhibition of MyD88 homodimerization counteracts renal ischemia reperfusion-induced progressive renal injury in vivo and in vitro 
Scientific Reports  2016;6:26954.
The activation of innate immunity via myeloid differentiation factor 88 (MyD88) contributes to ischemia reperfusion (I/R) induced acute kidney injury (AKI) and chronic kidney injury. However, since there have not yet been any effective therapy, the exact pharmacological role of MyD88 in the prevention and treatment of renal ischemia reperfusion injury (IRI) is not known. We designed a small molecular compound, TJ-M2010-2, which inhibited MyD88 homodimerization. We used an established unilateral I/R mouse model. All mice undergoing 80 min ischemia through uninephrectomy died within five days without intervention. However, treatment with TJ-M2010-2 alone significantly improved the survival rate to 58.3%. Co-treatment of TJ-M2010-2 with the CD154 antagonist increased survival rates up to 100%. Twenty-eight days post-I/R of 60 min ischemia without nephrectomy, TJ-M2010-2 markedly attenuated renal interstitial and inhibited TGF-β1-induced epithelial-mesenchymal transition (EMT) of renal tubular epithelial cells. Furthermore, TJ-M2010-2 remarkably inhibited TLR/MyD88 signaling in vivo and in vitro. In conclusion, our findings highlight the promising clinical potential of MyD88 inhibitor in preventing and treating acute or chronic renal I/R injuries, and the therapeutic functionality of dual-system inhibition strategy in IRI-induced AKI. Moreover, MyD88 inhibition ameliorates renal I/R injury-induced tubular interstitial fibrosis by suppressing EMT.
doi:10.1038/srep26954
PMCID: PMC4887891  PMID: 27246399
19.  Seven wood-inhabiting new species of the genus Trichoderma (Fungi, Ascomycota) in Viride clade 
Scientific Reports  2016;6:27074.
More than 200 recent collections of Trichoderma from China were examined and 16 species belonging to the Viride clade were identified based on integrated studies of phenotypic and molecular data. Among them, seven wood-inhabiting new species, T. albofulvopsis, T. densum, T. laevisporum, T. sinokoningii, T. sparsum, T. sphaerosporum and T. subviride, are found. They form trichoderma- to verticillium-like conidiophores, lageniform to subulate phialides and globose to ellipsoidal conidia, but vary greatly in colony features, growth rates, and sizes of phialides and conidia. To explore their taxonomic positions, the phylogenetic tree including all the known species of the Viride clade is constructed based on sequence analyses of the combined RNA polymerase II subunit b and translation elongation factor 1 alpha exon genes. Our results indicated that the seven new species were well-located in the Koningii, Rogersonii and Neorufum subclades as well as a few independent terminal branches. They are clearly distinguishable from any existing species. Morphological distinctions and sequence divergences between the new species and their close relatives were discussed.
doi:10.1038/srep27074
PMCID: PMC4888246  PMID: 27245694
20.  Lymph node dissection in esophageal carcinoma: Minimally invasive esophagectomy vs open surgery 
World Journal of Gastroenterology  2016;22(19):4750-4756.
AIM: To compare lymph node dissection results of minimally invasive esophagectomy (MIE) and open surgery for esophageal squamous cell carcinoma.
METHODS: We retrospectively reviewed data from patients who underwent MIE or open surgery for esophageal squamous cell carcinoma from January 2011 to September 2014. Number of lymph nodes resected, positive lymph node (pN+) rate, lymph node sampling (LNS) rate and lymph node metastatic (LNM) rate were evaluated.
RESULTS: Among 447 patients included, 123 underwent MIE and 324 underwent open surgery. The number of lymph nodes resected did not significantly differ between the MIE and open surgery groups (21.1 ± 4.3 vs 20.4 ± 3.8, respectively, P = 0.0944). The pN+ rate of stage T3 esophageal squamous cell carcinoma in the open surgery group was higher than that in the MIE group (16.3% vs 11.4%, P = 0.031), but no differences was observed for stages T1 and T2 esophageal squamous cell carcinoma. The LNS rate at left para-recurrent laryngeal nerve (RLN) site was significantly higher for open surgery than for MIE (80.2% vs 43.9%, P < 0.001), but no differences were noted at other sites. The LNM rate at left para-RLN site in the open surgery group was significantly higher than that in the MIE group, regardless of pathologic T stage.
CONCLUSION: For stages T1 and T2 esophageal squamous cell carcinoma, the lymph node dissection result after MIE was comparable to that achieved by open surgery. However, the efficacy of MIE in lymphadenectomy for stage T3 esophageal squamous cell carcinoma, particularly at left para-RLN site, remains to be improved.
doi:10.3748/wjg.v22.i19.4750
PMCID: PMC4870081  PMID: 27217706
Esophageal cancer; Lymph node; Minimally invasive; Surgery
21.  In vivo evaluation of the anti-infection potential of gentamicin-loaded nanotubes on titania implants 
Titanium-based implants have been widely used in orthopedic surgery; however, failures still occur. Our in vitro study has demonstrated that gentamicin-loaded, 80 nm-diameter nanotubes possessed both antibacterial and osteogenic activities. Thus, the aim of this study was to further investigate the in vivo anti-infection effect of the titanium implants with gentamicin-loaded nanotubes. Thirty-six male Sprague Dawley rats were used to establish an implant-associated infection model. A volume of 50 μL Staphylococcus aureus suspension (1×105 CFU/mL) was injected into the medullary cavity of the left femur, and then the titanium rods without modification (Ti), titanium nanotubes without drug loading (NT), and gentamicin-loaded titanium nanotubes (NT-G) were inserted with phosphate-buffered saline-inoculated Ti rods as a blank control. X-ray images were obtained 1 day, 21 days, and 42 days after surgery; micro-computed tomography, microbiological, and histopathological analyses were used to evaluate the infections at the time of sacrifice. Radiographic signs of bone infection, including osteolysis, periosteal reaction, osteosclerosis, and damaged articular surfaces, were demonstrated in the infected Ti group and were slightly alleviated in the NT group but not observed in the NT-G group. Meanwhile, the radiographic and gross bone pathological scores of the NT-G group were significantly lower than those of the infected Ti group (P<0.01). Explant cultures revealed significantly less bacterial growth in the NT-G group than in the Ti and NT groups (P<0.01), and the NT group showed decreased live bacterial growth compared with the Ti group (P<0.01). Confocal laser scanning microscopy, scanning electron microscopy, and histopathological observations further confirmed decreased bacterial burden in the NT-G group compared with the Ti and NT groups. We concluded that the NT-G coatings can significantly prevent the development of implant-associated infections in a rat model; therefore, they may provide an effective drug-loading strategy to combat implant-associated infections in clinic.
doi:10.2147/IJN.S102752
PMCID: PMC4876942  PMID: 27274245
titanium nanotubes; gentamicin; implant-associated infection; animal model
22.  Effect of Corilagin on the Proliferation and NF-κB in U251 Glioblastoma Cells and U251 Glioblastoma Stem-Like Cells 
Background. This study is to explore the effect of corilagin on the proliferation and NF-κB signaling pathway in U251 glioblastoma cells and U251 glioblastoma stem-like cells. Methods. CD133 positive U251 glioblastoma cells were separated by immunomagnetic beads to isolate glioblastoma stem-like cells. U251 cells and stem-like cells were intervened by different corilagin concentrations (0, 25, 50, and 100 μg/mL) for 48 h, respectively. Cell morphology, cell counting kit-8 assay, flow cytometry, dual luciferase reporter assay, and a western blot were used to detect and analyze the cell proliferation and cell cycle and investigate the expression of IKBα protein in cytoplasm and NF-κB/p65 in nucleus. Results. Corilagin inhibited the cell proliferation of U251 cells and their stem-like cells and the inhibition role was stronger in U251 stem-like cells (P < 0.05). The cell cycle was arrested at G2/M phase in the U251 cells following corilagin intervention; the proportion of cells in G2/M phase increased as the concentration of corilagin increased (P < 0.05). The U251 stem-like cells were arrested at the S phase following treatment with corilagin; the proportion of cells in the S phase increased as the concentration of corilagin increased (P < 0.05). The ratio of dual luciferase activities of U251 stem-like cells was lower than that of U251 cells in the same corilagin concentration. With increasing concentrations of corilagin, the IKBα expression in cytoplasm of U251 cells and U251 stem-like cells was increased, but the p65 expression in nucleus of U251 cells and U251 stem-like cells was decreased (P < 0.05). Conclusion. Corilagin can inhibit the proliferation of glioblastoma cells and glioblastoma stem-like cells; the inhibition on glioblastoma stem-like cell proliferation is stronger than glioblastoma cells. This different result indicates that the effect of corilagin on U251 cells and U251 stem-like cells may have close relationships with mechanism of cell cycle and NF-κB signaling pathway; however, the real antitumor mechanism of corilagin is not yet clear and requires further study.
doi:10.1155/2016/1418309
PMCID: PMC4876217  PMID: 27247607
23.  New insights into the prognostic value of Ki-67 labeling index in patients with triple-negative breast cancer 
Oncotarget  2016;7(17):24824-24831.
The clinicopathological importance of the Ki-67 labeling index (LI) in breast cancer has been studied intensely; however, its prognostic significance in triple-negative breast cancer (TNBC) is unclear. We aimed to determine the optimal Ki-67 cut-off point to demonstrate its prognostic relevance for breast-cancer-specific survival (BCSS) in TNBC patients. A total of 571 female TNBC patients underwent diagnosis and surgery at our institution from January 2002 to June 2011. Clinicopathological information for all patients was available and categorized by Ki-67 LI and age at diagnosis. The cut-off values for Ki-67 LI and age were selected using the medians. A varying-coefficient Cox model was used to describe the effect of Ki-67 LI on BCSS outcomes changing with age after adjustment for disease characteristics. For survival analysis, the Kaplan–Meier method and the log-rank test were used. Cox proportional hazards models were applied to determine the association of Ki-67 LI and age with BCSS outcomes after adjustment for disease characteristics. Median age was 50 years, and median Ki-67 LI was 35% (range, 0 – 97.5%). There was no prognostic significance of stratification by Ki-67 LI in all patients. When analyzing age at diagnosis as a continuous variable, the log-transformed HRKi67 > 35% vs. ≤ 35% for BCSS increased in an S-shaped curve with increasing age up to about 50 years-old and remained higher-risk for high Ki-67 LI. After adjusting for clinicopathological risk factors, low Ki-67 LI was a poor prognostic factor for BCSS (HR: 0.36, 95% CI: 0.14–0.96, P = 0.042) in patients of ≤ 50 years, but not in patients diagnosed at > 50 years (hazard ratio [HR]: 1.57, 95% CI: 0.76–3.22, P = 0.241). In conclusion, lower Ki-67 LI has poor prognosis relevance in TNBC patients diagnosed at ≤ 50 years-old. Further validation of the clinical significance of Ki-67 LI in TNBC is required.
doi:10.18632/oncotarget.8531
PMCID: PMC5029745  PMID: 27050075
triple-negative breast cancer; Ki67 labeling index; breast-cancer specific survival; heterogeneous
24.  Pathological Effects of Mutant C1QTNF5 (S163R) Expression in Murine Retinal Pigment Epithelium 
Purpose
The mutation S163R in complement C1q tumor necrosis factor–related protein-5 (C1QTNF5) causes an autosomal dominant disorder known as late-onset retinal degeneration (L-ORD). In this study, our goal is to evaluate the consequences of mutant S163R C1QTNF5 expression in mouse RPE following its delivery using an adeno-associated viral (AAV) vector.
Methods
We generated AAV vectors containing either human wild-type C1QTNF5 or mutant S163R C1QTNF5 driven by an RPE-specific BEST1 promoter, and delivered them subretinally into one eye of adult C57BL/6 mice. Transgene expression was detected by immunohistochemistry. Retinal function was assessed by full-field ERG. Pathological changes were further examined by digital fundus imaging and spectral-domain optical coherence tomography (SD-OCT).
Results
We show that the AAV-expressed mutant S163R leads to pathological effects similar to some of those found in patients with advanced L-ORD, including RPE thinning, RPE cell loss, and retinal degeneration. In addition, we provide in vivo evidence that mutant S163R C1QTNF5 can form large, transparent, spherical intracellular aggregates throughout the RPE, which are detectable by light microscopy. In contrast to AAV-expressed wild-type C1QTNF5, which is secreted apically from the RPE toward the photoreceptor cells and the outer limiting membrane, the S163R mutant is primarily routed toward the basal side of RPE, where it forms thick, extracellular deposits over time.
Conclusions
Adeno-associated viral–targeted expression of mutant S163R in the RPE represents a useful approach for quickly generating animal models that mimic pathological features of L-ORD and offers the potential to understand disease mechanisms and develop therapeutic strategies.
doi:10.1167/iovs.15-17166
PMCID: PMC4627469  PMID: 26513502
retina; adeno-associated virus; age-related macular degeneration; retinal pigment epithelium; late-onset retinal degeneration
25.  Amino Compounds as Inhibitors of De Novo Synthesis of Chlorobenzenes 
Scientific Reports  2016;6:23197.
The inhibitory effects of four amino compounds on the formation of chlorobenzenes (CBzs) - dioxin precursors and indicators, and the inhibitory mechanisms were explored. The results show NH4H2PO4 can decrease the total yields of CBzs (1,2di-CBz, 1,3di-CBz, 1,4di-CBz, penta-CBz and hexa-CBz) by 98.1%±1.6% and 96.1%±0.7% under air and nitrogen flow. The inhibitory effects indicated by the total yields of CBzs follow the order NH4H2PO4 > NH4HF2 > (NH4)2SO4 > NH4Br under air flow and NH4H2PO4 ≈ (NH4)2SO4 ≈ NH4HF2 >NH4Br under nitrogen flow. The inhibition mechanism revealed by thermal analysis that CuCl2 was converted to CuPO3 by reacting with NH4H2PO4 below 200 °C, which can block the transfer of chlorine and formation of C–Cl bonds at 350 °C. The effects of the other three inhibitors were weaker because their reactions with CuCl2, which form other copper compounds, and the reaction of CuCl2 with carbon, which forms C–Cl bonds, were almost simultaneous and competitive. Oxygen influenced the yield of CBzs obviously, and the total yield of five CBzs sharply increased with oxygen. Because of their high efficiency, low environmental impact, low cost, and availability, amino compounds - especially NH4H2PO4 - can be utilized as inhibitors of CBzs during incineration.
doi:10.1038/srep23197
PMCID: PMC4817035  PMID: 27034259

Results 1-25 (172)