PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-16 (16)
 

Clipboard (0)
None

Select a Filter Below

Journals
more »
Year of Publication
Document Types
2.  Bronchiolitis Associated With Mycoplasma Pneumoniae in Infants in Suzhou China Between 2010 and 2012 
Scientific Reports  2015;5:7846.
Viruses cause most cases of bronchiolitis in infants; consequently the importance of other agents such as Mycoplasma pneumoniae (MP) in the etiology of bronchiolitis may not be fully recognized. We investigated the prevalence and seasonal distribution of bronchiolitis caused by MP in 674 children admitted to the Children's Hospital affiliated with Soochow University from January 2010 to December 2012. The presence of MP was confirmed by real-time PCR. During the 3 years, we identified MP in 17.2% of the children with bronchiolitis. The annual MP detection rates were 16.6% in 2010, 17.8% in 2011, and 17.2% in 2012. MP was detected throughout the year, with a peak from July to September. The median age of MP-positive children was 10 months. Common clinical manifestations included cough, wheezing, and high fever. Moist and/or wheezing rales were frequent, and pulmonary interstitial infiltration was seen in 66.4% of chest X-rays. Patients with MP infection were older, were more likely to have pulmonary interstitial infiltration, and had shorter hospital stays than those with respiratory syncytial virus infection. Our study revealed MP as an important cause of bronchiolitis, with peaks of occurrence during the summer and early autumn. Pulmonary interstitial infiltrations were a common event.
doi:10.1038/srep07846
PMCID: PMC4297954  PMID: 25597274
3.  Warfarin Dosage Response Related Pharmacogenetics in Chinese Population 
PLoS ONE  2015;10(1):e0116463.
Objectives
As the most frequently prescribed anticoagulant, warfarin has large inter-individual variability in dosage. Genetic polymorphisms could largely explain the differences in dosage requirement. rs9923231 (VKORC1), rs7294 (VKORC1), rs1057910 (CYP2C9), rs2108622 (CYP4F2), and rs699664 (GGCX) involved in the warfarin action mechanism and the circulatory vitamin K were selected to investigate their polymorphism characteristics and their effects on the pharmacodynamics and pharmacokinetics of warfarin in Chinese population.
Methods
220 patients with cardiac valve replacement were recruited. International normalized ratio and plasma warfarin concentrations were determined. The five genetic polymorphisms were genotyping by pyro-sequencing. The relationships of maintenance dose, plasma warfarin concentration and INR were assessed among groups categorized by genotypes.
Results
rs9923231 and rs7294 in VKORC1 had the analogous genotype frequencies (D’: 0.969). 158 of 220 recruited individuals had the target INR (1.5–2.5). Patients with AA of rs9923231 and CC of rs7294 required a significantly lower maintenance dose and plasma concentration than those with AG and TC, respectively. The mean weekly maintenance dose was also significantly lower in CYP2C9 rs1057910 mutated heterozygote than in patients with the wild homozygote. Eliminating the influence from environment factors (age, body weight and gender), rs9923231 and rs1057910 could explain about 32.0% of the variability in warfarin maintenance dose; rs7294 could explain 26.7% of the variability in plasma concentration. For patients with allele G of rs9923231 and allele T of rs7294, higher plasma concentration was needed to achieve the similar goal INR.
Conclusions
A better understanding of the genetic variants in individuals can be the foundation of warfarin dosing algorithm and facilitate the reasonable and effective use of warfarin in Chinese.
doi:10.1371/journal.pone.0116463
PMCID: PMC4296935  PMID: 25594941
4.  Development and Characterization of a Novel Mouse Line Humanized for the Intestinal Peptide Transporter PEPT1 
Molecular pharmaceutics  2014;11(10):3737-3746.
The proton-coupled oligopeptide transporter PEPT1 (SLC15A1) is abundantly expressed in the small intestine, but not colon, of mammals and found to mediate the uptake of di/tripeptides and peptide-like drugs from the intestinal lumen. However, species differences have been observed in both the expression (and localization) of PEPT1 and its substrate affinity. With this in mind, the objectives of this study were to develop a humanized PEPT1 mouse model (huPEPT1) and to characterize hPEPT1 expression and functional activity in the intestines. Thus, after generating huPEPT1 mice in animals previously nulled for mouse Pept1, phenotypic, PCR, and immunoblot analyses were performed, along with in situ single-pass intestinal perfusion and in vivo oral pharmacokinetic studies with a model dipeptide, glycylsarcosine (GlySar). Overall, the huPEPT1 mice had normal survival rates, fertility, litter size, gender distribution, and body weight. There was no obvious behavioral or pathological phenotype. The mRNA and protein profiles indicated that huPEPT1 mice had substantial PEPT1 expression in all regions of the small intestine (i.e., duodenum, jejunum, and ileum) along with low but measurable expression in both proximal and distal segments of the colon. In agreement with PEPT1 expression, the in situ permeability of GlySar in huPEPT1 mice was similar to but lower than wildtype animals in small intestine, and greater than wildtype mice in colon. However, a species difference existed in the in situ transport kinetics of jejunal PEPT1, in which the maximal flux and Michaelis constant of GlySar were reduced 7-fold and 2- to 4-fold, respectively, in huPEPT1 compared to wildtype mice. Still, the in vivo function of intestinal PEPT1 appeared fully restored (compared to Pept1 knockout mice) as indicated by the nearly identical pharmacokinetics and plasma concentration–time profiles following a 5.0 nmol/g oral dose of GlySar to huPEPT1 and wildtype mice. This study reports, for the first time, the development and characterization of mice humanized for PEPT1. This novel transgenic huPEPT1 mouse model should prove useful in examining the role, relevance, and regulation of PEPT1 in diet and disease, and in the drug discovery process.
doi:10.1021/mp500497p
PMCID: PMC4186676  PMID: 25148225
PEPT1; humanized mice; mRNA and protein expression; glycylsarcosine; in situ intestinal perfusions; in vivo oral pharmacokinetics
5.  Impaired frontothalamic circuitry in suicidal patients with depression revealed by diffusion tensor imaging at 3.0 T 
Background
The neurobiology of suicide is largely unknown. Studies of white matter tracts in patients with a history of suicidal behaviour have shown alteration in the left anterior limb of the internal capsule (ALIC). Our aim was to determine whether particular target fields of fibre projections through the ALIC are affected in depressed patients who recently attempted suicide.
Methods
We studied patients with major depressive disorder (MDD) with and without a history of suicide attempts and healthy controls using diffusion tensor imaging (DTI) and deterministic tractography to generate fibre tract maps for each participant. Tract voxels were coded as being unique to the left ALIC. We compared the mean percentage of fibres projecting to relevant brain regions in the 3 groups using analysis of covariance.
Results
We included 63 patients with MDD (23 with and 40 without a history of suicide attempts) and 46 controls in our study. Both groups of depressed patients had reduced fibre projections through the ALIC to the left medial frontal cortex, orbitofrontal cortex and thalamus. Those with a history of suicide attempts had greater abnormalities than those without suicide attempts in the left orbitofrontal cortex and thalamus.
Limitations
Diffusion tensor imaging deterministic tracking is unable to distinguish between afferent and efferent pathways, limiting our ability to distinguish the directionality of altered fibre tracts.
Conclusion
Frontothalamic loops passing through the ALIC are abnormal in patients with depression and significantly more abnormal in depressed patients with a history of suicide attempts than in those without a history of suicide attempts. Abnormal projections to the orbitofrontal cortex and thalamus may disrupt affective and cognitive functions to confer a heightened vulnerability for suicidal behaviour.
doi:10.1503/jpn.130023
PMCID: PMC3997602  PMID: 24119793
6.  Functional and Molecular Expression of the Proton-Coupled Oligopeptide Transporters in Spleen and Macrophages from Mouse and Human 
Molecular pharmaceutics  2013;10(4):1409-1416.
The aim of this study was to determine the expression and function of proton-coupled oligopeptide transporters (POTs) in spleen and macrophages, and their contribution to innate immune response induced by bacterial peptidomimetics γ-iE-DAP and MDP, Quantitative real-time PCR (qRT-PCR) and Western blot results revealed the mRNA and protein expression of PepT2, PhT1 and PhT2, but not PepT1, in the spleen of mice and human. In comparison to lymphocytes of the spleen, macrophages had higher transcript levels of PepT2 and PhT2. The cellular uptake of Ala-Lys-AMCA in mouse splenic macrophages was pH dependent with maximum uptake at pH 6.0, and the kinetic parameters were Km = 75.5 ± 14.3µM and Vmax = 25.4 ± 2.1 pmol/min per mg protein. The uptake of Ala-Lys-AMCA by mouse splenic macrophages was not inhibited by histidine, but was significantly inhibited by Glycyl-Sarcosine (GlySar) and carnosine (P<0.01), and by bacterial peptidomimetics γ-iE-DAP and MDP, ligands of nucleotide-binding oligomerization domain (NOD)-containing proteins. Carnosine and GlySar, but not histidine, attenuated the inflammatory response induced by γ-iE-DAP and MDP in mouse splenic macrophages. Functional expression of POTs was also demonstrated in THP-1 cells and dipeptides reduced the immune response induced by γ-iE-DAP. In conclusion, our findings are novel by providing important information on the molecular and functional expression of POTs in spleen. Moreover, it appears that the PepT2-mediated uptake of γ-iE-DAP and MDP in macrophages further contributes to the innate immune response.
doi:10.1021/mp300700p
PMCID: PMC3633525  PMID: 23442152
POTs; PepT2; Spleen; Expression; Function; NOD
7.  Identification of Genes Differentially Expressed between Resistant and Susceptible Tomato Lines during Time-Course Interactions with Xanthomonas perforans Race T3 
PLoS ONE  2014;9(3):e93476.
Bacterial spot caused by several Xanthomonas sp. is one of the most devastating diseases in tomato (Solanum lycopersicum L.). The genetics of hypersensitive resistance to X. perforans race T3 has been intensively investigated and regulatory genes during the infection of race T3 have been identified through transcriptional profiling. However, no work on isolating regulatory genes for field resistance has been reported. In this study, cDNA-amplified fragment length polymorphism technique was used to identify differentially expressed transcripts between resistant tomato accession PI 114490 and susceptible variety OH 88119 at 3, 4 and 5 days post-inoculation of the pathogen. Using 256 selective primer combinations, a total of 79 differentially expressed transcript-derived fragments (TDFs) representing 71 genes were obtained. Of which, 60 were up-regulated and 4 were down-regulated in both tomato lines, 4 were uniquely up-regulated and 2 were uniquely down-regulated in PI 114490, and 1 was specifically up-regulated in OH 88119. The expression patterns of 19 representative TDFs were further confirmed by semi-quantitative and/or quantitative real time RT-PCR. These results suggested that the two tomato lines activated partly similar defensive mechanism in response to race T3 infection. The data obtained here will provide some fundamental information for elucidating the molecular mechanism of response to race T3 infection in tomato plants with field resistance.
doi:10.1371/journal.pone.0093476
PMCID: PMC3970963  PMID: 24686403
8.  Characterization of major depressive disorder using a multiparametric classification approach based on high resolution structural images 
Background
Major depressive disorder (MDD) is one of the most disabling mental illnesses. Previous neuroanatomical studies of MDD have revealed regional alterations in grey matter volume and density. However, owing to the heterogeneous symptomatology and complex etiology, MDD is likely to be associated with multiple morphometric alterations in brain structure. We sought to distinguish first-episode, medication-naive, adult patients with MDD from healthy controls and characterize neuroanatomical differences between the groups using a multiparameter classification approach.
Methods
We recruited medication-naive patients with first-episode depression and healthy controls matched for age, sex, handedness and years of education. High-resolution T1-weighted images were used to extract 7 morphometric parameters, including both volumetric and geometric features, based on the surface data of the entire cerebral cortex. These parameters were used to compare patients and controls using multivariate support vector machine, and the regions that informed the discrimination between the 2 groups were identified based on maximal classification weights.
Results
Thirty-two patients and 32 controls participated in the study. Both volumetric and geometric parameters could discriminate patients with MDD from healthy controls, with cortical thickness in the right hemisphere providing the greatest accuracy (78%, p ≤ 0.001). This discrimination was informed by a bilateral network comprising mainly frontal, temporal and parietal regions.
Limitations
The sample size was relatively small and our results were based on first-episode, medication-naive patients.
Conclusion
Our investigation demonstrates that multiple cortical features are affected in medication-naive patients with first-episode MDD. These findings extend the current understanding of the neuropathological underpinnings of MDD and provide preliminary support for the use of neuroanatomical scans in the early detection of MDD.
doi:10.1503/jpn.130034
PMCID: PMC3937284  PMID: 24083459
9.  Survivin-responsive conditionally replicating adenovirus kills rhabdomyosarcoma stem cells more efficiently than their progeny 
Background
Effective methods for eradicating cancer stem cells (CSCs), which are highly tumorigenic and resistant to conventional therapies, are urgently needed. Our previous studies demonstrated that survivin-responsive conditionally replicating adenoviruses regulated with multiple factors (Surv.m-CRAs), which selectively replicate in and kill a broad range of cancer-cell types, are promising anticancer agents. Here we examined the therapeutic potentials of a Surv.m-CRA against rhabdomyosarcoma stem cells (RSCs), in order to assess its clinical effectiveness and usefulness.
Methods
Our previous study demonstrated that fibroblast growth factor receptor 3 (FGFR3) is a marker of RSCs. We examined survivin mRNA levels, survivin promoter activities, relative cytotoxicities of Surv.m-CRA in RSC-enriched (serum-minus) vs. RSC-exiguous (serum-plus) and FGFR3-positive vs. FGFR3-negative sorted rhabdomyosarcoma cells, and the in vivo therapeutic effects of Surv.m-CRAs on subcutaneous tumors in mice.
Results
Both survivin mRNA levels and survivin promoter activities were significantly elevated under RSC-enriched relative to RSC-exiguous culture conditions, and the elevation was more prominent in FGFR3-positive vs. FGFR3-negative sorted cells than in RSC-enriched vs. RSC-exiguous conditions. Although Surv.m-CRA efficiently replicated and potently induced cell death in all populations of rhabdomyosarcoma cells, the cytotoxic effects were more pronounced in RSC-enriched or RSC-purified cells than in RSC-exiguous or progeny-purified cells. Injections of Surv.m-CRAs into tumor nodules generated by transplanting RSC-enriched cells induced significant death of rhabdomyosarcoma cells and regression of tumor nodules.
Conclusions
The unique therapeutic features of Surv.m-CRA, i.e., not only its therapeutic effectiveness against all cell populations but also its increased effectiveness against CSCs, suggest that Surv.m-CRA is promising anticancer agent.
doi:10.1186/1479-5876-12-27
PMCID: PMC3925355  PMID: 24467821
Cancer stem cells; Conditionally replicating adenovirus; Fibroblast growth factor receptor 3; Gene therapy; Oncolytic adenovirus; Promoter; Rhabdomyosarcoma; Survivin; Tumor-initiating cell; Virotherapy
10.  Epidemiology and associations with climatic conditions of Mycoplasma pneumoniae and Chlamydophila pneumoniae infections among Chinese children hospitalized with acute respiratory infections 
Background
The incidence of severe acute respiratory tract infections in children caused by Mycoplasma pneumoniae (syn. Schizoplasma pneumoniae) and Chlamydophila pneumoniae (formerly Chlamydia pneumoniae) varies greatly from year to year and place to place around the world. This study investigated the epidemiology of M. pneumoniae and C. pneumoniae infections among children hospitalized with acute respiratory infections in Suzhou, China in the year 2006, and associations between incidence rates and climatic conditions.
Methods
Nasopharyngeal aspirates obtained from 1598 patients (aged 26.4 ± 28.3 months; range, 1 month to 13 years) were analyzed with real-time PCR and ELISA. Meteorological data were obtained from the weather bureau.
Results
About 18.5% of patients were infected with M. pneumoniae and, C. pneumoniae, or both. Isolated M. pneumoniae infection was positively correlated with increasing age (χ2 = 34.76, P < 0.0001). Incidence of M. pneumoniae infection was seasonal with a peak in summer (P < 0.0001) and minimum in winter (P = 0.0001), whereas C. pneumoniae infection was low only in autumn (P = 0.02). Monthly mean temperature was strongly correlated with the incidence of M. pneumoniae infection (r = 0.825, P = 0.001).
Conclusions
M. pneumoniae and C. pneumoniae are important infectious agents in hospitalized children with acute respiratory tract infections. M. pneumoniae infection showed a strong direct correlation with environmental temperature.
doi:10.1186/1824-7288-39-34
PMCID: PMC3691665  PMID: 23705964
Acute respiratory tract infection; Mycoplasma pneumoniae; Chlamydophila pneumoniae; Epidemiology; China
11.  Effects of Mechanical Force on Cytoskeleton Structure and Calpain-Induced Apoptosis in Rat Dorsal Root Ganglion Neurons In Vitro 
PLoS ONE  2012;7(12):e52183.
Background
A sudden mechanical insult to the spinal cord is usually caused by changing pressure on the surface of the spinal cord. Most of these insults are mechanical force injuries, and their mechanism of injury to the spinal cord is largely unknown.
Methods
Using a compression-driven instrument to simulate mechanical force, we applied mechanical pressure of 0.5 MPa to rat dorsal root ganglion (DRG) neurons for 10 min to investigate cytoskeletal alterations and calpain-induced apoptosis after the mechanical force injury.
Results
The results indicated that mechanical forces affect the structure of the cytoskeleton and cell viability, induce early apoptosis, and affect the cell cycle of DRG neurons. In addition, the calpain inhibitor PD150606 reduced cytoskeletal degradation and the rate of apoptosis after mechanical force injury.
Conclusion
Thus, calpain may play an important role in DRG neurons in the regulation of apoptosis and cytoskeletal alterations induced by mechanical force. Moreover, cytoskeletal alterations may be substantially involved in the mechanotransduction process in DRG neurons after mechanical injury and may be induced by activated calpain. To our knowledge, this is the first report to demonstrate a relationship between cytoskeletal degradation and apoptosis in DRG neurons.
doi:10.1371/journal.pone.0052183
PMCID: PMC3527405  PMID: 23284927
12.  The epidemiology of hospitalized influenza in children, a two year population-based study in the People's Republic of China 
Background
The epidemiology and disease burden of annual influenza in children in mainland People's Republic of China have not been reported in detail. To understand the incidence and epidemiology of laboratory-proven influenza hospitalization in children in China, a review of available laboratory and hospital admission data was undertaken.
Methods
We conducted a retrospective population-based study in Suzhou and the surrounding area of Jiangsu province, China for hospitalized cases of respiratory illness at Suzhou Children's Hospital. Cases of pneumonia or respiratory illness were identified from hospital computer data bases. Routine virological testing by fluorescent monoclonal antibody assay of all hospitalized children identified influenza and other viruses. We calculated incidence rates using census population denominators.
Results
Of 7,789 specimens obtained during 2007 and 2008, 85 were positive for influenza A and 25 for influenza B. There were 282 specimens with parainfluenza virus and 1392 with RSV. Influenza occurred throughout the year, with peaks in the winter, and in August/September. Overall estimated annual incidence of laboratory-proven influenza hospitalization was 23-27/100,000 children 0-4 years old, and 60/100,000 in infants 0-6 months, with an average hospitalization of 9 days.
Conclusions
Influenza disease in young children in this part of China is a relatively common cause of hospitalization, and occurs throughout the year. The use of influenza vaccine in Chinese children has the potential to reduce the effect of influenza in the children, as well as in their communities. Studies are needed to further assess the burden of influenza, and to develop and refine effective strategies of immunization of young children in China.
doi:10.1186/1472-6963-10-82
PMCID: PMC2853537  PMID: 20353557
13.  Disruption of actin filaments induces mitochondrial Ca2+ release to the cytoplasm and [Ca2+]c changes in Arabidopsis root hairs 
BMC Plant Biology  2010;10:53.
Background
Mitochondria are dynamic organelles that move along actin filaments, and serve as calcium stores in plant cells. The positioning and dynamics of mitochondria depend on membrane-cytoskeleton interactions, but it is not clear whether microfilament cytoskeleton has a direct effect on mitochondrial function and Ca2+ storage. Therefore, we designed a series of experiments to clarify the effects of actin filaments on mitochondrial Ca2+ storage, cytoplasmic Ca2+ concentration ([Ca2+]c), and the interaction between mitochondrial Ca2+ and cytoplasmic Ca2+ in Arabidopsis root hairs.
Results
In this study, we found that treatments with latrunculin B (Lat-B) and jasplakinolide (Jas), which depolymerize and polymerize actin filaments respectively, decreased membrane potential and Ca2+ stores in the mitochondria of Arabidopsis root hairs. Simultaneously, these treatments induced an instantaneous increase of cytoplasmic Ca2+, followed by a continuous decrease. All of these effects were inhibited by pretreatment with cyclosporin A (Cs A), a representative blocker of the mitochondrial permeability transition pore (mPTP). Moreover, we found there was a Ca2+ concentration gradient in mitochondria from the tip to the base of the root hair, and this gradient could be disrupted by actin-acting drugs.
Conclusions
Based on these results, we concluded that the disruption of actin filaments caused by Lat-B or Jas promoted irreversible opening of the mPTP, resulting in mitochondrial Ca2+ release into the cytoplasm, and consequent changes in [Ca2+]c. We suggest that normal polymerization and depolymerization of actin filaments are essential for mitochondrial Ca2+ storage in root hairs.
doi:10.1186/1471-2229-10-53
PMCID: PMC2923527  PMID: 20334630
14.  Actin Turnover Is Required for Myosin-Dependent Mitochondrial Movements in Arabidopsis Root Hairs 
PLoS ONE  2009;4(6):e5961.
Background
Previous studies have shown that plant mitochondrial movements are myosin-based along actin filaments, which undergo continuous turnover by the exchange of actin subunits from existing filaments. Although earlier studies revealed that actin filament dynamics are essential for many functions of the actin cytoskeleton, there are little data connecting actin dynamics and mitochondrial movements.
Methodology/Principal Findings
We addressed the role of actin filament dynamics in the control of mitochondrial movements by treating cells with various pharmaceuticals that affect actin filament assembly and disassembly. Confocal microscopy of Arabidopsis thaliana root hairs expressing GFP-FABD2 as an actin filament reporter showed that mitochondrial distribution was in agreement with the arrangement of actin filaments in root hairs at different developmental stages. Analyses of mitochondrial trajectories and instantaneous velocities immediately following pharmacological perturbation of the cytoskeleton using variable-angle evanescent wave microscopy and/or spinning disk confocal microscopy revealed that mitochondrial velocities were regulated by myosin activity and actin filament dynamics. Furthermore, simultaneous visualization of mitochondria and actin filaments suggested that mitochondrial positioning might involve depolymerization of actin filaments on the surface of mitochondria.
Conclusions/Significance
Base on these results we propose a mechanism for the regulation of mitochondrial speed of movements, positioning, and direction of movements that combines the coordinated activity of myosin and the rate of actin turnover, together with microtubule dynamics, which directs the positioning of actin polymerization events.
doi:10.1371/journal.pone.0005961
PMCID: PMC2694364  PMID: 19536333
15.  FAD-dependent lysine-specific demethylase-1 regulates cellular energy expenditure 
Nature Communications  2012;3:758-.
Environmental factors such as nutritional state may act on the epigenome that consequently contributes to the metabolic adaptation of cells and the organisms. The lysine-specific demethylase-1 (LSD1) is a unique nuclear protein that utilizes flavin adenosine dinucleotide (FAD) as a cofactor. Here we show that LSD1 epigenetically regulates energy-expenditure genes in adipocytes depending on the cellular FAD availability. We find that the loss of LSD1 function, either by short interfering RNA or by selective inhibitors in adipocytes, induces a number of regulators of energy expenditure and mitochondrial metabolism such as PPARγ coactivator-1α resulting in the activation of mitochondrial respiration. In the adipose tissues from mice on a high-fat diet, expression of LSD1-target genes is reduced, compared with that in tissues from mice on a normal diet, which can be reverted by suppressing LSD1 function. Our data suggest a novel mechanism where LSD1 regulates cellular energy balance through coupling with cellular FAD biosynthesis.
Lysine-specific demethylase 1 (LSD1) removes methyl groups from mono-methylated and dimethylated lysine 4 of histone H3 and represses transcription. In this study, a role for LSD1 in the regulation of genes involved in energy expenditure in adipocytes is reported in vitro and in mice fed on a high-fat diet.
doi:10.1038/ncomms1755
PMCID: PMC3316891  PMID: 22453831
16.  Mechanical compression insults induce nanoscale changes of membrane-skeleton arrangement which could cause apoptosis and necrosis in dorsal root ganglion neurons 
In a primary spinal cord injury, the amount of mechanical compression insult that the neurons experience is one of the most critical factors in determining the extent of the injury. The ultrastructural changes that neurons undergo when subjected to mechanical compression are largely unknown. In the present study, using a compression-driven instrument that can simulate mechanical compression insult, we applied mechanical compression stimulation at 0.3, 0.5, and 0.7 MPa to dorsal root ganglion (DRG) neurons for 10 min. Combined with atomic force microscopy, we investigated nanoscale changes in the membrane-skeleton, cytoskeleton alterations, and apoptosis induced by mechanical compression injury. The results indicated that mechanical compression injury leads to rearrangement of the membrane-skeleton compared with the control group. In addition, mechanical compression stimulation induced apoptosis and necrosis and also changed the distribution of the cytoskeleton in DRG neurons. Thus, the membrane-skeleton may play an important role in the response to mechanical insults in DRG neurons. Moreover, sudden insults caused by high mechanical compression, which is most likely conducted by the membrane-skeleton, may induce necrosis, apoptosis, and cytoskeletal alterations.
Graphical Abstract
Mechanical compression can cause rearrangement of the membrane skeleton and cytoskeleton and different biological responses of DRG neurons.
doi:10.1080/09168451.2014.932664
PMCID: PMC4205929  PMID: 25126715
mechanical compression; spinal cord injury; membrane-skeleton; apoptosis; atomic force microscopy

Results 1-16 (16)