PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (87)
 

Clipboard (0)
None

Select a Filter Below

Journals
more »
Year of Publication
more »
1.  Structural and Molecular Basis for Coordination in a Viral DNA Packaging Motor 
Cell reports  2016;14(8):2017-2029.
SUMMARY
Ring NTPases are a class of ubiquitous molecular motors involved in basic biological partitioning processes. dsDNA viruses encode ring ATPases that translocate their genomes to near-crystalline densities within pre-assembled viral capsids. Here, X-ray crystallography, cryoEM, and biochemical analyses of the dsDNA packaging motor in bacteriophage phi29 show how individual subunits are arranged in a pentameric ATPase ring, and suggest how their activities are coordinated to translocate dsDNA. The resulting pseudo-atomic structure of the motor and accompanying functional analyses show how ATP is bound in the ATPase active site; identify two DNA contacts, including a potential DNA translocating loop; demonstrate that a trans-acting arginine finger is involved in coordinating hydrolysis around the ring; and suggest a functional coupling between the arginine finger and the DNA translocating loop. The ability to visualize the motor in action illuminates how the different motor components interact with each other and with their DNA substrate.
doi:10.1016/j.celrep.2016.01.058
PMCID: PMC4824181  PMID: 26904950
2.  Validation of the Hsp70-Bag3 Protein-Protein Interaction as a Potential Therapeutic Target in Cancer 
Molecular cancer therapeutics  2015;14(3):642-648.
Heat shock protein 70 (Hsp70) is a stress-inducible molecular chaperone that is required for cancer development at several steps. Targeting the active site of Hsp70 has proven relatively challenging, driving interest in alternative approaches. Hsp70 collaborates with the Bcl2-associated athanogene 3 (Bag3) to promote cell survival through multiple pathways, including FoxM1. Therefore, inhibitors of the Hsp70-Bag3 protein-protein interaction (PPI) may provide a non-canonical way to target this chaperone. We report that JG-98, an allosteric inhibitor of this PPI, indeed has anti-proliferative activity (EC50 values between 0.3 and 4 μM) across cancer cell lines from multiple origins. JG-98 destabilized FoxM1 and relieved suppression of downstream effectors, including p21 and p27. Based on these findings, JG-98 was evaluated in mice for pharmacokinetics, tolerability and activity in two xenograft models. The results suggested that the Hsp70-Bag3 interaction may be a promising, new target for anti-cancer therapy.
doi:10.1158/1535-7163.MCT-14-0650
PMCID: PMC4456214  PMID: 25564440
3.  The neonatal Fc receptor (FcRn) binds independently to both sites of the IgG homodimer with identical affinity 
mAbs  2015;7(2):331-343.
The neonatal Fc receptor (FcRn) is expressed by cells of epithelial, endothelial and myeloid lineages and performs multiple roles in adaptive immunity. Characterizing the FcRn/IgG interaction is fundamental to designing therapeutic antibodies because IgGs with moderately increased binding affinities for FcRn exhibit superior serum half-lives and efficacy. It has been hypothesized that 2 FcRn molecules bind an IgG homodimer with disparate affinities, yet their affinity constants are inconsistent across the literature. Using surface plasmon resonance biosensor assays that eliminated confounding experimental artifacts, we present data supporting an alternate hypothesis: 2 FcRn molecules saturate an IgG homodimer with identical affinities at independent sites, consistent with the symmetrical arrangement of the FcRn/Fc complex observed in the crystal structure published by Burmeister et al. in 1994. We find that human FcRn binds human IgG1 with an equilibrium dissociation constant (KD) of 760 ± 60 nM (N = 14) at 25°C and pH 5.8, and shows less than 25% variation across the other human subtypes. Human IgG1 binds cynomolgus monkey FcRn with a 2-fold higher affinity than human FcRn, and binds both mouse and rat FcRn with a 10-fold higher affinity than human FcRn. FcRn/IgG interactions from multiple species show less than a 2-fold weaker affinity at 37°C than at 25°C and appear independent of an IgG's variable region. Our in vivo data in mouse and rat models demonstrate that both affinity and avidity influence an IgG's serum half-life, which should be considered when choosing animals, especially transgenic systems, as surrogates.
doi:10.1080/19420862.2015.1008353
PMCID: PMC4622529  PMID: 25658443
FcRn; IgG; label-free biosensor; neonatal Fc receptor; SPR
4.  Hsp70 in cancer: back to the future 
Oncogene  2014;34(32):4153-4161.
Mechanistic studies from cell culture and animal models have revealed critical roles for the heat shock protein Hsp70 in cancer initiation and progression. Surprisingly, many effects of Hsp70 on cancer have not been related to its chaperone activity, but rather to its role(s) in regulating cell signaling. A major factor that directs Hsp70 signaling activity appears to be the co-chaperone Bag3. Here, we review these recent breakthroughs, and how these discoveries drive drug development efforts.
doi:10.1038/onc.2014.349
PMCID: PMC4411196  PMID: 25347739
BAG-3; cancer transformation and progression; senescence; proteotoxicity
5.  Intrinsically disordered proteins drive membrane curvature 
Nature communications  2015;6:7875.
Assembly of highly curved membrane structures is essential to cellular physiology. The prevailing view has been that proteins with curvature-promoting structural motifs such as wedge-like amphipathic helices and crescent-shaped BAR domains, are required for bending membranes. Here we report that intrinsically disordered domains of the endocytic adaptor proteins, Epsin1 and AP180 are highly potent drivers of membrane curvature. This result is unexpected since intrinsically disordered domains lack a well-defined three-dimensional structure. However, in vitro measurements of membrane curvature and protein diffusivity demonstrate that the large hydrodynamic radii of these domains generate steric pressure that drives membrane bending. When disordered adaptor domains are expressed as transmembrane cargo in mammalian cells, they are excluded from clathrin-coated pits. We propose that a balance of steric pressure on the two surfaces of the membrane drives this exclusion. These results provide quantitative evidence for the influence of steric pressure on the content and assembly of curved cellular membrane structures.
doi:10.1038/ncomms8875
PMCID: PMC4515776  PMID: 26204806
6.  Neutralizing Monoclonal Antibodies Block Chikungunya Virus Entry and Release by Targeting an Epitope Critical to Viral Pathogenesis 
Cell reports  2015;13(11):2553-2564.
Summary
We evaluated the mechanism by which neutralizing human monoclonal antibodies inhibit chikungunya virus (CHIKV) infection. Potently neutralizing antibodies (NAbs) blocked infection at multiple steps of the virus life cycle, including entry and release. Cryo-electron microscopy structures of Fab fragments of two human NAbs and chikungunya virus-like particles showed a binding footprint that spanned independent domains on neighboring E2 subunits within one viral spike, suggesting a mechanism for inhibiting low pH-dependent membrane fusion. Detailed epitope mapping identified residue E2-W64 as a critical interaction residue. An escape mutation (E2-W64G) at this residue rendered CHIKV attenuated in mice. Consistent with this data, CHIKV-E2-W64G failed to emerge in vivo under the selection pressure of one of the NAbs, IM-CKV063. As our study suggests that antibodies engaging the residue E2-W64 can potently inhibit CHIKV at multiple stages of infection, antibody-based therapies or immunogens that target this region might have protective value.
doi:10.1016/j.celrep.2015.11.043
PMCID: PMC4720387  PMID: 26686638
7.  Four levels of hierarchical organization including non-covalent chainmail brace the mature tumor herpesvirus capsid against pressurization 
Structure (London, England : 1993)  2014;22(10):1385-1398.
SUMMARY
Like many dsDNA viruses, tumor gammaherpesviruses Epstein-Barr virus and Kaposi’s sarcoma-associated-herpesvirus withstand high internal pressure. Bacteriophage HK97 uses covalent chainmail for this purpose, but how this is achieved non-covalently in the much larger gammaherpesvirus capsid is unknown. Our cryoEM structure of a gammaherpesvirus capsid reveals a hierarchy of four levels of organization: (1) Within a hexon capsomer, each monomer of the major capsid protein (MCP), 1378 amino acids and six domains, interacts with its neighboring MCPs at four sites. (2) Neighboring capsomers are linked in pairs by MCP dimerization domains and in groups of three by heterotrimeric triplex proteins. (3) Small (~280 amino acids) HK97-like domains in MCP monomers alternate with triplex heterotrimers to form a belt that encircles each capsomer. (4) 162 belts concatenate to form non-covalent chainmail. The triplex heterotrimer orchestrates all four levels and likely drives maturation to an angular capsid that can withstand pressurization.
doi:10.1016/j.str.2014.05.019
PMCID: PMC4433476  PMID: 25220471
gammaherpesvirus; cryo electron microscopy; virus; structure; Rhesus monkey rhadinovirus; non-covalent chainmail
8.  Executive Summary of the Workshop “Nutritional Challenges in the High Risk Infant” 
The Journal of pediatrics  2012;160(3):511-516.
In 2009, the Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD) invited an expert panel to a workshop to address the current knowledge gaps and lack of evidence-based guidelines that preclude optimal nutritional care for infants in neonatal intensive care units. Since much research needs to be done in this complex area of science, the group was requested to propose new research to rectify current deficiencies in this field. This paper provides a summary of the workshop presentations and discussions.
doi:10.1016/j.jpeds.2011.12.024
PMCID: PMC4530452  PMID: 22240111
prematurity; preterm infants; intensive care; infant; nutrition
9.  Intrinsically disordered proteins drive membrane curvature 
Nature Communications  2015;6:7875.
Assembly of highly curved membrane structures is essential to cellular physiology. The prevailing view has been that proteins with curvature-promoting structural motifs, such as wedge-like amphipathic helices and crescent-shaped BAR domains, are required for bending membranes. Here we report that intrinsically disordered domains of the endocytic adaptor proteins, Epsin1 and AP180 are highly potent drivers of membrane curvature. This result is unexpected since intrinsically disordered domains lack a well-defined three-dimensional structure. However, in vitro measurements of membrane curvature and protein diffusivity demonstrate that the large hydrodynamic radii of these domains generate steric pressure that drives membrane bending. When disordered adaptor domains are expressed as transmembrane cargo in mammalian cells, they are excluded from clathrin-coated pits. We propose that a balance of steric pressure on the two surfaces of the membrane drives this exclusion. These results provide quantitative evidence for the influence of steric pressure on the content and assembly of curved cellular membrane structures.
Proteins that bend membranes often contain curvature-promoting structural motifs such as wedges or crescent-shaped domains. Busch et al. report that intrinsically disordered domains can also drive membrane curvature and provide evidence that steric pressure driven by protein crowding mediates this effect.
doi:10.1038/ncomms8875
PMCID: PMC4515776  PMID: 26204806
10.  Proteotoxicity is not the reason for the dependence of cancer cells on the major chaperone Hsp70 
Cell Cycle  2014;13(14):2306-2310.
Several years ago a hypothesis was proposed that the survival of cancer cells depend on elevated expression of molecular chaperones because these cells are prone to proteotoxic stress. A critical prediction of this hypothesis is that depletion of chaperones in cancer cells should lead to proteotoxicity. Here, using the major chaperone Hsp70 as example, we demonstrate that its depletion does not trigger proteotoxic stress, thus refuting the model. Accordingly, other functions of chaperones, e.g., their role in cell signaling, might define the requirements for chaperones in cancer cells, which is critical for rational targeting Hsp70 in cancer treatment.
doi:10.4161/cc.29296
PMCID: PMC4111684  PMID: 24911412
Hsp70; chaperone; non-oncogene addiction; proteotoxic stress; rational drug targeting
11.  Attenuated West Nile Virus Mutant NS1130-132QQA/175A/207A Exhibits Virus-Induced Ultrastructural Changes and Accumulation of Protein in the Endoplasmic Reticulum 
Journal of Virology  2014;89(2):1474-1478.
We have previously shown that ablation of the three N-linked glycosylation sites in the West Nile virus NS1 protein completely attenuates mouse neuroinvasiveness (≥1,000,000 PFU). Here, we compared the replication of the NS1130-132QQA/175A/207A mutant to that of the parental NY99 strain in monkey kidney Vero cells. The results suggest that the mechanism of attenuation is a lack of NS1 glycosylation, which blocks efficient replication, maturation, and NS1 secretion from the endoplasmic reticulum and results in changes to the virus-induced ultrastructure.
doi:10.1128/JVI.02215-14
PMCID: PMC4300619  PMID: 25392222
12.  The Disulfide Bond Cys255-Cys279 in the Immunoglobulin-Like Domain of Anthrax Toxin Receptor 2 Is Required for Membrane Insertion of Anthrax Protective Antigen Pore 
PLoS ONE  2015;10(6):e0130832.
Anthrax toxin receptors act as molecular clamps or switches that control anthrax toxin entry, pH-dependent pore formation, and translocation of enzymatic moieties across the endosomal membranes. We previously reported that reduction of the disulfide bonds in the immunoglobulin-like (Ig) domain of the anthrax toxin receptor 2 (ANTXR2) inhibited the function of the protective antigen (PA) pore. In the present study, the disulfide linkage in the Ig domain was identified as Cys255-Cys279 and Cys230-Cys315. Specific disulfide bond deletion mutants were achieved by replacing Cys residues with Ala residues. Deletion of the disulfide bond C255-C279, but not C230-C315, inhibited the PA pore-induced release of the fluorescence dyes from the liposomes, suggesting that C255-C279 is essential for PA pore function. Furthermore, we found that deletion of C255-C279 did not affect PA prepore-to-pore conversion, but inhibited PA pore membrane insertion by trapping the PA membrane-inserting loops in proteinaceous hydrophobic pockets. Fluorescence spectra of Trp59, a residue adjacent to the PA-binding motif in von Willebrand factor A (VWA) domain of ANTXR2, showed that deletion of C255-C279 resulted in a significant conformational change on the receptor ectodomain. The disulfide deletion-induced conformational change on the VWA domain was further confirmed by single-particle 3D reconstruction of the negatively stained PA-receptor heptameric complexes. Together, the biochemical and structural data obtained in this study provides a mechanistic insight into the role of the receptor disulfide bond C255-C279 in anthrax toxin action. Manipulation of the redox states of the receptor, specifically targeting to C255-C279, may become a novel strategy to treat anthrax.
doi:10.1371/journal.pone.0130832
PMCID: PMC4479931  PMID: 26107617
13.  Fast Flexible Modeling of RNA Structure Using Internal Coordinates 
Modeling the structure and dynamics of large macromolecules remains a critical challenge. Molecular dynamics (MD) simulations are expensive because they model every atom independently, and are difficult to combine with experimentally derived knowledge. Assembly of molecules using fragments from libraries relies on the database of known structures and thus may not work for novel motifs. Coarse-grained modeling methods have yielded good results on large molecules but can suffer from difficulties in creating more detailed full atomic realizations. There is therefore a need for molecular modeling algorithms that remain chemically accurate and economical for large molecules, do not rely on fragment libraries, and can incorporate experimental information. RNABuilder works in the internal coordinate space of dihedral angles and thus has time requirements proportional to the number of moving parts rather than the number of atoms. It provides accurate physics-based response to applied forces, but also allows user-specified forces for incorporating experimental information. A particular strength of RNABuilder is that all Leontis-Westhof basepairs can be specified as primitives by the user to be satisfied during model construction. We apply RNABuilder to predict the structure of an RNA molecule with 160 bases from its secondary structure, as well as experimental information. Our model matches the known structure to 10.2 Angstroms RMSD and has low computational expense.
doi:10.1109/TCBB.2010.104
PMCID: PMC4428339  PMID: 21778523
Internal coordinate mechanics; molecular; structure; dynamics; RNA; modeling; prediction; linear; scaling
14.  WHAT IS A MOMENT ARM? CALCULATING MUSCLE EFFECTIVENESS IN BIOMECHANICAL MODELS USING GENERALIZED COORDINATES 
Biomechanics researchers often use multibody models to represent biological systems. However, the mapping from biology to mechanics and back can be problematic. OpenSim is a popular open source tool used for this purpose, mapping between biological specifications and an underlying generalized coordinate multibody system called Simbody. One quantity of interest to biomechanical researchers and clinicians is “muscle moment arm,” a measure of the effectiveness of a muscle at contributing to a particular motion over a range of configurations. OpenSim can automatically calculate these quantities for any muscle once a model has been built. For simple cases, this calculation is the same as the conventional moment arm calculation in mechanical engineering. But a muscle may span several joints (e.g., wrist, neck, back) and may follow a convoluted path over various curved surfaces. A biological joint may require several bodies or even a mechanism to accurately represent in the multibody model (e.g., knee, shoulder). In these situations we need a careful definition of muscle moment arm that is analogous to the mechanical engineering concept, yet generalized to be of use to biomedical researchers. Here we present some biomechanical modeling challenges and how they are resolved in OpenSim and Simbody to yield biologically meaningful muscle moment arms.
doi:10.1115/DETC2013-13633
PMCID: PMC4404026  PMID: 25905111
15.  OpenSim: a musculoskeletal modeling and simulation framework for in silico investigations and exchange 
Procedia IUTAM  2011;2:212-232.
Movement science is driven by observation, but observation alone cannot elucidate principles of human and animal movement. Biomechanical modeling and computer simulation complement observations and inform experimental design. Biological models are complex and specialized software is required for building, validating, and studying them. Furthermore, common access is needed so that investigators can contribute models to a broader community and leverage past work. We are developing OpenSim, a freely available musculoskeletal modeling and simulation application and libraries specialized for these purposes, by providing: musculoskeletal modeling elements, such as biomechanical joints, muscle actuators, ligament forces, compliant contact, and controllers; and tools for fitting generic models to subject-specific data, performing inverse kinematics and forward dynamic simulations. OpenSim performs an array of physics-based analyses to delve into the behavior of musculoskeletal models by employing Simbody, an efficient and accurate multibody system dynamics code. Models are publicly available and are often reused for multiple investigations because they provide a rich set of behaviors that enables different lines of inquiry. This report will discuss one model developed to study walking and applied to gain deeper insights into muscle function in pathological gait and during running. We then illustrate how simulations can test fundamental hypotheses and focus the aims of in vivo experiments, with a postural stability platform and human model that provide a research environment for performing human posture experiments in silico. We encourage wide adoption of OpenSim for community exchange of biomechanical models and methods and welcome new contributors.
doi:10.1016/j.piutam.2011.04.021
PMCID: PMC4397580  PMID: 25893160
neuromusculoskeletal biomechanics; biological joints; musculotendinous actuators; neuromuscular control; gait simulation; Simbios biocomputation; SimTK Simbody
16.  Simbody: multibody dynamics for biomedical research 
Procedia IUTAM  2011;2:241-261.
Multibody software designed for mechanical engineering has been successfully employed in biomedical research for many years. For real time operation some biomedical researchers have also adapted game physics engines. However, these tools were built for other purposes and do not fully address the needs of biomedical researchers using them to analyze the dynamics of biological structures and make clinically meaningful recommendations. We are addressing this problem through the development of an open source, extensible, high performance toolkit including a multibody mechanics library aimed at the needs of biomedical researchers. The resulting code, Simbody, supports research in a variety of fields including neuromuscular, prosthetic, and biomolecular simulation, and related research such as biologically-inspired design and control of humanoid robots and avatars. Simbody is the dynamics engine behind OpenSim, a widely used biomechanics simulation application. This article reviews issues that arise uniquely in biomedical research, and reports on the architecture, theory, and computational methods Simbody uses to address them. By addressing these needs explicitly Simbody provides a better match to the needs of researchers than can be obtained by adaptation of mechanical engineering or gaming codes. Simbody is a community resource, free for any purpose. We encourage wide adoption and invite contributions to the code base at https://simtk.org/home/simbody.
PMCID: PMC4390141  PMID: 25866705
biomedical simulation; biological joints; minimal coordinates; coupled motion; compliant contact; real time simulation; neuromuscular simulation; biomolecular simulation; open source
17.  IL-13Rα1 is a surface marker for M2 macrophages influencing their differentiation and function 
European journal of immunology  2014;44(3):842-855.
Summary
In this study we examined the role IL-13 receptor alpha 1 (IL-13Rα1) plays in macrophage differentiation and function. The findings indicate that IL-13Rα1 is expressed on the M2 but not the M1 subset of macrophages and specifically heterodimerizes with the IL-4Rα chain to form a type II receptor, which controls the differentiation and function of these cells. Indeed, bone marrow (BM) cells from IL-13Rα1+/+ and IL-13Rα1−/− mice yield equivalent numbers of macrophages when cultured under M2 polarizing conditions. However, IL-13Rα1−/− BM cells yield a much higher number of macrophages than IL-13Rα1+/+ BM cells when the differentiation is carried out under M1-polarizing conditions. Further analyses indicated that macrophages that express IL-13Rα1 also display surface markers associated with an M2 phenotype. In addition, the IL-13Rα1+ macrophages were highly efficient in phagocytizing zymosan bioparticles both in vitro and in vivo, and supported differentiation of naïve T cells to a Th2 phenotype. Finally, when stimulated by IL-13, a cytokine that uses the heteroreceptor, the cells were able to phosphorylate STAT6 efficiently. These previously unrecognized findings indicate that IL-13Rα1 serves as a marker for M2 macrophages and the resulting heteroreceptor influences both their differentiation and function.
doi:10.1002/eji.201343755
PMCID: PMC3959573  PMID: 24281978
Antigen presentation; Differentiation; IL-13 Rα1; macrophages; Phagocytosis
18.  Spontaneous emergence of overgrown molar teeth in a colony of Prairie voles (Microtus ochrogaster) 
Continuously growing incisors are common to all rodents, which include the Microtus genus of voles. However, unlike many rodents, voles also possess continuously growing molars. Here, we report spontaneous molar defects in a population of Prairie voles (Microtus ochrogaster). We identified bilateral protuberances on the ventral surface of the mandible in several voles in our colony. In some cases, the protuberances broke through the cortical bone. The mandibular molars became exposed and infected, and the maxillary molars entered the cranial vault. Visualisation upon soft tissue removal and microcomputed tomography (microCT) analyses confirmed that the protuberances were caused by the overgrowth of the apical ends of the molar teeth. We speculate that the unrestricted growth of the molars was due to the misregulation of the molar dental stem cell niche. Further study of this molar phenotype may yield additional insight into stem cell regulation and the evolution and development of continuously growing teeth.
doi:10.1038/ijos.2014.75
PMCID: PMC4817538  PMID: 25634121
continuously growing teeth; molar phenotype; mutation; stem cell regulation; voles
19.  Plasmid DNA-coding p62 as a bone effective anti-inflammatory/anabolic agent 
Oncotarget  2015;6(6):3590-3599.
We recently reported that a DNA plasmid coding p62-SQSTM1 acts as an effective anti tumor vaccine against both transplantable mouse tumors and canine spontaneous mammary neoplasms. Here we report the unexpected finding that intramuscular delivery of p62 DNA exerts a powerful anti-osteoporotic activity in a mouse model of inflammatory bone loss (i.e, ovariectomy) by combining bone-sparing and osteo-synthetic effects. Notably, the suppression of osteoporosis by p62DNA was associated with a sharp down-regulation of master inflammatory cytokines, and up-regulation of endogenous p62 protein by bone-marrow stromal cells. The present data provide a solid rational to apply p62 DNA vaccine as a safe, new therapeutic for treatment of inflammatory related bone loss diseases.
PMCID: PMC4414139  PMID: 25668818
p62/SQSTM1; chronic inflammation; osteoporosis; immunotherapy
20.  RESEARCH ON NEONATAL MICROBIOMES: WHAT NEONATOLOGISTS NEED TO KNOW 
Neonatology  2013;105(1):14-24.
The aim of this article is to educate neonatal caregivers about metagenomics. This scientific field uses novel and ever changing molecular methods to identify how infants become colonized with microbes after birth. Publications using metagenomics appear infrequently in the neonatal literature because clinicians are unaccustomed with the analytical techniques, data interpretation, and illustration of the results. This review covers those areas. After a brief introduction of neonatal citations forthcoming from metagenomic studies, the following topics are covered: 1) the history of metagenomics, 2) a description of current and emerging instruments used to define microbial populations in human organs, and 3) how extensive databases generated by genome analyzers are examined and presented to readers. Clinicians may feel like they are learning a new language; however, they will appreciate this task is essential to understanding and practicing neonatal medicine in the future.
doi:10.1159/000354944
PMCID: PMC3903415  PMID: 24193200
biodiversity; bioinformatics; genome analyzers; pyrosequencing; taxonomy
21.  Pilot study of p62 DNA vaccine in dogs with mammary tumors 
Oncotarget  2014;5(24):12803-12810.
Our previous data demonstrated profound anti-tumor and anti-metastatic effects of p62 (sqstm1) DNA vaccine in rodents with various types of transplantable tumors. Testing anti-cancer medicine in dogs as an intermediary step of translational research program provides two major benefits. First, clinical data collected in target animals is required for FDA/USDA approval as a veterinary anti-cancer drug or vaccine. It is noteworthy that the veterinary community is in need of novel medicine for the prevention and treatment of canine and feline cancers. The second more important benefit of testing anti-cancer vaccines in dogs is that spontaneous tumors in dogs may provide invaluable information for human trials. Here, we evaluated the effect(s) of p62 DNA vaccine on mammary tumors of dogs. We found that p62 DNA vaccine administered i.m. decreased or stabilized growth of locally advanced lesions in absence of its overall toxic effects. The observed antitumor activity was associated with lymphocyte infiltration and tumor encapsulation via fibrotic reaction. This data justifies both human clinical trials and veterinary application of p62 DNA vaccine.
PMCID: PMC4350343  PMID: 25296974
cancer immunotherapy; vaccine; breast carcinoma; neoadjuvant; p62; canine
22.  Proteasome Failure Promotes Positioning of Lysosomes around the Aggresome via Local Block of Microtubule-Dependent Transport 
Molecular and Cellular Biology  2014;34(7):1336-1348.
Ubiquitinated proteins aggregate upon proteasome failure, and the aggregates are transported to the aggresome. In aggresomes, protein aggregates are actively degraded by the autophagy-lysosome pathway, but why targeting the aggresome promotes degradation of aggregated species is currently unknown. Here we report that the important factor in this process is clustering of lysosomes around the aggresome via a novel mechanism. Proteasome inhibition causes formation of a zone around the centrosome where microtubular transport of lysosomes is suppressed, resulting in their entrapment and accumulation. Microtubule-dependent transport of other organelles, including autophagosomes, mitochondria, and endosomes, is also blocked in this entrapment zone (E-zone), while movement of organelles at the cell periphery remains unaffected. Following the whole-genome small interfering RNA (siRNA) screen for proteins involved in aggresome formation, we defined the pathway that regulates formation of the E-zone, including the Stk11 protein kinase, the Usp9x deubiquitinating enzyme, and their substrate kinase MARK4. Therefore, upon proteasome failure, targeting of aggregated proteins of the aggresome is coordinated with lysosome positioning around this body to facilitate degradation of the abnormal species.
doi:10.1128/MCB.00103-14
PMCID: PMC3993571  PMID: 24469403
23.  Preparation, characterization, and transport of dexamethasone-loaded polymeric nanoparticles across a human placental in vitro model 
The purpose of this study was to prepare dexamethasone-loaded polymeric nanoparticles and evaluate their potential for transport across human placenta. Statistical modeling and factorial design was applied to investigate the influence of process parameters on the following nanoparticle characteristics: particle size, polydispersity index, zeta potential, and drug encapsulation efficiency. Dexamethasone and nanoparticle transport was subsequently investigated using the BeWo b30 cell line, an in vitro model of human placental trophoblast cells, which represent the rate-limiting barrier for maternal-fetal transfer. Encapsulation efficiency and drug transport were determined using a validated high performance liquid chromatography method. Nanoparticle morphology and drug encapsulation were further characterized by cryo-transmission electron microscopy and X-ray diffraction, respectively. Nanoparticles prepared from poly(lactic-co-glycolic acid) were spherical, with particle sizes ranging from 140–298 nm, and encapsulation efficiency ranging from 52–89%. Nanoencapsulation enhanced the apparent permeability of dexamethasone from the maternal compartment to the fetal compartment more than 10-fold in this model. Particle size was shown to be inversely correlated with drug and nanoparticle permeability, as confirmed with fluorescently-labeled nanoparticles. These results highlight the feasibility of designing nanoparticles capable of delivering medication to the fetus, in particular, potential dexamethasone therapy for the prenatal treatment of congenital adrenal hyperplasia.
doi:10.1016/j.ijpharm.2013.07.010
PMCID: PMC3800161  PMID: 23850397
Dexamethasone; nanoparticles; congenital adrenal hyperplasia; BeWo cells; placenta; pregnancy
24.  Oncogene-triggered suppression of DNA repair leads to DNA instability in cancer 
Oncotarget  2014;5(18):8367-8378.
DNA instability is an important contributor to cancer development. Previously, defects in the chromosome segregation and excessive DNA double strand breaks due to the replication or oxidative stresses were implicated in DNA instability in cancer. Here, we demonstrate that DNA instability can directly result from the oncogene-induced senescence signaling. Expression of the activated form of Her2 oncogene, NeuT, in immortalized breast epithelial cells led to downregulation of the major DNA repair factor histone H2AX and a number of other components of the HR and NHEJ double strand DNA breaks repair pathways. H2AX expression was regulated at the transcriptional level via a senescence pathway involving p21-mediated regulation of CDK and Rb1. The p21-dependent downregulation of H2AX was seen both in cell culture and the MMTV-neu mouse model of Her2-positive breast cancer. Importantly, downregulation of H2AX upon Her2/NeuT expression impaired repair of double strand DNA breaks. This impairment resulted in both increased DNA instability in the form of somatic copy number alterations, and in increased sensitivity to the chemotherapeutic drug doxorubicin. Overall, these findings indicate that the Her2/NeuT oncogene signaling directly potentiates DNA instability and increases sensitivity to DNA damaging treatments.
PMCID: PMC4226689  PMID: 25252808
senescence; oncogenes; DNA Damage Response; Her2
25.  ΔNp63α regulates Erk signaling via MKP3 to inhibit cancer metastasis 
Oncogene  2012;33(2):212-224.
Reduced expression of the p53 family member p63 has been suggested to play a causative role in cancer metastasis. Here we show that ΔNp63α, the predominant p63 isoform, plays a major role in regulation of cell migration, invasion, and cancer metastasis. We identified MAP Kinase Phosphatase 3 (MKP3) as a downstream target of ΔNp63α that is required for mediating these effects. We show that ΔNp63α regulates Extracellular Signal-Regulated Protein Kinase 1 and 2 (Erk1/2) activity via MKP3 in both cancer and non-transformed cells. We further show that exogenous ΔNp63α inhibits cell invasion and is dependent on MKP3 up-regulation for repression. Conversely, endogenous pan-p63 ablation results in increased cell migration and invasion, which can be reverted by reintroducing the ΔNp63α isoform alone, but not by other isoforms. Interestingly, these effects require Erk2, but not Erk1 expression, and can be rescued by enforced MKP3 expression. Moreover, MKP3 expression is reduced in invasive cancers, and reduced p63 expression increases metastatic frequency in vivo. Taken together, these results suggest an important role for ΔNp63α in preventing cancer metastasis by inhibition of Erk2 signaling via MKP3.
doi:10.1038/onc.2012.564
PMCID: PMC3962654  PMID: 23246965
p63; MKP3; Erk; metastasis; cancer

Results 1-25 (87)