Search tips
Search criteria

Results 1-6 (6)

Clipboard (0)

Select a Filter Below

Year of Publication
Document Types
1.  The Central Role of cAMP in Regulating Plasmodium falciparum Merozoite Invasion of Human Erythrocytes 
PLoS Pathogens  2014;10(12):e1004520.
All pathogenesis and death associated with Plasmodium falciparum malaria is due to parasite-infected erythrocytes. Invasion of erythrocytes by P. falciparum merozoites requires specific interactions between host receptors and parasite ligands that are localized in apical organelles called micronemes. Here, we identify cAMP as a key regulator that triggers the timely secretion of microneme proteins enabling receptor-engagement and invasion. We demonstrate that exposure of merozoites to a low K+ environment, typical of blood plasma, activates a bicarbonate-sensitive cytoplasmic adenylyl cyclase to raise cytosolic cAMP levels and activate protein kinase A, which regulates microneme secretion. We also show that cAMP regulates merozoite cytosolic Ca2+ levels via induction of an Epac pathway and demonstrate that increases in both cAMP and Ca2+ are essential to trigger microneme secretion. Our identification of the different elements in cAMP-dependent signaling pathways that regulate microneme secretion during invasion provides novel targets to inhibit blood stage parasite growth and prevent malaria.
Author Summary
The blood stage of malaria parasites is responsible for all the morbidity and mortality associated with malaria. During the blood stage, malaria parasites invade and multiply within host erythrocytes. The process of erythrocyte invasion requires specific interactions between host receptors and parasite ligands. Many of the key parasite proteins that bind host receptors are localized in apical organelles called micronemes. Here, we demonstrate that cAMP serves as a key regulator that controls the timely secretion of microneme proteins during invasion. We show that exposure of merozoites to a low K+ environment, as found in blood plasma, leads to a rise in cytosolic cAMP levels due to activation of the cytoplasmic, bicarbonate-sensitive adenylyl cyclase β (PfACβ). A rise in cAMP activates protein kinase A (PKA), which regulates microneme secretion. In addition, cAMP triggers a rise in cytosolic Ca2+ levels through the Epac pathway. Increases in both cAMP and Ca2+ levels are essential for triggering microneme secretion. Identification of the different elements in the cAMP-dependent signaling pathways that regulate microneme secretion during invasion provides novel targets to block erythrocyte invasion, inhibit blood stage parasite growth and prevent malaria.
PMCID: PMC4270784  PMID: 25522250
2.  Whole Genome Mapping and Re-Organization of the Nuclear and Mitochondrial Genomes of Babesia microti Isolates 
PLoS ONE  2013;8(9):e72657.
Babesia microti is the primary causative agent of human babesiosis, an emerging pathogen that causes a malaria-like illness with possible fatal outcome in immunocompromised patients. The genome sequence of the B. microti R1 strain was reported in 2012 and revealed a distinct evolutionary path for this pathogen relative to that of other apicomplexa. Lacking from the first genome assembly and initial molecular analyses was information about the terminal ends of each chromosome, and both the exact number of chromosomes in the nuclear genome and the organization of the mitochondrial genome remained ambiguous. We have now performed various molecular analyses to characterize the nuclear and mitochondrial genomes of the B. microti R1 and Gray strains and generated high-resolution Whole Genome maps. These analyses show that the genome of B. microti consists of four nuclear chromosomes and a linear mitochondrial genome present in four different structural types. Furthermore, Whole Genome mapping allowed resolution of the chromosomal ends, identification of areas of misassembly in the R1 genome, and genomic differences between the R1 and Gray strains, which occur primarily in the telomeric regions. These studies set the stage for a better understanding of the evolution and diversity of this important human pathogen.
PMCID: PMC3762879  PMID: 24023759
3.  Regulation of Chlamydial Infection by Host Autophagy and Vacuolar ATPase-Bearing Organelles ▿ 
Infection and Immunity  2011;79(10):4019-4028.
As arguably the most successful parasite, Chlamydia is an obligate intracellular bacterium replicating inside a vacuole of eukaryotic host cells. The chlamydial vacuole does not fuse with the defense cell organelle lysosome. We previously showed that chlamydial infection increases markers of autophagy, an innate antimicrobial activity requiring lysosomal function. However, the work presented here demonstrates that p62, an autophagy protein that is degraded in lysosomes, either remained unchanged or increased in chlamydia-infected human epithelial, mouse fibroblast, and mouse macrophage cell lines. In addition, the activities of three lysosomal enzymes analyzed were diminished in chlamydia-infected macrophages. Bafilomycin A1 (BafA), a specific inhibitor of vacuolar ATPase (vATPase) required for lysosomal function, increased the growth of the human pathogen Chlamydia trachomatis (L2) in wild-type murine fibroblasts and macrophages but inhibited growth in the autophagy-deficient ATG5−/− fibroblasts. BafA exhibited only slight inhibition or no effect on L2 growth in multiple human genital epithelial cell lines. In contrast to L2, the mouse pathogen Chlamydia muridarum (MoPn) was consistently inhibited by BafA in all cell lines examined, regardless of species origin and autophagy status. Finally, L2 but not MoPn grew more efficiently in the ATG5−/− cells than in wild-type cells. These results suggest that there are two types of vATPase-bearing organelles that regulate chlamydial infection: one supports chlamydial infection, while the other plays a defensive role through autophagy when cells are artificially infected with certain chlamydiae that have not been adapted to the host species.
PMCID: PMC3187247  PMID: 21807906
4.  Non-coding nucleotides and amino acids near the active site regulate peptide deformylase expression and inhibitor susceptibility in Chlamydia trachomatis 
Microbiology  2011;157(Pt 9):2569-2581.
Chlamydia trachomatis, an obligate intracellular bacterium, is a highly prevalent human pathogen. Hydroxamic-acid-based matrix metalloprotease inhibitors can effectively inhibit the pathogen both in vitro and in vivo, and have exhibited therapeutic potential. Here, we provide genome sequencing data indicating that peptide deformylase (PDF) is the sole target of the inhibitors in this organism. We further report molecular mechanisms that control chlamydial PDF (cPDF) expression and inhibition efficiency. In particular, we identify the σ66-dependent promoter that controls cPDF gene expression and demonstrate that point mutations in this promoter lead to resistance by increasing cPDF transcription. Furthermore, we show that substitution of two amino acids near the active site of the enzyme alters enzyme kinetics and protein stability.
PMCID: PMC3352175  PMID: 21719536
5.  Productive Chlamydia trachomatis Lymphogranuloma Venereum 434 Infection in Cells with Augmented or Inactivated Autophagic Activities 
FEMS microbiology letters  2009;292(2):240-249.
Autophagy, a eukaryotic cellular activity leading to the degradation of cellular components, serves as a defense mechanism against facultative intracellular bacteria as well as a growth niche for the obligate intracellular bacterium Coxiella burnetii. We here demonstrate that the obligate intracellular bacterial pathogen Chlamydia trachomatis lymphogranuloma venereum strongly induced autophagy in the middle of the chlamydial developmental cycle (24 h after infection), a time point with maximal level of chlamydial replication, but not during the early stages with low overall chlamydial metabolism (before 8 h). No autophagy induction was evident in cells exposed to heat- and ultraviolet-inactivated elementary bodies (EBs, the infectious form of Chlamydia) nor to inocula from which EBs had been removed prior to inoculation. Blocking chlamydial development with chloramphenicol also prevented autophagy induction in cells infected with infectious EBs. It appears that autophagy is activated primarily in response to the metabolic stress consequent to chlamydial replication. However, autophagy-defective ATG5−/− cells supported chlamydial development as efficiently as autophagy-proficient ATG5+/+ cells.
PMCID: PMC2671565  PMID: 19187200
autophagy; Chlamydia trachomatis; ATG5; LC3
6.  U1A Inhibits Cleavage at the Immunoglobulin M Heavy-Chain Secretory Poly(A) Site by Binding between the Two Downstream GU-Rich Regions 
Molecular and Cellular Biology  2004;24(14):6162-6171.
The immunoglobulin M heavy-chain locus contains two poly(A) sites which are alternatively expressed during B-cell differentiation. Despite its promoter proximal location, the secretory poly(A) site is not expressed in undifferentiated cells. Crucial to the activation of the secretory poly(A) site during B-cell differentiation are changes in the binding of cleavage stimulatory factor 64K to GU-rich elements downstream of the poly(A) site. What regulates this change is not understood. The secretory poly(A) site contains two downstream GU-rich regions separated by a 29-nucleotide sequence. Both GU-rich regions are necessary for binding of the specific cleavage-polyadenylation complex. We demonstrate here that U1A binds two (AUGCN1-3C) motifs within the 29-nucleotide sequence and inhibits the binding of cleavage stimulatory factor 64K and cleavage at the secretory poly(A) site.
PMCID: PMC434241  PMID: 15226420

Results 1-6 (6)