Search tips
Search criteria

Results 1-5 (5)

Clipboard (0)

Select a Filter Below

Year of Publication
Document Types
1.  Species Identification and Profiling of Complex Microbial Communities Using Shotgun Illumina Sequencing of 16S rRNA Amplicon Sequences 
PLoS ONE  2013;8(4):e60811.
The high throughput and cost-effectiveness afforded by short-read sequencing technologies, in principle, enable researchers to perform 16S rRNA profiling of complex microbial communities at unprecedented depth and resolution. Existing Illumina sequencing protocols are, however, limited by the fraction of the 16S rRNA gene that is interrogated and therefore limit the resolution and quality of the profiling. To address this, we present the design of a novel protocol for shotgun Illumina sequencing of the bacterial 16S rRNA gene, optimized to amplify more than 90% of sequences in the Greengenes database and with the ability to distinguish nearly twice as many species-level OTUs compared to existing protocols. Using several in silico and experimental datasets, we demonstrate that despite the presence of multiple variable and conserved regions, the resulting shotgun sequences can be used to accurately quantify the constituents of complex microbial communities. The reconstruction of a significant fraction of the 16S rRNA gene also enabled high precision (>90%) in species-level identification thereby opening up potential application of this approach for clinical microbial characterization.
PMCID: PMC3620293  PMID: 23579286
2.  Evaluation of stool microbiota signatures in two cohorts of Asian (Singapore and Indonesia) newborns at risk of atopy 
BMC Microbiology  2011;11:193.
Studies have suggested that demographic and lifestyle factors could shape the composition of fecal microbiota in early life. This study evaluated infant stool microbiota signatures in two Asian populations, Singapore (n = 42) and Indonesia (n = 32) with contrasting socioeconomic development, and examined the putative influences of demographic factors on these human fecal associated bacterial signatures.
Longitudinal analysis showed associations of geographical origin with Clostridium leptum, Atopobium and Bifidobacterium groups. Mode of delivery had the largest effect on stool microbiota signatures influencing the abundance of four bacterial groups. Significantly higher abundance of bacterial members belonging to the Bacteroides-Prevotella, Bifidobacterium and Atopobium groups, but lower abundance of Lactobacilli-Enterococci group members, were observed in vaginal delivered compared to caesarean delivered infants. Demographic factors influencing the structure of infants stool microbiota during the first year of life included breastfeeding, age of weaning, sibship size and exposure to antibiotics.
Differences in stool microbiota signatures were observed in relation to various demographic factors. These features may confound studies relating to the association of the structure of fecal microbiota and the predisposition to human modern disease.
PMCID: PMC3171725  PMID: 21875444
3.  BACTIBASE second release: a database and tool platform for bacteriocin characterization 
BMC Microbiology  2010;10:22.
BACTIBASE is an integrated open-access database designed for the characterization of bacterial antimicrobial peptides, commonly known as bacteriocins.
For its second release, BACTIBASE has been expanded and equipped with additional functions aimed at both casual and power users. The number of entries has been increased by 44% and includes data collected from published literature as well as high-throughput datasets. The database provides a manually curated annotation of bacteriocin sequences. Improvements brought to BACTIBASE include incorporation of various tools for bacteriocin analysis, such as homology search, multiple sequence alignments, Hidden Markov Models, molecular modelling and retrieval through our taxonomy Browser.
The provided features should make BACTIBASE a useful tool in food preservation or food safety applications and could have implications for the development of new drugs for medical use. BACTIBASE is available at
PMCID: PMC2824694  PMID: 20105292
4.  Supplementation of the Diet with High-Viscosity Beta-Glucan Results in Enrichment for Lactobacilli in the Rat Cecum 
BBn (BioBreeding) rats were fed casein-based diets supplemented with barley flour, oatmeal flour, cellulose, or barley β-glucans of high [HV] or low viscosity [LV] in order to measure the prebiotic effects of these different sources of dietary fiber. The dietary impact on the composition of the cecal microbiota was determined by the generation of denaturing gradient gel electrophoresis (DGGE) profiles of PCR-amplified 16S rRNA gene sequences. The DGGE profiles produced from the cecal microbiota of rats within each dietary group were similar, but consensus profiles generated from pooled bacterial DNAs showed differences between rat groups. Animals fed HV glucans (HV-fed rats) had DGGE consensus profiles that were 30% dissimilar from those of the other rat groups. A 16S rRNA gene fragment that was more conspicuous in the profiles of HV-fed animals than in those of cellulose-fed rats had sequence identity with Lactobacillus acidophilus. Measurements of L. acidophilus rRNA abundance (DNA-RNA hybridization), the preparation of cloned 16S rRNA gene libraries, and the enumeration of Lactobacillus cells (fluorescent in situ hybridization) showed that lactobacilli formed a greater proportion of the cecal microbiota in HV-fed rats. In vitro experiments confirmed that some lactobacilli utilize oligosaccharides (degree of polymerization, 3 or 4) present in β-glucan hydrolysates. The results of this study have relevance to the use of purified β-glucan products as dietary supplements for human consumption.
PMCID: PMC1393239  PMID: 16517639
5.  Colonic Microbiota Signatures across Five Northern European Countries 
The composition of the colonic microbiota of 91 northern Europeans was characterized by fluorescent in situ hybridization using 18 phylogenetic probes. On average 75% of the bacteria were identified, and large interindividual variations were observed. Clostridium coccoides and Clostridium leptum were the dominant groups (28.0% and 25.2%), followed by the Bacteroides (8.5%). According to principal component analysis, no significant grouping with respect to geographic origin, age, or gender was observed.
PMCID: PMC1169042  PMID: 16000838

Results 1-5 (5)