Search tips
Search criteria

Results 1-4 (4)

Clipboard (0)

Select a Filter Below

more »
Year of Publication
Document Types
1.  Changes in Mitochondrial Toxicity in Peripheral Blood Mononuclear Cells During Four-Year Administration of Entecavir Monotherapy in Chinese Patients with Chronic Hepatitis B 
This study aimed to assess whether long-term entecavir monotherapy induces mitochondrial toxicity in patients with chronic hepatitis B (CHB).
This was a prospective study in 34 antiviral treatment-naïve patients with CHB who received entecavir monotherapy and were followed up for 4 years. Blood samples were collected after 0, 2, 3, and 4 years of entecavir (ETC) monotherapy (ETC0, ETC2, ETC3, and ETC4, respectively). Mitochondrial DNA (mtDNA) contents were determined using real-time quantitative polymerase chain reaction (qRT-PCR) and mtDNA4977 depletions were detected using nested PCR. Levels of hepatitis B virus (HBV) DNA, alanine aminotransferase, alanine aminotransferase, hepatitis B e antigen (HBeAg), creatine kinase, urea nitrogen, and serum creatinine were recorded.
mtDNA contents at ETC0 (9.6±6.3) and ETC4 (10.3±6.2) were markedly higher than at ETC2 (0.8±0.5, P<0.01) and ETC3 (1.3±0.9, P<0.01), but there were no differences between ETC2 and ETC3 or between ETC0 and ETC4. MtDNA4977 depletion appeared in 79.4% cases at ETC2 and in 70.6% at ETC3, which were much higher than at ETC0 (32.4%, P<0.01) and ETC4 (8.8%, P<0.01), but there were no differences in mtDNA4977 depletion ratio between ETC2 and ETC3, or between ETC0 and ETC4. mtDNA content was negatively correlated to mtDNA4977 depletion (partial regression coefficient of −4.555, P<0.001, R2=0.315). mtDNA content was positively correlated with age (partial regression coefficient of 0.131, P=0.045).
Results suggest that during 4-year entecavir monotherapy for CHB, the mtDNA contents initially decreased and then increased, while the mtDNA4977 depletion rates first increased and then decreased.
PMCID: PMC4515935  PMID: 26176539
Hepatitis, Chronic; Mitochondria, Liver; Peripheral Blood Stem Cell Transplantation
2.  Oxidative stress promotes d-GalN/LPS-induced acute hepatotoxicity by increasing glycogen synthase kinase 3β activity 
Inflammation Research  2014;63(6):485-494.
Our previous studies have demonstrated that glycogen synthase kinase 3β (GSK3β) activity is increased in the progression of acute liver failure (ALF), which aggravates liver injury, while its regulatory mechanism remains elusive. This study is designated to address whether oxidative stress activates GSK3β to promote ALF.
In a murine model induced by d-galactosamine (d-GalN) (700 mg/kg) and LPS (10 μg/kg), N-acetylcysteine (300 mg/kg) or SB216763 (25 mg/kg) was used to inhibit oxidative stress or GSK3β activity, respectively. Serum alanine aminotransferase and aspartate aminotransferase levels were assessed. The parameters of oxidative stress were evaluated in liver tissue. Whether GSK3β inhibition protects hepatocytes from oxidative stress-induced cell apoptosis was investigated in vitro. Moreover, the activity of GSK3β was measured in the liver of chronic hepatitis B (CHB) patients and ALF patients.
In vivo, N-acetylcysteine ameliorated the d-GalN/LPS-induced hepatotoxicity and reduced GSK3β activity; GSK3β inhibition increased hepatic superoxide dismutase activity and the glutathione content, decreased malondialdehyde production in the liver tissues; while GSK3β inhibition suppressed the JNK activation in the liver and decreased cytochrome c release from mitochondria. In vitro, GSK3β inhibition lessened hepatocytes apoptosis induced by H2O2 or Antimycin A, as demonstrated by decreased LDH activity, and reduced cleavage of caspase-3 expression. Furthermore, GSK3β activity in the CHB patients was increased in the phase of ALF.
Results indicate that GSK3β activation contributes to liver injury by participating in oxidative stress response in ALF and is, therefore, a potential therapeutic target for ALF.
PMCID: PMC4018480  PMID: 24531650
GSK3β; SB216763; Acute liver failure; Oxidative stress; N-acetylcysteine
3.  Inhibition of Glycogen Synthase Kinase 3β Ameliorates D-GalN/LPS-Induced Liver Injury by Reducing Endoplasmic Reticulum Stress-Triggered Apoptosis 
PLoS ONE  2012;7(9):e45202.
Glycogen synthase kinase 3β(GSK3β) is a ubiquitous serine-threonine protein kinase that participates in numerous cellular processes and disease pathophysiology. We aimed to determine therapeutic potential of GSK3β inhibition and its mechanism in a well-characterized model of lipopolysaccharide (LPS)-induced model of acute liver failure (ALF).
In a murine ALF model induced by D-GalN(700 mg/kg)/LPS(10 µg/kg), we analyzed GSK3β mechanisms using a specific chemical inhibitor, SB216763, and detected the role of endoplasmic reticulum stress (ERS). Mice were administered SB216763 at 2 h before or after D-GalN/LPS injection, respectively, and then sacrificed 6 h after D-GalN/LPS treatment to evaluate its prophylactic and therapeutic function. The lethality rate, liver damage, ERS, cytokine expression, MAP kinase, hepatocyte apoptosis and expression of TLR 4 were evaluated, respectively. Whether the inhibition of GSK3β activation protected hepatocyte from ERS-induced apoptosis was investigated in vitro.
Principal Findings
GSK3β became quickly activated (dephosphorylated) upon D-GalN/LPS exposure. Administration of SB216763 not only ameliorated liver injury, as evidenced by reduced transaminase levels, and well-preserved liver architecture, but also decreased lethality. Moreover, GSK3β inhibition resulted in down-regulation of pro-apoptotic proteins C/EBP–homologous protein(CHOP) and caspase-12, which are related to ERS. To further demonstrate the role of ERS, we found that GSK3β inhibition protected hepatocyte from ERS-induced cell death. GSK3β inhibition down-regulated the MAPK pathways, reduced expression of inflammatory cytokines and decreased expression of TLR4.
Our findings demonstrate the key function of GSK3β signaling in the pathophysiology of ALF, especially in regulating the ERS, and provide a rationale for targeting GSK3β as a potential therapeutic strategy to ameliorate ALF.
PMCID: PMC3461002  PMID: 23028846
4.  All-Trans Retinoic Acid Promotes TGF-β-Induced Tregs via Histone Modification but Not DNA Demethylation on Foxp3 Gene Locus 
PLoS ONE  2011;6(9):e24590.
It has been documented all-trans retinoic acid (atRA) promotes the development of TGF-β-induced CD4+Foxp3+ regulatory T cells (iTreg) that play a vital role in the prevention of autoimmune responses, however, molecular mechanisms involved remain elusive. Our objective, therefore, was to determine how atRA promotes the differentiation of iTregs.
Methodology/Principal Findings
Addition of atRA to naïve CD4+CD25− cells stimulated with anti-CD3/CD28 antibodies in the presence of TGF-β not only increased Foxp3+ iTreg differentiation, but maintained Foxp3 expression through apoptosis inhibition. atRA/TGF-β-treated CD4+ cells developed complete anergy and displayed increased suppressive activity. Infusion of atRA/TGF-β-treated CD4+ cells resulted in the greater effects on suppressing symptoms and protecting the survival of chronic GVHD mice with typical lupus-like syndromes than did CD4+ cells treated with TGF-β alone. atRA did not significantly affect the phosphorylation levels of Smad2/3 and still promoted iTreg differentiation in CD4+ cells isolated from Smad3 KO and Smad2 conditional KO mice. Conversely, atRA markedly increased ERK1/2 activation, and blockade of ERK1/2 signaling completely abolished the enhanced effects of atRA on Foxp3 expression. Moreover, atRA significantly increased histone methylation and acetylation within the promoter and conserved non-coding DNA sequence (CNS) elements at the Foxp3 gene locus and the recruitment of phosphor-RNA polymerase II, while DNA methylation in the CNS3 was not significantly altered.
We have identified the cellular and molecular mechanism(s) by which atRA promotes the development and maintenance of iTregs. These results will help to enhance the quantity and quality of development of iTregs and may provide novel insights into clinical cell therapy for patients with autoimmune diseases and those needing organ transplantation.
PMCID: PMC3172235  PMID: 21931768

Results 1-4 (4)