PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-10 (10)
 

Clipboard (0)
None

Select a Filter Below

Journals
Year of Publication
Document Types
author:("sobhan, bilan")
1.  Integrator complex regulates NELF-mediated RNA polymerase II pause/release and processivity at coding genes 
Nature Communications  2014;5:5531.
RNA polymerase II (RNAPII) pausing/termination shortly after initiation is a hallmark of gene regulation. Here, we show that negative elongation factor (NELF) interacts with Integrator complex subunits (INTScom), RNAPII and Spt5. The interaction between NELF and INTScom subunits is RNA and DNA independent. Using both human immunodeficiency virus type 1 promoter and genome-wide analyses, we demonstrate that Integrator subunits specifically control NELF-mediated RNAPII pause/release at coding genes. The strength of RNAPII pausing is determined by the nature of the NELF-associated INTScom subunits. Interestingly, in addition to controlling RNAPII pause-release INTS11 catalytic subunit of the INTScom is required for RNAPII processivity. Finally, INTScom target genes are enriched in human immunodeficiency virus type 1 transactivation response element/NELF binding element and in a 3' box sequence required for small nuclear RNA biogenesis. Revealing these unexpected functions of INTScom in regulating RNAPII pause-release and completion of mRNA synthesis of NELF-target genes will contribute to our understanding of the gene expression cycle.
RNA polymerase II (RNAPII) pausing at transcriptional start sites is an important element of gene transcription regulation. Here, the authors implicate the Integrator complex as a regulator of RNAPII pause-release and completion of mRNA synthesis at a subset of the negative elongation factor target genes.
doi:10.1038/ncomms6531
PMCID: PMC4263189  PMID: 25410209
2.  Methyltransferase PRMT1 Is a Binding Partner of HBx and a Negative Regulator of Hepatitis B Virus Transcription 
Journal of Virology  2013;87(8):4360-4371.
The hepatitis B virus X protein (HBx) is essential for virus replication and has been implicated in the development of liver cancer. HBx is recruited to viral and cellular promoters and activates transcription by interacting with transcription factors and coactivators. Here, we purified HBx-associated factors in nuclear extracts from HepG2 hepatoma cells and identified protein arginine methyltransferase 1 (PRMT1) as a novel HBx-interacting protein. We showed that PRMT1 overexpression reduced the transcription of hepatitis B virus (HBV), and this inhibition was dependent on the methyltransferase function of PRMT1. Conversely, depletion of PRMT1 correlated with increased HBV transcription. Using a quantitative chromatin immunoprecipitation assay, we found that PRMT1 is recruited to HBV DNA, suggesting a direct effect of PRMT1 on the regulation of HBV transcription. Finally, we showed that HBx expression inhibited PRMT1-mediated protein methylation. Downregulation of PRMT1 activity was further observed in HBV-replicating cells in an in vivo animal model. Altogether, our results support the notion that the binding of HBx to PRMT1 might benefit viral replication by relieving the inhibitory activity of PRMT1 on HBV transcription.
doi:10.1128/JVI.02574-12
PMCID: PMC3624337  PMID: 23388725
3.  NOTCH1 Nuclear Interactome Reveals Key Regulators of Its Transcriptional Activity and Oncogenic Function 
Molecular cell  2012;48(3):445-458.
SUMMARY
Activating mutations in NOTCH1, an essential regulator of T cell development, are frequently found in human T cell acute lymphoblastic leukemia (T-ALL). Despite important advances in our understanding of Notch signal transduction, the regulation of Notch functions in the nucleus remains unclear. Using immunoaffinity purification, we identified NOTCH1 nuclear partners in T-ALL cells and showed that, beyond the well-characterized core activation complex (ICN1-CSL-MAML1), NOTCH1 assembles a multifunctional complex containing the transcription coactivator AF4p12, the PBAF nucleosome remodeling complex, and the histone demethylases LSD1 and PHF8 acting through their demethylase activity to promote epigenetic modifications at Notch-target genes. Remarkably, LSD1 functions as a corepressor when associated with CSL-repressor complex and as a NOTCH1 coactivator upon Notch activation. Our work provides new insights into the molecular mechanisms that govern Notch transcriptional activity and represents glimpse into NOTCH1 interaction landscape, which will help in deciphering mechanisms of NOTCH1 functions and regulation.
doi:10.1016/j.molcel.2012.08.022
PMCID: PMC3595990  PMID: 23022380
4.  SAMHD1 is the dendritic– and myeloid–cell–specific HIV–1 restriction factor counteracted by Vpx 
Nature  2011;474(7353):654-657.
The primate lentivirus auxiliary protein Vpx counteracts an unknown restriction factor that renders human dendritic and myeloid cells largely refractory to HIV-1 infection1-6. Here we identify SAMHD1 as this restriction factor. SAMHD1 is a protein involved in Aicardi–Goutières syndrome, a genetic encephalopathy with symptoms mimicking congenital viral infection, that has been proposed to act as a negative regulator of the interferon response7. We show that Vpx induces proteasomal degradation of SAMHD1. Silencing of SAMHD1 in non-permissive cell lines alleviates HIV-1 restriction and is associated with a significant accumulation of viral DNA in infected cells. Concurrently, overexpression of SAMHD1 in sensitive cells inhibits HIV-1 infection. The putative phosphohydrolase activity of SAMHD1 is probably required for HIV-1 restriction. Vpx-mediated relief of restriction is abolished in SAMHD1-negative cells. Finally, silencing of SAMHD1 markedly increases the susceptibility of monocytic-derived dendritic cells to infection. Our results demonstrate that SAMHD1 is an antiretroviral protein expressed in cells of the myeloid lineage that inhibits an early step of the viral life cycle.
doi:10.1038/nature10117
PMCID: PMC3595993  PMID: 21613998
5.  Evolutionary and Functional Analyses of the Interaction between the Myeloid Restriction Factor SAMHD1 and the Lentiviral Vpx Protein 
Cell host & microbe  2012;11(2):205-217.
SUMMARY
SAMHD1 has recently been identified as an HIV-1 restriction factor operating in myeloid cells. As a countermeasure, the Vpx accessory protein from HIV-2 and certain lineages of SIV have evolved to antagonize SAMHD1 by inducing its ubiquitin-proteasome-dependent degradation. Here, we show that SAMHD1 experienced strong positive selection episodes during primate evolution that occurred in the Catarrhini ancestral branch prior to the separation between hominoids (gibbons and great apes) and Old World monkeys. The identification of SAMHD1 residues under positive selection led to mapping the Vpx-interaction domain of SAMHD1 to its C-terminal region. Importantly, we found that while SAMHD1 restriction activity toward HIV-1 is evolutionarily maintained, antagonism of SAMHD1 by Vpx is species-specific. The distinct evolutionary signature of SAMHD1 sheds light on the development of its antiviral specificity.
doi:10.1016/j.chom.2012.01.007
PMCID: PMC3595996  PMID: 22305291
6.  HIV-1 Tat Assembles a Multifunctional Transcription Elongation Complex and Stably Associates with the 7SK snRNP 
Molecular cell  2010;38(3):439-451.
SUMMARY
HIV-1 transactivator Tat has greatly contributed to our understanding of transcription elongation by RNAPII. We purified HIV-1 Tat-associated factors from HeLa nuclear extract and show that Tat forms two distinct and stable complexes. Tatcom1 consists of the core active P-TEFb, MLL-fusion partners involved in leukemia (AF9, AFF4, AFF1, ENL, and ELL), and PAF1 complex. Importantly, Tatcom1 formation relies on P-TEFb while optimal CDK9 CTD-kinase activity is AF9 dependent. MLL-fusion partners and PAF1 are required for Tat transactivation. Tatcom2 is composed of CDK9, CycT1, and 7SK snRNP lacking HEXIM. Tat remodels 7SK snRNP by interacting directly with 7SK RNA, leading to the formation of a stress-resistant 7SK snRNP particle. Besides the identification of factors required for Tat transactivation and important for P-TEFb function, our data show a coordinated control of RNAPII elongation by different classes of transcription elongation factors associated in a single complex and acting at the same promoter.
doi:10.1016/j.molcel.2010.04.012
PMCID: PMC3595998  PMID: 20471949
7.  PALB2 Interacts with KEAP1 To Promote NRF2 Nuclear Accumulation and Function 
Molecular and Cellular Biology  2012;32(8):1506-1517.
PALB2/FANCN is mutated in breast and pancreatic cancers and Fanconi anemia (FA). It controls the intranuclear localization, stability, and DNA repair function of BRCA2 and links BRCA1 and BRCA2 in DNA homologous recombination repair and breast cancer suppression. Here, we show that PALB2 directly interacts with KEAP1, an oxidative stress sensor that binds and represses the master antioxidant transcription factor NRF2. PALB2 shares with NRF2 a highly conserved ETGE-type KEAP1 binding motif and can effectively compete with NRF2 for KEAP1 binding. PALB2 promotes NRF2 accumulation and function in the nucleus and lowers the cellular reactive oxygen species (ROS) level. In addition, PALB2 also regulates the rate of NRF2 export from the nucleus following induction. Our findings identify PALB2 as a regulator of cellular redox homeostasis and provide a new link between oxidative stress and the development of cancer and FA.
doi:10.1128/MCB.06271-11
PMCID: PMC3318596  PMID: 22331464
8.  Concordant and opposite roles of DNA-PK and the "facilitator of chromatin transcription" (FACT) in DNA repair, apoptosis and necrosis after cisplatin 
Molecular Cancer  2011;10:74.
Background
Platinum-containing chemotherapy produces specific DNA damage and is used to treat several human solid tumors. Tumors initially sensitive to platinum-based drugs frequently become resistant. Inhibition of DNA repair is a potential strategy to enhance cisplatin effectiveness. After cisplatin treatment, a balance between repair and apoptosis determines whether cancer cells proliferate or die. DNA-dependent protein kinase (DNA-PK) binds to DNA double strand breaks (DSBs) through its Ku subunits and initiates non-homologous end joining. Inhibition of DNA-PK sensitizes cancer cells to cisplatin killing. The goal of this study is to elucidate the mechanism underlying the effects of DNA-PK on cisplatin sensitivity.
Results
Silencing the expression of the catalytic subunit of DNA-PK (DNA-PKcs) increased sensitivity to cisplatin and decreased the appearance of γH2AX after cisplatin treatment. We purified DNA-PK by its Ku86 subunit and identified interactors by tandem mass spectrometry before and after cisplatin treatment. The structure specific recognition protein 1 (SSRP1), Spt16 and γH2AX appeared in the Ku86 complex 5 hours after cisplatin treatment. SSRP1 and Spt16 form the facilitator of chromatin transcription (FACT). The cisplatin-induced association of FACT with Ku86 and γH2AX was abrogated by DNase treatment. In living cells, SSRP1 and Ku86 were recruited at sites of DSBs induced by laser beams. Silencing SSRP1 expression increased sensitivity to cisplatin and decreased γH2AX appearance. However, while silencing SSRP1 in cisplatin-treated cells increased both apoptosis and necrosis, DNA-PKcs silencing, in contrast, favored necrosis over apoptosis.
Conclusions
DNA-PK and FACT both play roles in DNA repair. Therefore both are putative targets for therapeutic inhibition. Since DNA-PK regulates apoptosis, silencing DNA-PKcs redirects cells treated with cisplatin toward necrosis. Silencing FACT however, allows both apoptosis and necrosis. Targeting DNA repair in cancer patients may have different therapeutic effects depending upon the roles played by factors targeted.
doi:10.1186/1476-4598-10-74
PMCID: PMC3135565  PMID: 21679440
9.  A novel breast cancer-associated BRIP1 (FANCJ/BACH1) germ line mutation impairs protein stability and function 
Purpose
BRIP1 (FANCJ/BACH1), which encodes a DNA helicase that interacts with BRCA1, has been suggested to be a low penetrance breast cancer predisposing gene. We aimed to assess whether BRIP1 mutations contribute to breast cancer susceptibility in our population and, if so, to investigate the impact of such mutation(s) on BRIP1 function.
Experimental Design
A series of 49 breast/ovarian cancer families, devoid of a BRCA1/BRCA2 mutation, were screened for BRIP1 mutations. Functional analyses, including co-immunoprecipitation and stability assays, were employed to further characterize a previously unreported variant.
Results
Five sequence alterations were identified, of which four had been already described. Herein, we report a novel BRIP1 germ line mutation identified in a woman with early onset breast cancer. The mutation consists of a four-nucleotide deletion (c.2992-2995delAAGA) in BRIP1 exon 20 that causes a shift in the reading frame, disrupts the BRCA1-binding domain of BRIP1 and creates a premature stop codon. Functional analysis of the recombinant mutant protein in transfected cells showed that the truncation interferes with the stability of the protein and with its ability to interact with BRCA1. Loss of the wild type BRIP1 allele with retention of the mutated one was observed in the patient’s breast tumor tissue.
Conclusions
These results, by showing that the newly identified BRIP1 c.2992-2995delAAGA mutation is associated with instability and functional impairment of the encoded protein, provide further evidence of a breast cancer-related role for BRIP1.
doi:10.1158/1078-0432.CCR-08-0087
PMCID: PMC2561321  PMID: 18628483
BRIP1; breast cancer susceptibility; BRCA1; tumor suppressor genes; Fanconi anaemia
10.  RAP80 Targets BRCA1 to Specific Ubiquitin Structures at DNA Damage Sites 
Science (New York, N.Y.)  2007;316(5828):1198-1202.
Mutations affecting the BRCT domains of the breast cancer–associated tumor suppressor BRCA1 disrupt the recruitment of this protein to DNA double-strand breaks (DSBs). The molecular structures at DSBs recognized by BRCA1 are presently unknown. We report the interaction of the BRCA1 BRCT domain with RAP80, a ubiquitin-binding protein. RAP80 targets a complex containing the BRCA1-BARD1 (BRCA1-associated ring domain protein 1) E3 ligase and the deubiquitinating enzyme (DUB) BRCC36 to MDC1-γH2AX–dependent lysine6- and lysine63-linked ubiquitin polymers at DSBs. These events are required for cell cycle checkpoint and repair responses to ionizing radiation, implicating ubiquitin chain recognition and turnover in the BRCA1-mediated repair of DSBs.
doi:10.1126/science.1139516
PMCID: PMC2706583  PMID: 17525341

Results 1-10 (10)