PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-13 (13)
 

Clipboard (0)
None

Select a Filter Below

Authors
more »
Year of Publication
Document Types
1.  Zinc pyrithione impairs zinc homeostasis and upregulates stress response gene expression in reconstructed human epidermis 
Zinc ion homeostasis plays an important role in human cutaneous biology where it is involved in epidermal differentiation and barrier function, inflammatory and antimicrobial regulation, and wound healing. Zinc-based compounds designed for topical delivery therefore represent an important class of cutaneous therapeutics. Zinc pyrithione (ZnPT) is an FDA-approved microbicidal agent used worldwide in over-the-counter topical antimicrobials, and has also been examined as an investigational therapeutic targeting psoriasis and UVB-induced epidermal hyperplasia. Recently, we have demonstrated that cultured primary human skin keratinocytes display an exquisite sensitivity to nanomolar ZnPT concentrations causing induction of heat shock response gene expression and poly(ADP-ribose) polymerase (PARP)-dependent cell death (Cell Stress Chaperones 15:309–322, 2010). Here we demonstrate that ZnPT causes rapid accumulation of intracellular zinc in primary keratinocytes as observed by quantitative fluorescence microscopy and inductively coupled plasma mass spectrometry (ICP-MS), and that PARP activation, energy crisis, and genomic impairment are all antagonized by zinc chelation. In epidermal reconstructs (EpiDerm™) exposed to topical ZnPT (0.1–2% in Vanicream™), ICP-MS demonstrated rapid zinc accumulation, and expression array analysis demonstrated upregulation of stress response genes encoding metallothionein-2A (MT2A), heat shock proteins (HSPA6, HSPA1A, HSPB5, HSPA1L, DNAJA1, HSPH1, HSPD1, HSPE1), antioxidants (SOD2, GSTM3, HMOX1), and the cell cycle inhibitor p21 (CDKN1A). IHC analysis of ZnPT-treated EpiDerm™ confirmed upregulation of Hsp70 and TUNEL-positivity. Taken together our data demonstrate that ZnPT impairs zinc ion homeostasis and upregulates stress response gene expression in primary keratinocytes and reconstructed human epidermis, activities that may underlie therapeutic and toxicological effects of this topical drug.
doi:10.1007/s10534-011-9441-6
PMCID: PMC4169675  PMID: 21424779
Zinc pyrithione; Keratinocyte; Reconstructed epidermis; Heat shock response; HSPA1A; ICP-MS
2.  DCPIP (2,6-dichlorophenolindophenol) as a genotype-directed redox chemotherapeutic targeting NQO1*2 breast carcinoma 
Free radical research  2010;45(3):276-292.
Accumulative experimental evidence suggests feasibility of chemotherapeutic intervention targeting human cancer cells by pharmacological modulation of cellular oxidative stress. Current efforts aim at personalization of redox chemotherapy through identification of predictive tumour genotypes and redox biomarkers. Based on earlier research demonstrating that anti-melanoma activity of the pro-oxidant 2,6-dichlorophenolindophenol (DCPIP) is antagonized by cellular NAD(P) H:quinone oxidoreductase (NQO1) expression, this study tested DCPIP as a genotype-directed redox chemotherapeutic targeting homozygous NQO1*2 breast carcinoma, a common missense genotype [rs1800566 polymorphism; NP_000894.1:p. Pro187Ser] encoding a functionally impaired NQO1 protein. In a panel of cultured breast carcinoma cell lines and NQO1-transfectants with differential NQO1 expression levels, homozygous NQO1*2 MDA-MB231 cells were hypersensitive to DCPIP-induced caspase-independent cell death that occurred after early onset of oxidative stress with glutathione depletion and loss of genomic integrity. Array analysis revealed upregulated expression of oxidative (GSTM3, HMOX1, EGR1), heat shock (HSPA6, HSPA1A, CRYAB) and genotoxic stress response (GADD45A, CDKN1A) genes confirmed by immunoblot detection of HO-1, Hsp70, Hsp70B′, p21 and phospho-p53 (Ser15). In a murine xenograft model of human homozygous NQO1*2-breast carcinoma, systemic administration of DCPIP displayed significant anti-tumour activity, suggesting feasibility of redox chemotherapeutic intervention targeting the NQO1*2 genotype.
doi:10.3109/10715762.2010.526766
PMCID: PMC4101082  PMID: 21034357
Redox chemotherapy; 2,6-dichlorophenolindophenol; xenograft; breast carcinoma; MDA-MB231; NQO1*2 genotype
3.  Autophagic-lysosomal dysregulation downstream of cathepsin B inactivation in human skin fibroblasts exposed to UVA 
Recently, using 2D-DIGE proteomics we have identified cathepsin B as a novel target of UVA in human Hs27 skin fibroblasts. In response to chronic exposure to noncytotoxic doses of UVA (9.9 J/cm2, twice a week, 3 weeks), photooxidative impairment of cathepsin B enzymatic activity occurred with accumulation of autofluorescent aggregates colocalizing with lysosomes, an effect mimicked by pharmacological antagonism of cathepsin B using the selective inhibitor CA074Me. Here, we have further explored the mechanistic involvement of cathepsin B inactivation in UVA-induced autophagic-lysosomal alterations using autophagy-directed PCR expression array analysis as a discovery tool. Consistent with lysosomal expansion, UVA upregulated cellular protein levels of the lysosomal marker glycoprotein Lamp-1, and increased levels of the lipidated autophagosomal membrane constituent LC3-II were detected. UVA did not alter expression of beclin 1 (BECN1), an essential factor for initiation of autophagy, but upregulation of p62 (sequestosome 1, SQSTM1), a selective autophagy substrate, and α-synuclein (SNCA), an autophagic protein substrate and aggresome component, was observed at the mRNA and protein level. Moreover, UVA downregulated transglutaminase-2 (TGM2), an essential enzyme involved in autophagolysosome maturation. Strikingly, UVA effects on Lamp-1, LC3-II, beclin 1, p62, α-synuclein, and transglutaminase-2 were mimicked by CA074Me treatment. Taken together, our data suggest that UVA-induced autophagic-lysosomal alterations occur as a consequence of impaired autophagic flux downstream of cathepsin B inactivation, a novel molecular mechanism potentially involved in UVA-induced skin photodamage.
doi:10.1039/c1pp05131h
PMCID: PMC4089038  PMID: 21773629
UVA; skin photodamage; cathepsin B; p62; oxidative stress; autophagy
4.  UVA Causes Dual Inactivation of Cathepsin B and L Underlying Lysosomal Dysfunction in Human Dermal Fibroblasts 
Cutaneous exposure to chronic solar UVA-radiation is a causative factor in photocarcinogenesis and photoaging. Recently, we have identified the thiol-dependent cysteine-protease cathepsin B as a novel UVA-target undergoing photo-oxidative inactivation upstream of autophagic-lysosomal dysfunction in fibroblasts. In this study, we examined UVA effects on a wider range of cathepsins and explored the occurrence of UVA-induced cathepsin inactivation in other cultured skin cell types. In dermal fibroblasts, chronic exposure to non-cytotoxic doses of UVA caused pronounced inactivation of the lysosomal cysteine-proteases cathepsin B and L, effects not observed in primary keratinocytes and occurring only to a minor extent in primary melanocytes. In order to determine if UVA-induced lysosomal impairment requires single or dual inactivation of cathepsin B and/or L, we used a genetic approach (siRNA) to selectively downregulate enzymatic activity of these target cathepsins. Monitoring an established set of protein markers (including LAMP1, LC3-II, and p62) and cell ultrastructural changes detected by electron microscopy, we observed that only dual genetic antagonism (targeting both CTSB and CTSL expression) could mimic UVA-induced autophagic-lysosomal alterations, whereas single knockdown (targeting CTSB or CTSL only) did not display ‘UVA-mimetic’ effects failing to reproduce the UVA-induced phenotype. Taken together, our data demonstrate that chronic UVA inhibits both cathepsin B and L enzymatic activity and that dual inactivation of both enzymes is a causative factor underlying UVA-induced impairment of lysosomal function in dermal fibroblasts.
doi:10.1016/j.jphotobiol.2013.03.007
PMCID: PMC3710731  PMID: 23603447
UVA; skin photodamage; cathepsin B; cathepsin L; fibroblast
5.  D-Penicillamine targets metastatic melanoma cells with induction of the unfolded protein response (UPR) and Noxa (PMAIP1)-dependent mitochondrial apoptosis 
D-penicillamine (3,3-Dimethyl-D-cysteine; DP) is an FDA-approved redox-active D-cysteine-derivative with antioxidant, disulfide-reducing, and metal chelating properties used therapeutically for the control of copper-related pathology in Wilson’s disease and reductive cystine-solubilization in cystinuria. Based on the established sensitivity of metastatic melanoma cells to pharmacological modulation of cellular oxidative stress, we tested feasibility of using DP for chemotherapeutic intervention targeting human A375 melanoma cells in vitro and in vivo. DP treatment induced caspase-dependent cell death in cultured human metastatic melanoma cells (A375, G361) without compromising viability of primary epidermal melanocytes, an effect not observed with the thiol-antioxidants N-acetyl-L-cysteine (NAC) and dithiothreitol. Focused gene expression array analysis followed by immunoblot detection revealed that DP rapidly activates the cytotoxic unfolded protein response (UPR; involving phospho-PERK, phospho-eIF2α, Grp78, CHOP, and Hsp70) and the mitochondrial pathway of apoptosis with p53 upregulation and modulation of Bcl-2 family members (involving Noxa, Mcl-1, and Bcl-2). DP (but not NAC) induced oxidative stress with early impairment of glutathione homeostasis and mitochondrial transmembrane potential. SiRNA-based antagonism of PMAIP1 expression blocked DP-induced upregulation of the proapoptotic BH3-only effector Noxa and prevented downregulation of the Noxa-antagonist Mcl-1, rescuing melanoma cells from DP-induced apoptosis. Intraperitoneal administration of DP displayed significant antimelanoma activity in a murine A375 xenograft model. It remains to be seen if melanoma cell-directed induction of UPR and apoptosis using DP or improved DP-derivatives can be harnessed for future chemotherapeutic intervention.
doi:10.1007/s10495-012-0746-x
PMCID: PMC3779642  PMID: 22843330
Metastatic melanoma; D-penicillamine; Noxa (PMAIP1); Mcl-1; unfolded protein response (UPR); apoptosis
6.  The redox antimalarial dihydroartemisinin targets human metastatic melanoma cells but not primary melanocytes with induction of NOXA-dependent apoptosis 
Investigational New Drugs  2011;30(4):1289-1301.
Summary
Recent research suggests that altered redox control of melanoma cell survival, proliferation, and invasiveness represents a chemical vulnerability that can be targeted by pharmacological modulation of cellular oxidative stress. The endoperoxide artemisinin and semisynthetic artemisinin-derivatives including dihydroartemisinin (DHA) constitute a major class of antimalarials that kill plasmodium parasites through induction of iron-dependent oxidative stress. Here, we demonstrate that DHA may serve as a redox chemotherapeutic that selectively induces melanoma cell apoptosis without compromising viability of primary human melanocytes. Cultured human metastatic melanoma cells (A375, G361, LOX) were sensitive to DHA-induced apoptosis with upregulation of cellular oxidative stress, phosphatidylserine externalization, and activational cleavage of procaspase 3. Expression array analysis revealed DHA-induced upregulation of oxidative and genotoxic stress response genes (GADD45A, GADD153, CDKN1A, PMAIP1, HMOX1, EGR1) in A375 cells. DHA exposure caused early upregulation of the BH3-only protein NOXA, a proapototic member of the Bcl2 family encoded by PMAIP1, and genetic antagonism (siRNA targeting PMAIP1) rescued melanoma cells from apoptosis indicating a causative role of NOXA-upregulation in DHA-induced melanoma cell death. Comet analysis revealed early DHA-induction of genotoxic stress accompanied by p53 activational phosphorylation (Ser 15). In primary human epidermal melanocytes, viability was not compromised by DHA, and oxidative stress, comet tail moment, and PMAIP1 (NOXA) expression remained unaltered. Taken together, these data demonstrate that metastatic melanoma cells display a specific vulnerability to DHA-induced NOXA-dependent apoptosis and suggest feasibility of future antimelanoma intervention using artemisinin-derived clinical redox antimalarials.
doi:10.1007/s10637-011-9676-7
PMCID: PMC3203350  PMID: 21547369
Malignant melanoma; Dihydroartemisinin; PMAIP1; Reactive oxygen species; Oxidative stress; Apoptosis
7.  Thiostrepton is an Inducer of Oxidative and Proteotoxic Stress that Impairs Viability of Human Melanoma Cells but not Primary Melanocytes 
Biochemical Pharmacology  2012;83(9):1229-1240.
Pharmacological induction of oxidative and proteotoxic stress has recently emerged as a promising strategy for chemotherapeutic intervention targeting cancer cells. Guided by a differential phenotypic drug screen for novel lead compounds that selectively induce melanoma cell apoptosis without compromising viability of primary human melanocytes, we have focused on the cyclic pyridinyl-polythiazolyl peptide-antimicrobial thiostrepton. Using comparative gene expression-array analysis, the early cellular stress response induced by thiostrepton was examined in human A375 metastatic melanoma cells and primary melanocytes. Thiostrepton displayed selective antimelanoma activity causing early induction of proteotoxic stress with massive upregulation of heat shock (HSPA6, HSPA1A, DNAJB4, HSPB1, HSPH1, HSPA1L, CRYAB, HSPA5, DNAJA1), oxidative stress (HMOX1, GSR, SOD1), and ER stress response (DDIT3) gene expression, confirmed by immunodetection (Hsp70, Hsp70B′, HO-1, phospho-eIF2α). Moreover, upregulation of p53, proapoptotic modulation of Bcl-2 family members (Bax, Noxa, Mcl-1, Bcl-2), and induction of apoptotic cell death were observed. Thiostrepton rapidly induced cellular oxidative stress followed by inactivation of chymotrypsin-like proteasomal activity and melanoma cell-directed accumulation of ubiquitinated proteins, not observed in melanocytes that were resistant to thiostrepton-induced apoptosis. Proteotoxic and apoptogenic effects were fully antagonized by antioxidant intervention. In RPMI 8226 multiple myeloma cells, known to be exquisitely sensitive to proteasome inhibition, early proteotoxic and apoptogenic effects of thiostrepton were confirmed by array analysis indicating pronounced upregulation of heat shock response gene expression. Our findings demonstrate that thiostrepton displays dual activity as a selective prooxidant and proteotoxic chemotherapeutic, suggesting feasibility of experimental intervention targeting metastatic melanoma and other malignancies including multiple myeloma.
doi:10.1016/j.bcp.2012.01.027
PMCID: PMC3299892  PMID: 22321511
malignant melanoma; oxidative and proteotoxic stress; heat shock response; proteasome; thiostrepton
8.  The Malondialdehyde-derived Fluorophore DHP-lysine is a Potent Sensitizer of UVA-induced Photooxidative Stress in Human Skin Cells 
Light-driven electron and energy transfer involving non-DNA skin chromophores as endogenous photosensitizers induces oxidative stress in UVA-exposed human skin, a process relevant to photoaging and photocarcinogenesis. Malondialdehyde is an electrophilic dicarbonyl-species derived from membrane lipid peroxidation. Here we present experimental evidence suggesting that the malondialdehyde-derived protein epitope dihydropyridine (DHP)-lysine is a potent endogenous UVA-photosensitizer of human skin cells. Immunohistochemical analysis revealed the abundant occurrence of malondialdehyde-derived and DHP-lysine epitopes in human skin. Using the chemically protected dihydropyridine-derivative (2S)-Boc-2-amino-6-(3,5-diformyl-4-methyl-4H-pyridin-1-yl)-hexanoic acid-t-butylester as a model of peptide-bound DHP-lysine, photodynamic inhibition of proliferation and induction of cell death were observed in human skin Hs27 fibroblasts as well as primary and HaCaT keratinocytes exposed to the combined action of UVA and DHP-lysine. DHP-lysine photosensitization induced intracellular oxidative stress, p38 MAP kinase activation, and upregulation of heme oxygenase-1 expression. Consistent with UVA-driven ROS formation from DHP-lysine, formation of superoxide, hydrogen peroxide, and singlet oxygen was detected in chemical assays, but little protection was achieved using SOD or catalase during cellular photosensitization. In contrast, inclusion of NaN3 completely abolished DHP-photosensitization. Taken together, these data demonstrate photodynamic activity of DHP-lysine and support the hypothesis that malondialdehyde-derived protein-epitopes may function as endogenous sensitizers of UVA-induced oxidative stress in human skin.
doi:10.1016/j.jphotobiol.2010.07.010
PMCID: PMC2963670  PMID: 20724175
photosensitization; UVA; lipid peroxidation; skin photooxidative stress; DHP-lysine
9.  Proteomic Identification of Cathepsin B and Nucleophosmin as Novel UVA-Targets in Human Skin Fibroblasts 
Photochemistry and photobiology  2010;86(6):1307-1317.
Solar UVA exposure plays a causative role in skin photoaging and photocarcinogenesis. Here we describe the proteomic identification of novel UVA-targets in human dermal fibroblasts following a 2D-DIGE (two-dimensional-difference-gel-electrophoresis) approach. Fibroblasts were exposed to non-cytotoxic doses of UVA or left untreated, and total protein extracts underwent CyDye-labeling followed by 2D-DIGE/mass spectrometric identification of differentially expressed proteins, confirmed independently by immunodetection. The protein displaying the most pronounced UVA-induced upregulation was identified as the nucleolar protein nucleophosmin. The protein undergoing the most pronounced UVA-induced downregulation was identified as cathepsin B, a lysosomal cysteine-protease displaying loss of enzymatic activity and altered maturation after cellular UVA exposure. Extensive lysosomal accumulation of lipofuscin-like autofluorescence and osmiophilic material occurred in UVA-exposed fibroblasts as detected by confocal fluorescence microscopy and transmission electron microscopy, respectively. Array analysis indicated UVA-induced upregulation of oxidative stress response gene expression, and UVA-induced loss of cathepsin B enzymatic activity in fibroblasts was suppressed by antioxidant intervention. Pharmacological cathepsin B-inhibition using CA074Me mimicked UVA-induced accumulation of lysosomal autofluorescence and deficient cathepsin B-maturation. Taken together, these data support the hypothesis that cathepsin B is a crucial target of UVA-induced photooxidative stress causatively involved in dermal photodamage through impairment of lysosomal removal of lipofuscin.
doi:10.1111/j.1751-1097.2010.00818.x
PMCID: PMC3001288  PMID: 20946361
10.  The Cinnamon-derived Dietary Factor Cinnamic Aldehyde Activates the Nrf2-dependent Antioxidant Response in Human Epithelial Colon Cells 
Molecules (Basel, Switzerland)  2010;15(5):3338-3355.
Colorectal cancer (CRC) is a major cause of tumor-related morbidity and mortality worldwide. Recent research suggests that pharmacological intervention using dietary factors that activate the redox sensitive Nrf2/Keap1-ARE signaling pathway may represent a promising strategy for chemoprevention of human cancer including CRC. In our search for dietary Nrf2 activators with potential chemopreventive activity targeting CRC, we have focused our studies on trans-cinnamic aldehyde (cinnamaldeyde, CA), the key flavor compound in cinnamon essential oil. Here we demonstrate that CA and an ethanolic extract (CE) prepared from Cinnamomum cassia bark, standardized for CA content by GC-MS analysis, display equipotent activity as inducers of Nrf2 transcriptional activity. In human colon cancer cells (HCT116, HT29) and non-immortalized primary fetal colon cells (FHC), CA- and CE-treatment upregulated cellular protein levels of Nrf2 and established Nrf2 targets involved in the antioxidant response including heme oxygenase 1 (HO-1) and γ-glutamylcysteine synthetase (γ-GCS, catalytic subunit). CA- and CE-pretreatment strongly upregulated cellular glutathione levels and protected HCT116 cells against hydrogen peroxide-induced genotoxicity and arsenic-induced oxidative insult. Taken together our data demonstrate that the cinnamon-derived food factor CA is a potent activator of the Nrf2-orchestrated antioxidant response in cultured human epithelial colon cells. CA may therefore represent an underappreciated chemopreventive dietary factor targeting colorectal carcinogenesis.
doi:10.3390/molecules15053338
PMCID: PMC3101712  PMID: 20657484
colon cancer; Nrf2-activator; cinnamic aldehyde; antioxidant response
11.  The topical antimicrobial zinc pyrithione is a heat shock response inducer that causes DNA damage and PARP-dependent energy crisis in human skin cells 
Cell Stress & Chaperones  2009;15(3):309-322.
The differentiated epidermis of human skin serves as an essential barrier against environmental insults from physical, chemical, and biological sources. Zinc pyrithione (ZnPT) is an FDA-approved microbicidal agent used worldwide in clinical antiseptic products, over-the-counter topical antimicrobials, and cosmetic consumer products including antidandruff shampoos. Here we demonstrate for the first time that cultured primary human skin keratinocytes and melanocytes display an exquisite vulnerability to nanomolar concentrations of ZnPT resulting in pronounced induction of heat shock response gene expression and impaired genomic integrity. In keratinocytes treated with nanomolar concentrations of ZnPT, expression array analysis revealed massive upregulation of genes encoding heat shock proteins (HSPA6, HSPA1A, HSPB5, HMOX1, HSPA1L, and DNAJA1) further confirmed by immunodetection. Moreover, ZnPT treatment induced rapid depletion of cellular ATP levels and formation of poly(ADP-ribose) polymers. Consistent with an involvement of poly(ADP-ribose) polymerase (PARP) in ZnPT-induced energy crisis, ATP depletion could be antagonized by pharmacological inhibition of PARP. This result was independently confirmed using PARP-1 knockout mouse embryonic fibroblasts that were resistant to ATP depletion and cytotoxicity resulting from ZnPT exposure. In keratinocytes and melanocytes, single-cell gel electrophoresis and flow cytometric detection of γ-H2A.X revealed rapid induction of DNA damage in response to ZnPT detectable before general loss of cell viability occurred through caspase-independent pathways. Combined with earlier experimental evidence that documents penetration of ZnPT through mammalian skin, our findings raise the possibility that this topical antimicrobial may target and compromise keratinocytes and melanocytes in intact human skin.
doi:10.1007/s12192-009-0145-6
PMCID: PMC2866994  PMID: 19809895
Zinc pyrithione; Keratinocyte; Melanocyte; Comet assay; Heat shock response; PARP-dependent ATP depletion
12.  The experimental chemotherapeutic N6-furfuryladenosine (kinetin-riboside) induces rapid ATP depletion, genotoxic stress, and CDKN1A (p21) upregulation in human cancer cell lines 
Biochemical pharmacology  2008;77(7):1125-1138.
Cytokinins and cytokinin nucleosides are purine derivatives with potential anticancer activity. N6-furfuryladenosine (FAdo, kinetin-riboside) displays antiproliferative and apoptogenic activity against various human cancer cell lines, and FAdo has recently been shown to suppress tumor growth in murine xenograft models of human leukemia and melanoma. In this study, FAdo-induced genotoxicity, stress response gene expression, and cellular ATP depletion were examined as early molecular consequences of FAdo-exposure in MiaPaCa-2 pancreas carcinoma, A375 melanoma, and other human cancer cell lines. FAdo, but not adenosine or N6-furfuryladenine, displayed potent antiproliferative activity that was also observed in human primary fibroblasts and keratinocytes. Remarkably, massive ATP depletion and induction of genotoxic stress as assessed by the alkaline comet assay occurred within 60 to 180 minutes of exposure to low micromolar concentrations of FAdo. This was followed by rapid upregulation of CDKN1A and other DNA damage/stress response genes (HMOX1, DDIT3, GADD45A) as revealed by expression array and Western analysis. Pharmacological and siRNA-based genetic inhibition of adenosine kinase suppressed FAdo cytotoxicity and also prevented ATP-depletion and p21-upregulation suggesting the importance of bioconversion of FAdo into the nucleotide form required for drug action. Taken together our data suggest that early induction of genotoxicity and energy crisis are important causative factors involved in FAdo cytotoxicity.
doi:10.1016/j.bcp.2008.12.002
PMCID: PMC2656390  PMID: 19186174
kinetin; N6-furfuryladenosine; genotoxic stress; ATP depletion; CDKN1A; cancer
13.  The Cinnamon-derived Michael Acceptor Cinnamic Aldehyde Impairs Melanoma Cell Proliferation, Invasiveness, and Tumor Growth 
Free radical biology & medicine  2008;46(2):220-231.
Redox dysregulation in cancer cells represents a chemical vulnerability that can be targeted by prooxidant redox intervention. Dietary constituents that contain an electrophilic Michael acceptor pharmacophore may therefore display promising chemopreventive and chemotherapeutic anti-cancer activity. Here, we demonstrate that the cinnamon-derived dietary Michael acceptor trans-cinnamic aldehyde (CA) impairs melanoma cell proliferation and tumor growth. Feasibility of therapeutic intervention using high doses of CA (120 mg/kg, p.o., q.d., 10 days) was demonstrated in a human A375 melanoma SCID-mouse xenograft model. Low micromolar concentrations (IC50 < 10 μM) of CA, but not closely related CA-derivatives devoid of Michael acceptor activity, suppressed proliferation of human metastatic melanoma cell lines (A375, G361, LOX) with G1 cell cycle arrest, elevated intracellular ROS, and impaired invasiveness. Expression array analysis revealed that CA induced an oxidative stress response in A375 cells, up-regulating heme oxygenase-1 (HMOX1), sulfiredoxin 1 homolog (SRXN1), thioredoxin reductase 1 (TXNRD1), and other genes including the cell cycle regulator and stress-responsive tumor suppressor gene cyclin-dependent kinase inhibitor 1A (CDKN1A), a key mediator of G1 phase arrest. CA, but not Michael-inactive derivatives, inhibited NFκB transcriptional activity and TNFα-induced IL-8 production in A375 cells. These findings support a previously unrecognized role of CA as a dietary Michael acceptor with potential anticancer activity.
doi:10.1016/j.freeradbiomed.2008.10.025
PMCID: PMC2650023  PMID: 19000754
melanoma; oxidative stress; Michael acceptor; cinnamic aldehyde; NFκB; p21 (CDKN1A); xenograft

Results 1-13 (13)