Search tips
Search criteria

Results 1-18 (18)

Clipboard (0)

Select a Filter Below

Year of Publication
Document Types
1.  Genome-Wide Association Study of Treatment Refractory Schizophrenia in Han Chinese 
PLoS ONE  2012;7(3):e33598.
We report the first genome-wide association study of a joint analysis using 795 Han Chinese individuals with treatment-refractory schizophrenia (TRS) and 806 controls. Three loci showed suggestive significant association with TRS were identified. These loci include: rs10218843 (P = 3.04×10−7) and rs11265461 (P = 1.94×10−7) are adjacent to signaling lymphocytic activation molecule family member 1 (SLAMF1); rs4699030 (P = 1.94×10−6) and rs230529 (P = 1.74×10−7) are located in the gene nuclear factor of kappa light polypeptide gene enhancer in B-cells 1 (NFKB1); and rs13049286 (P = 3.05×10−5) and rs3827219 (P = 1.66×10−5) fall in receptor-interacting serine/threonine-protein kinase 4 (RIPK4). One isolated single nucleotide polymorphism (SNP), rs739617 (P = 3.87×10−5) was also identified to be associated with TRS. The -94delATTG allele (rs28362691) located in the promoter region of NFKB1 was identified by resequencing and was found to associate with TRS (P = 4.85×10−6). The promoter assay demonstrated that the -94delATTG allele had a significant lower promoter activity than the -94insATTG allele in the SH-SY5Y cells. This study suggests that rs28362691 in NFKB1 might be involved in the development of TRS.
PMCID: PMC3313922  PMID: 22479419
2.  Signaling Adaptor Protein SH2B1 Enhances Neurite Outgrowth and Accelerates the Maturation of Human Induced Neurons 
The authors show that SH2B adaptor protein 1β can enhance neurite outgrowth of induced neurons reprogrammed from human fibroblasts as early as day 14, when combined with miR124 and transcription factors BRN2 and MYT1L under defined conditions. These enhanced induced neurons showed canonical neuronal morphology and expressed multiple neuronal markers and functional proteins for neurotransmitter release.
Recent advances in somatic cell reprogramming have highlighted the plasticity of the somatic epigenome, particularly through demonstrations of direct lineage reprogramming of adult mouse and human fibroblasts to induced pluripotent stem cells (iPSCs) and induced neurons (iNs) under defined conditions. However, human cells appear to be less plastic and have a higher epigenetic hurdle for reprogramming to both iPSCs and iNs. Here, we show that SH2B adaptor protein 1β (SH2B1) can enhance neurite outgrowth of iNs reprogrammed from human fibroblasts as early as day 14, when combined with miR124 and transcription factors BRN2 and MYT1L (IBM) under defined conditions. These SH2B1-enhanced iNs (S-IBM) showed canonical neuronal morphology, and expressed multiple neuronal markers, such as TuJ1, NeuN, and synapsin, and functional proteins for neurotransmitter release, such as GABA, vGluT2, and tyrosine hydroxylase. Importantly, SH2B1 accelerated mature process of functional neurons and exhibited action potentials as early as day 14; without SH2B1, the IBM iNs do not exhibit action potentials until day 21. Our data demonstrate that SH2B1 can enhance neurite outgrowth and accelerate the maturation of human iNs under defined conditions. This approach will facilitate the application of iNs in regenerative medicine and in vitro disease modeling.
PMCID: PMC4039450  PMID: 24736401
Reprogramming; Neural induction; Neuron; Neural differentiation; SH2B1
3.  Association Analysis of GABRB3 Promoter Variants with Heroin Dependence 
PLoS ONE  2014;9(7):e102227.
GABRB3 encoding the β3 subunit of GABAA receptor has been implicated in multiple neuropsychiatric disorders, including substance abuse. Previous studies reported that SNPs at the 5′ regulatory region of GABRB3 could regulate GABRB3 gene expression and associated with childhood absence epilepsy (CAE). The study aimed to investigate whether SNPs at the 5′ regulatory region of GABRB3 were associated with heroin dependence in our population. We first re-sequenced 1.5 kb of the 5′regulatory region of GABRB3 gene to examine the SNP profile in the genomic DNA of 365 control subjects. Then, we conducted a case-control association analysis between 576 subjects with heroin dependence (549 males, 27 females) and 886 controls (472 males, 414 females) by genotyping the rs4906902 as a tag SNP. We also conducted a reporter gene assay to assess the promoter activity of two major haplotypes derived from SNPs at this region. We detected 3 common SNPs (rs4906902, rs8179184 and rs20317) at this region that had strong pair-wise linkage disequilibrium. The C allele of rs4906902 was found to be associated with increased risk of heroin dependence (odds ratio:1.27, p = 0.002). Two major haplotypes (C-A-G and T-G-C) derived from these 3 SNPs accounted for 99% of this sample, and reporter gene activity assay showed that haplotype C-A-G that contained the C allele of the tag SNP rs4906902 had higher activity than haplotype T-G-C. Our data suggest that GABRB3 might be associated with heroin dependence, and increased expression of GABRB3 might contribute to the pathogenesis of heroin dependence.
PMCID: PMC4098998  PMID: 25025424
4.  Treatment of methamphetamine abuse: an antibody-based immunotherapy approach 
Current gene therapy  2013;13(1):39-50.
Methamphetamine is a highly addictive psychostimulant with tens of millions of abusers around the world, and currently there is no effective or approved medication for addiction to it. Monoclonal antibodies with a high affinity for methamphetamine have the potential to sequester the drug in the vascular compartment and reduce entry into the brain, acting as peripheral pharmacokinetic antagonists without inducing adverse effects on neurons. However, in order to maintain the antibodies at an effective level, repeated administration is required, which would be expensive and problematic for patient compliance. In this study, we intended to investigate whether using a recombinant adeno-associated virus-mediated gene transfer technique can be an effective approach to achieve long-term expression of anti-methamphetamine monoclonal antibodies in mouse models. We generated a recombinant adeno-associated virus vector encoding the heavy and light chains of an anti-methamphetamine monoclonal antibody, which were constructed in a single open reading frame and linked with a 2A self-processing sequence. In the context of virus-mediated gene transfer, expression of full-length and functional monoclonal antibodies was successfully demonstrated in vitro and in vivo. Further investigations on dose optimization, long-term expression, and protection from methamphetamine challenge in mouse models are ongoing.
PMCID: PMC4072129  PMID: 23157545
adeno-associated virus; antibody; methamphetamine
5.  Genetic analysis of GABRB3 as a candidate gene of autism spectrum disorders 
Molecular Autism  2014;5:36.
GABRB3 is a position candidate gene at chromosome 15q12 that has been implicated in the neurobiology of autism spectrum disorders (ASD). The aim of this study was to examine the genetic association of GABRB3 with ASD.
The sample consisted of 356 patients with clinical diagnosis of ASD according to the DSM-IV diagnostic criteria and confirmed by the Autism Diagnostic Interview-Revised and 386 unrelated controls. We searched for mutations at all the exonic regions and 1.6 Kb of the 5′ region of GABRB3 in the genomic DNA of all the participants using the Sanger sequencing. We implemented a case-control association analysis of variants detected in this sample, and conducted a reporter gene assay to assess the functional impact of variants at the 5′ regulatory region.
We detected six known common SNPs; however, they were not associated with ASD. Besides, a total of 22 rare variants (12 at 5′ regulatory, 4 at intronic, and 6 at exonic regions) were detected in 18 patients and 6 controls. The frequency of rare variants was significantly higher in the patient group than in the control group (18/356 versus 6/386, odds ratio = 3.37, P = 0.007). All the 12 rare variants at the 5′ regulatory region were only detected in 7 patients, but not in any of the controls (7/356 versus 0/386, Fisher’s exact test, P = 0.006). Two patients carried multiple rare variants. Family studies showed that most of these rare variants were transmitted from their parents. Reporter gene assays revealed that four rare variants at the 5′ regulatory region and 1 at exon 1a untranslated region had elevated reporter gene activities compared to two wild type alleles.
Our data suggest rare variants of GABRB3 might be associated with ASD, and increased GABRB3 expression may contribute to the pathogenesis of ASD in some patients.
Trial registration
Clinical trial registration Identifier: NCT00494754
PMCID: PMC4082499  PMID: 24999380
Autism spectrum disorders; GABRB3; Rare variants; Genetics; Case-control association
6.  Autism-associated gene Dlgap2 mutant mice demonstrate exacerbated aggressive behaviors and orbitofrontal cortex deficits 
Molecular Autism  2014;5:32.
As elegant structures designed for neural communication, synapses are the building bricks of our mental functions. Recently, many studies have pointed out that synaptic protein-associated mutations may lead to dysfunctions of social cognition. Dlgap2, which encodes one of the main components of scaffold proteins in postsynaptic density (PSD), has been addressed as a candidate gene in autism spectrum disorders. To elucidate the disturbance of synaptic balance arising from Dlgap2 loss-of-function in vivo, we thus generated Dlgap2 −/− mice to investigate their phenotypes of synaptic function and social behaviors.
The creation of Dlgap2 −/− mice was facilitated by the recombineering-based method, Cre-loxP system and serial backcross. Reversal learning in a water T-maze was used to determine repetitive behaviors. The three-chamber approach task, resident–intruder test and tube task were performed to characterize the social behaviors of mutant mice. Cortical synaptosomal fraction, Golgi-Cox staining, whole-cell patch electrophysiology and transmission electron microscopy were all applied to investigate the function and structure of synapses in the orbitofrontal cortex (OFC) of Dlgap2 −/− mice.
Dlgap2 −/− mice displayed exacerbated aggressive behaviors in the resident–intruder task, and elevated social dominance in the tube test. In addition, Dlgap2 −/− mice exhibited a clear reduction of receptors and scaffold proteins in cortical synapses. Dlgap2 −/− mice also demonstrated lower spine density, decreased peak amplitude of miniature excitatory postsynaptic current and ultra-structural deficits of PSD in the OFC.
Our findings clearly demonstrate that Dlgap2 plays a vital role in social behaviors and proper synaptic functions of the OFC. Moreover, these results may provide valuable insights into the neuropathology of autism.
PMCID: PMC4113140  PMID: 25071926
Dlgap2; aggressive behavior; orbitofrontal cortex, autism; synapse; mouse model
7.  Role of the DLGAP2 Gene Encoding the SAP90/PSD-95-Associated Protein 2 in Schizophrenia 
PLoS ONE  2014;9(1):e85373.
Aberrant synaptic dysfunction is implicated in the pathogenesis of schizophrenia. The DLGAP2 gene encoding the SAP90/PSD-95-associated protein 2 (SAPAP2) located at the post-synaptic density of neuronal cells is involved in the neuronal synaptic function. This study aimed to investigate whether the DLGAP2 gene is associated with schizophrenia. We resequenced the putative promoter region and all the exons of the DLGAP2 gene in 523 patients with schizophrenia and 596 non-psychotic controls from Taiwan and conducted a case-control association analysis. We identified 19 known SNPs in this sample. Association analysis of 9 SNPs with minor allele frequency greater than 5% showed no association with schizophrenia. However, we found a haplotype (CCACCAACT) significantly associated with schizophrenia (odds ratio:2.5, p<0.001). We also detected 16 missense mutations and 1 amino acid-insertion mutation in this sample. Bioinformatic analysis showed some of these mutations were damaging or pathological to the protein function, but we did not find increased burden of these mutations in the patient group. Notably, we identified 5 private rare variants in 5 unrelated patients, respectively, including c.−69+9C>T, c.−69+13C>T, c.−69+47C>T, c.−69+55C>T at intron 1 and c.−32A>G at untranslated exon 2 of the DLGAP2 gene. These rare variants were not detected in 559 control subjects. Further reporter gene assay of these rare variants except c.−69+13C>T showed significantly elevated promoter activity than the wild type, suggesting increased DLGAP2 gene expression may contribute to the pathogenesis of schizophrenia. Our results indicate that DLGAP2 is a susceptible gene of schizophrenia.
PMCID: PMC3885712  PMID: 24416398
8.  Runs of Homozygosity Associated with Speech Delay in Autism in a Taiwanese Han Population: Evidence for the Recessive Model 
PLoS ONE  2013;8(8):e72056.
Runs of homozygosity (ROH) may play a role in complex diseases. In the current study, we aimed to test if ROHs are linked to the risk of autism and related language impairment. We analyzed 546,080 SNPs in 315 Han Chinese affected with autism and 1,115 controls. ROH was defined as an extended homozygous haplotype spanning at least 500 kb. Relative extended haplotype homozygosity (REHH) for the trait-associated ROH region was calculated to search for the signature of selection sweeps. Totally, we identified 676 ROH regions. An ROH region on 11q22.3 was significantly associated with speech delay (corrected p = 1.73×10−8). This region contains the NPAT and ATM genes associated with ataxia telangiectasia characterized by language impairment; the CUL5 (culin 5) gene in the same region may modulate the neuronal migration process related to language functions. These three genes are highly expressed in the cerebellum. No evidence for recent positive selection was detected on the core haplotypes in this region. The same ROH region was also nominally significantly associated with speech delay in another independent sample (p = 0.037; combinatorial analysis Stouffer’s z trend = 0.0005). Taken together, our findings suggest that extended recessive loci on 11q22.3 may play a role in language impairment in autism. More research is warranted to investigate if these genes influence speech pathology by perturbing cerebellar functions.
PMCID: PMC3745408  PMID: 23977206
9.  Deep exon resequencing of DLGAP2 as a candidate gene of autism spectrum disorders 
Molecular Autism  2013;4:26.
We recently reported a terminal deletion of approximately 2.4 Mb at chromosome 8p23.2-pter in a boy with autism. The deleted region contained the DLGAP2 gene that encodes the neuronal post-synaptic density protein, discs, large (Drosophila) homolog-associated protein 2. The study aimed to investigate whether DLGAP2 is genetically associated with autism spectrum disorders (ASD) in general.
We re-sequenced all the exons of DLGPA2 in 515 patients with ASD and 596 control subjects from Taiwan. We also conducted bioinformatic analysis and family study of variants identified in this study.
We detected nine common single nucleotide polymorphisms (SNPs) and sixteen novel missense rare variants in this sample. We found that AA homozygotes of rs2906569 (minor allele G, alternate allele A) at intron 1 (P = 0.003) and CC homozygotes of rs2301963 (minor allele A, alternate allele C) at exon 3 (P = 0.0003) were significantly over-represented in the patient group compared to the controls. We also found no differences in the combined frequency of rare missense variants between the two groups. Some of these rare variants were predicted to have an impact on the function of DLGAP2 using informatics analysis, and the family study revealed most of the rare missense mutations in patients were inherited from their unaffected parents.
We detected some common and rare genetic variants of DLGAP2 that might have implication in the pathogenesis of ASD, but they alone may not be sufficient to lead to clinical phenotypes. We suggest that further genetic or environmental factors in affected patients may be present and determine the clinical manifestations.
Trial registration, NCT00494754
PMCID: PMC3751063  PMID: 23915500
Autism spectrum disorders; DLGAP2; Common variants; Rare variants
10.  Increased gene expression of FOXP1 in patients with autism spectrum disorders 
Molecular Autism  2013;4:23.
Comparative gene expression profiling analysis is useful in discovering differentially expressed genes associated with various diseases, including mental disorders. Autism spectrum disorders (ASD) are a group of complex childhood-onset neurodevelopmental and genetic disorders characterized by deficits in language development and verbal communication, impaired reciprocal social interaction, and the presence of repetitive behaviors or restricted interests. The study aimed to identify novel genes associated with the pathogenesis of ASD.
We conducted comparative total gene expression profiling analysis of lymphoblastoid cell lines (LCL) between 16 male patients with ASD and 16 male control subjects to screen differentially expressed genes associated with ASD. We verified one of the differentially expressed genes, FOXP1, using real-time quantitative PCR (RT-qPCR) in a sample of 83 male patients and 83 male controls that included the initial 16 male patients and male controls, respectively.
A total of 252 differentially expressed probe sets representing 202 genes were detected between the two groups, including 89 up- and 113 downregulated genes in the ASD group. RT-qPCR verified significant elevation of the FOXP1 gene transcript of LCL in a sample of 83 male patients (10.46 ± 11.34) compared with 83 male controls (5.17 ± 8.20, P = 0.001).
Comparative gene expression profiling analysis of LCL is useful in discovering novel genetic markers associated with ASD. Elevated gene expression of FOXP1 might contribute to the pathogenesis of ASD.
Clinical trial registration
Identifier: NCT00494754
PMCID: PMC3723673  PMID: 23815876
Autism; FOXP1; Expression microarray; Genetics; Lymphoblastoid cell line
11.  Methamphetamine Reduces Human Influenza A Virus Replication 
PLoS ONE  2012;7(11):e48335.
Methamphetamine (meth) is a highly addictive psychostimulant that is among the most widely abused illicit drugs, with an estimated over 35 million users in the world. Several lines of evidence suggest that chronic meth abuse is a major factor for increased risk of infections with human immunodeficiency virus and possibly other pathogens, due to its immunosuppressive property. Influenza A virus infections frequently cause epidemics and pandemics of respiratory diseases among human populations. However, little is known about whether meth has the ability to enhance influenza A virus replication, thus increasing severity of influenza illness in meth abusers. Herein, we investigated the effects of meth on influenza A virus replication in human lung epithelial A549 cells. The cells were exposed to meth and infected with human influenza A/WSN/33 (H1N1) virus. The viral progenies were titrated by plaque assays, and the expression of viral proteins and cellular proteins involved in interferon responses was examined by Western blotting and immunofluorescence staining. We report the first evidence that meth significantly reduces, rather than increases, virus propagation and the susceptibility to influenza infection in the human lung epithelial cell line, consistent with a decrease in viral protein synthesis. These effects were apparently not caused by meth’s effects on enhancing virus-induced interferon responses in the host cells, reducing viral biological activities, or reducing cell viability. Our results suggest that meth might not be a great risk factor for influenza A virus infection among meth abusers. Although the underlying mechanism responsible for the action of meth on attenuating virus replication requires further investigation, these findings prompt the study to examine whether other structurally similar compounds could be used as anti-influenza agents.
PMCID: PMC3491060  PMID: 23139774
12.  Identification and functional characterization of rare mutations of the neuroligin-2 gene (NLGN2) associated with schizophrenia 
Human Molecular Genetics  2011;20(15):3042-3051.
Schizophrenia is a severe chronic mental disorder with a high genetic component in its etiology. Several lines of study have suggested that synaptic dysfunction may underlie the pathogenesis of schizophrenia. Neuroligin proteins function as cell-adhesion molecules at post-synaptic membrane and play critical roles in synaptogenesis and synaptic maturation. In this study, we systemically sequenced all the exons and promoter region of neuroligin-2 (NLGN2) gene in a sample of 584 schizophrenia patients and 549 control subjects from Taiwan. In total, we identified 19 genetic variants, including six rare missense mutations such as R215H (one patient), V510M (two patients), R621H (one patient), A637T (two patients), P800L (one patient and one control) and A819S (one patient and one control). In silico analysis predicted that two patient-specific missense mutations, R215H and R621H, had damaging effect, whereas the other missense mutations were benign. Importantly, functional analysis with immunocytochemistry and electrophysiological recordings identified the R215H mutant as a loss-of-function mutant in inducing GABAergic synaptogenesis. Mechanistically, the synaptogenic deficiency of R215H mutant was due to its retention inside the endoplasmic reticulum and inability to be transported to cell membrane. Our study suggests that defects in GABAergic synapse formation in the brain may be an important contributing factor for the onset of schizophrenia. In the family study of this mutation, we found his elder brother also carried this mutation but did not have psychiatric symptoms, indicating that this mutation has incomplete penetrance, and thus the clinical relevance of this mutation should be interpreted with caution.
PMCID: PMC3131045  PMID: 21551456
13.  Correction: Statistical Metamodeling for Revealing Synergistic Antimicrobial Interactions 
PLoS ONE  2011;6(7):10.1371/annotation/d598d976-2604-429b-a76f-14aeca628a8e.
PMCID: PMC3128627
14.  Clinical and molecular characterization of a transmitted reciprocal translocation t(1;12)(p32.1;q21.3) in a family co-segregating with mental retardation, language delay, and microcephaly 
BMC Medical Genetics  2011;12:70.
Chromosome translocation associated with neurodevelopmental disorders provides an opportunity to identify new disease-associated genes and gain new insight into their function. During chromosome analysis, we identified a reciprocal translocation between chromosomes 1p and 12q, t(1; 12)(p32.1; q21.3), co-segregating with microcephaly, language delay, and severe psychomotor retardation in a mother and her two affected boys.
Fluorescence in situ hybridization (FISH), long-range PCR, and direct sequencing were used to map the breakpoints on chromosomes 1p and 12q. A reporter gene assay was conducted in human neuroblastoma (SKNSH) and Chinese hamster ovary (CHO) cell lines to assess the functional implication of the fusion sequences between chromosomes 12 and 1.
We determined both breakpoints at the nucleotide level. Neither breakpoint disrupted any known gene directly. The breakpoint on chromosome 1p was located amid a gene-poor region of ~ 1.1 Mb, while the breakpoint on chromosome 12q was located ~ 3.4 kb downstream of the ALX1 gene, a homeobox gene. In the reporter gene assay, we discovered that the fusion sequences construct between chromosomes 12 and 1 had a ~ 1.5 to 2-fold increased reporter gene activity compared with the corresponding normal chromosome 12 sequences construct.
Our findings imply that the translocation may enhance the expression of the ALX1 gene via the position effect and result in the clinical symptoms of this family. Our findings may also expand the clinical phenotype spectrum of ALX1-related human diseases as loss of the ALX1 function was recently reported to result in abnormal craniofacial development.
PMCID: PMC3125236  PMID: 21595979
15.  Rapid Antimicrobial Susceptibility Testing Using High Surface-to-Volume Ratio Microchannels 
Analytical chemistry  2010;82(3):1012.
This study reports the use of microfluidics, which intrinsically has a large surface-to-volume ratio, toward rapid antimicrobial susceptibility testing at the point of care. By observing the growth of uropathogenic E. coli in gas permeable polymeric microchannels with different dimensions, we demonstrate that the large surface-to-volume ratio of microfluidic systems facilitates rapid growth of bacteria. For microchannels with 250 micrometer or less in depth, the effective oxygenation can sustain the growth of E. coli to over 109 cfu/ml without external agitation or oxygenation, which eliminates the requirement of bulky instrumentation and facilitates rapid bacterial growth for antimicrobial susceptibility testing at the point of care. The applicability of microfluidic rapid antimicrobial susceptibility testing is demonstrated in culture media and in urine with clinical bacterial isolates that have different antimicrobial resistance profiles. The antimicrobial resistance pattern can be determined as rapidly as 2 hours compared to days in standard clinical procedures facilitating diagnostics at the point of care.
PMCID: PMC2821038  PMID: 20055494
16.  Correction: Genetic and Functional Analysis of the DLG4 Gene Encoding the Post-Synaptic Density Protein 95 in Schizophrenia 
PLoS ONE  2010;5(12):10.1371/annotation/8e156c1b-2369-45da-93f7-99701f5935d2.
PMCID: PMC3012827
17.  Genetic and Functional Analysis of the DLG4 Gene Encoding the Post-Synaptic Density Protein 95 in Schizophrenia 
PLoS ONE  2010;5(12):e15107.
Hypofunction of N-methyl-D-aspartate (NMDA) receptor-mediated signal transduction has been implicated in the pathophysiology of schizophrenia. Post-synaptic density protein 95 (PSD95) plays a critical role in regulating the trafficking and activity of the NMDA receptor and altered expression of the PSD95 has been detected in the post-mortem brain of patients with schizophrenia. The study aimed to examine whether the DLG4 gene that encodes the PSD95 may confer genetic susceptibility to schizophrenia. We re-sequenced the core promoter, all the exons, and 3′ untranslated regions (UTR) of the DLG4 gene in 588 Taiwanese schizophrenic patients and conducted an association study with 539 non-psychotic subjects. We did not detect any rare mutations at the protein-coding sequences of the DLG4 gene associated with schizophrenia. Nevertheless, we identified four polymorphic markers at the core promoter and 5′ UTR and one single nucleotide polymorphism (SNP) at the 3′UTR of the DLG4 gene in this sample. Genetic analysis showed an association of a haplotype (C–D) derived from 2 polymorphic markers at the core promoter (odds ratio = 1.26, 95% confidence interval = 1.06–1.51, p = 0.01), and a borderline association of the T allele of the rs13331 at 3′UTR with schizophrenia (odds ratio = 1.19, 95% confidence interval = 0.99–1.43, p = 0.06). Further reporter gene assay showed that the C-D-C-C and the T allele of the rs13331 had significant lower activity than their counter parts. Our data indicate that the expression of the DLG4 gene is subject to regulation by the polymorphic markers at the core promoter region, 5′ and 3′UTR of the gene, and is associated with the susceptibility of schizophrenia.
PMCID: PMC2996301  PMID: 21151988
18.  Statistical Metamodeling for Revealing Synergistic Antimicrobial Interactions 
PLoS ONE  2010;5(11):e15472.
Many bacterial pathogens are becoming drug resistant faster than we can develop new antimicrobials. To address this threat in public health, a metamodel antimicrobial cocktail optimization (MACO) scheme is demonstrated for rapid screening of potent antibiotic cocktails using uropathogenic clinical isolates as model systems. With the MACO scheme, only 18 parallel trials were required to determine a potent antimicrobial cocktail out of hundreds of possible combinations. In particular, trimethoprim and gentamicin were identified to work synergistically for inhibiting the bacterial growth. Sensitivity analysis indicated gentamicin functions as a synergist for trimethoprim, and reduces its minimum inhibitory concentration for 40-fold. Validation study also confirmed that the trimethoprim-gentamicin synergistic cocktail effectively inhibited the growths of multiple strains of uropathogenic clinical isolates. With its effectiveness and simplicity, the MACO scheme possesses the potential to serve as a generic platform for identifying synergistic antimicrobial cocktails toward management of bacterial infection in the future.
PMCID: PMC2988685  PMID: 21124958

Results 1-18 (18)