Search tips
Search criteria

Results 1-25 (49)

Clipboard (0)

Select a Filter Below

more »
Year of Publication
Document Types
1.  Personal history of diabetes, genetic susceptibility to diabetes, and risk of brain glioma: a pooled analysis of observational studies 
Brain glioma is a relatively rare and fatal malignancy in adulthood with few known risk factors. Some observational studies have reported inverse associations between diabetes and subsequent glioma risk, but possible mechanisms are unclear.
We conducted a pooled analysis of original data from five nested case-control studies and two case-control studies from the U.S. and China that included 962 glioma cases and 2,195 controls. We examined self-reported diabetes history in relation to glioma risk, as well as effect modification by seven glioma risk-associated single-nucleotide polymorphisms (SNPs). We also examined the associations between 13 diabetes risk-associated SNPs, identified from genome-wide association studies, and glioma risk. Odds ratios (ORs) and 95% confidence intervals (CIs) were calculated using multivariable-adjusted logistic regression models.
We observed a 42% reduced risk of glioma for individuals with a history of diabetes (OR=0.58, 95% CI: 0.40–0.84). The association did not differ by sex, study design, or after restricting to glioblastoma, the most common histological sub-type. We did not observe any significant per-allele trends among the 13 diabetes-related SNPs examined in relation to glioma risk.
These results support an inverse association between diabetes history and glioma risk. The role of genetic susceptibility to diabetes cannot be excluded, and should be pursued in future studies together with other factors that might be responsible for the diabetes-glioma association.
These data suggest the need for studies that can evaluate, separately, the association between type 1 and type 2 diabetes and subsequent risk of adult glioma.
PMCID: PMC3947107  PMID: 24220915
diabetes mellitus; brain cancer; glioma; cancer; epidemiology
2.  Telomere Length and Risk of Glioma 
Cancer epidemiology  2013;37(6):935-938.
Telomere length in blood or buccal cell DNA has been associated with risk of various cancers. Glioma can be a highly malignant brain tumor and has few known risk factors. Genetic variants in or near RTEL1 and TERT, key components of telomere biology, are associated with glioma risk. Therefore, we evaluated the association between relative telomere length (RTL) and glioma in a prospective study.
Materials and Methods
We performed a nested case-control study within the Prostate, Lung, Colorectal, and Ovarian (PLCO) Cancer Screening Trial. RTL was determined by quantitative PCR on blood or buccal cell DNA obtained at least two years prior to diagnosis from 101 individuals with glioma cases. Healthy controls (n=198) were matched to cases (2:1) on age, gender, smoking status, calendar year, and DNA source. Conditional logistic regression was used to investigate the association between RTL and glioma.
As expected, RTL declined with increasing age in both cases and controls. There was no statistically significant association between RTL and glioma overall. An analysis stratified by gender suggested that short RTL (1st tertile) in males was associated with glioma (odds ratio, [OR] = 2.29, 95% confidence interval [CI] 1.02-5.11); this association was not observed for females (OR=0.41, 95% CI 0.14-1.17).
This prospective study did not identify significant associations between RTL and glioma risk, but there may be gender-specific differences. Larger, prospective studies are needed to evaluate these findings.
PMCID: PMC3933265  PMID: 24231251
Telomere length; glioma; epidemiology; cancer risk
3.  Joint effects between five identified risk variants, allergy, and autoimmune conditions on glioma risk 
Cancer causes & control : CCC  2013;24(10):1885-1891.
Common variants in two of the five genetic regions recently identified from genome-wide association studies (GWAS) of risk of glioma were reported to interact with a history of allergic symptoms. In a pooled analysis of five epidemiologic studies, we evaluated the association between the five GWAS implicated gene variants and allergies and autoimmune conditions (AIC) on glioma risk (851 adult glioma cases and 3,977 controls). We further evaluated the joint effects between allergies and AIC and these gene variants on glioma risk. Risk estimates were calculated as odds ratios (OR) and 95 % confidence intervals (95 % CI), adjusted for age, gender, and study. Joint effects were evaluated by conducting stratified analyses whereby the risk associations (OR and 95 % CI) with the allergy or autoimmune conditions for glioma were evaluated by the presence or absence of the ‘at-risk’ variant, and estimated p interaction by fitting models with the main effects of allergy or autoimmune conditions and genotype and an interaction (product) term between them. Four of the five SNPs previously reported by others were statistically significantly associated with increased risk of glioma in our study (rs2736100, rs4295627, rs4977756, and rs6010620); rs498872 was not associated with glioma in our study. Reporting any allergies or AIC was associated with reduced risks of glioma (allergy: adjusted OR = 0.71, 95 % CI 0.55–0.91; AIC: adjusted OR = 0.65, 95 % CI 0.47–0.90). We did not observe differential association between allergic or autoimmune conditions and glioma by genotype, and there were no statistically significant p interactions. Stratified analysis by glioma grade (low and high grade) did not suggest risk differences by disease grade. Our results do not provide evidence that allergies or AIC modulate the association between the four GWAS-identified SNPs examined and risk of glioma.
PMCID: PMC4074857  PMID: 23903690
Single-nucleotide polymorphisms; Glioma; Allergies; Autoimmune conditions; Gene–environment interaction
4.  Second solid cancers after radiotherapy: a systematic review of the epidemiological studies of the radiation dose-response relationship 
International journal of radiation oncology, biology, physics  2012;86(2):10.1016/j.ijrobp.2012.09.001.
Rapid innovation in radiotherapy techniques has resulted in an urgent need for risk projection models for second cancer risks from high-dose radiation exposure, since direct observation of the late-effects of newer treatments will require patient follow-up for a decade or more. However, the patterns of cancer risk after fractionated high-dose radiation are much less well understood than those after lower-dose exposures (0.1–5 gray (Gy)). In particular, there is uncertainty about the shape of the dose-response curve at high doses, and the magnitude of the second cancer risk per unit dose. We reviewed the available evidence from epidemiologic studies of second solid cancers in organs that received high-dose exposure (>5Gy) from radiotherapy where dose-response curves were estimated from individual organ-specific doses. We included 28 eligible studies with 3,434 second cancer patients across 11 second solid cancers. Overall, there was little evidence that the dose-response curve was non-linear in the direction of a down-turn in risk, even at organ doses of ≥60Gy. Thyroid cancer was the only exception with evidence of a downturn after 20Gy. Generally the excess relative risk per Gy, taking account of age and sex, was 5–10 times lower than the risk from acute exposures of <2Gy among the Japanese atomic bomb survivors. However, the magnitude of the reduction in risk varied according to second cancer. The results from our review provide insights into radiation carcinogenesis from fractionated high-dose exposures, and are generally consistent with current theoretical models. The results can be used to refine the development of second solid cancer risk projection models for novel radiotherapy techniques.
PMCID: PMC3816386  PMID: 23102695
5.  Known glioma risk loci are associated with glioma with a family history of brain tumours - a case-control gene association study 
Familial cancer can be used to leverage genetic association studies. Recent genome-wide association studies have reported independent associations between seven single nucleotide polymorphisms (SNPs) and risk of glioma. The aim of this study was to investigate whether glioma cases with a positive family history of brain tumours, defined as having at least one first or second degree relative with a history of brain tumour, are associated with known glioma risk loci. 1431 glioma cases and 2868 cancer-free controls were identified from four case-control studies and two prospective cohorts from USA, Sweden, and Denmark and genotyped for seven SNPs previously reported to be associated with glioma risk in case-control designed studies. Odds ratios were calculated by unconditional logistic regression. In analyses including glioma cases with a family history of brain tumours (n=104) and control subjects free of glioma at baseline, three out of seven SNPs were associated with glioma risk; rs2736100 (5p15.33, TERT), rs4977756 (9p21.3, CDKN2A-CDKN2B), and rs6010620 (20q13.33, RTEL1). After Bonferroni correction for multiple comparisons, only one marker was statistically significantly associated with glioma risk, rs6010620 (ORtrend for the minor (A) allele, 0.39; 95% CI, 0.25–0.61; Bonferroni adjusted ptrend, 1.7×10−4). In conclusion, as previously shown for glioma regardless of family history of brain tumours, rs6010620 (RTEL1) was associated with an increased risk of glioma when restricting to cases with family history of brain tumours. These findings require confirmation in further studies with a larger number of glioma cases with a family history of brain tumours.
PMCID: PMC3586297  PMID: 23115063
Glioma; brain tumours; genome-wide association study; single nucleotide polymorphism
6.  A Prospective Study of Medical Diagnostic Radiography and Risk of Thyroid Cancer 
American Journal of Epidemiology  2013;177(8):800-809.
Although diagnostic x-ray procedures provide important medical benefits, cancer risks associated with their exposure are also possible, but not well characterized. The US Radiologic Technologists Study (1983–2006) is a nationwide, prospective cohort study with extensive questionnaire data on history of personal diagnostic imaging procedures collected prior to cancer diagnosis. We used Cox proportional hazard regressions to estimate thyroid cancer risks related to the number and type of selected procedures. We assessed potential modifying effects of age and calendar year of the first x-ray procedure in each category of procedures. Incident thyroid cancers (n = 251) were diagnosed among 75,494 technologists (1.3 million person-years; mean follow-up = 17 years). Overall, there was no clear evidence of thyroid cancer risk associated with diagnostic x-rays except for dental x-rays. We observed a 13% increase in thyroid cancer risk for every 10 reported dental radiographs (hazard ratio = 1.13, 95% confidence interval: 1.01, 1.26), which was driven by dental x-rays first received before 1970, but we found no evidence that the relationship between dental x-rays and thyroid cancer was associated with childhood or adolescent exposures as would have been anticipated. The lack of association of thyroid cancer with x-ray procedures that expose the thyroid to higher radiation doses than do dental x-rays underscores the need to conduct a detailed radiation exposure assessment to enable quantitative evaluation of risk.
PMCID: PMC3668423  PMID: 23529772
radiation; radiography; thyroid gland; thyroid neoplasms; x-rays
7.  Nucleotide excision repair polymorphisms may modify ionizing radiation-related breast cancer risk in US radiologic technologists 
Exposure to ionizing radiation has been consistently associated with increased risk of female breast cancer. Although the majority of DNA damage caused by ionizing radiation is corrected by the base-excision repair pathway, certain types of multiple-base damage can only be repaired through the nucleotide excision repair pathway. In a nested case–control study of breast cancer in US radiologic technologists exposed to low levels of ionizing radiation (858 cases, 1,083 controls), we examined whether risk of breast cancer conferred by radiation was modified by nucleotide excision gene polymorphisms ERCC2 (XPD) rs13181, ERCC4 (XPF) rs1800067 and rs1800124, ERCC5 (XPG) rs1047769 and rs17655; and ERCC6 rs2228526. Of the 6 ERCC variants examined, only ERCC5 rs17655 showed a borderline main effect association with breast cancer risk (ORGC = 1.1, ORCC = 1.3; p-trend = 0.08), with some indication that individuals carrying the C allele variant were more susceptible to the effects of occupational radiation (EOR/GyGG = 1.0, 95% CI = <0, 6.0; EOR/GyGC/CC = 5.9, 95% CI = 0.9, 14.4; phet = 0.10). ERCC2 rs13181, although not associated with breast cancer risk overall, statistically significantly modified the effect of occupational radiation dose on risk of breast cancer (EOR/GyAA = 9.1, 95% CI = 2.1–21.3; EOR/GyAC/CC = 0.6, 95% CI = <0, 4.6; phet = 0.01). These results suggest that common variants in nucleotide excision repair genes may modify the association between occupational radiation exposure and breast cancer risk.
PMCID: PMC3984912  PMID: 18767034
8.  Occupational Exposure to Pesticides and Risk of Adult Brain Tumors 
American journal of epidemiology  2008;167(8):976-985.
The authors examined incident glioma and meningioma risk associated with occupational exposure to insecticides and herbicides in a hospital-based, case-control study of brain cancer. Cases were 462 glioma and 195 meningioma patients diagnosed between 1994 and 1998 in three US hospitals. Controls were 765 patients admitted to the same hospitals for nonmalignant conditions. Occupational histories were collected during personal interviews. Exposure to pesticides was estimated by use of a questionnaire, combined with pesticide measurement data abstracted from published sources. Using logistic regression models, the authors found no association between insecticide and herbicide exposures and risk for glioma and meningioma. There was no association between glioma and exposure to insecticides or herbicides, in men or women. Women who reported ever using herbicides had a significantly increased risk for meningioma compared with women who never used herbicides (odds ratio = 2.4, 95% confidence interval: 1.4, 4.3), and there were significant trends of increasing risk with increasing years of herbicide exposure (p = 0.01) and increasing cumulative exposure (p = 0.01). There was no association between meningioma and herbicide or insecticide exposure among men. These findings highlight the need to go beyond job title to elucidate potential carcinogenic exposures within different occupations.
PMCID: PMC3967588  PMID: 18299277
9.  Blood Lead Levels, ALAD Gene Polymorphisms, and Mortality 
Epidemiology (Cambridge, Mass.)  2011;22(2):273-278.
Previous analyses from the National Health and Nutrition Examination Survey (NHANES III) have found that elevated blood lead levels may be associated with cardiovascular mortality, cancer mortality, and all-cause mortality. The 5-aminolevulinic acid dehydratase (ALAD) G177C genetic polymorphism (rs 1800435) affects lead toxicokinetics and may alter the adverse effects of lead exposure. We examined whether the ALAD G177C single nucleotide polymorphism (SNP) affects the relationship between lead and mortality.
We analyzed a subset of 3349 genotyped NHANES III participants at least 40 years of age. Using Cox proportional hazards regression, we estimated the relative risk of all-cause, cardiovascular disease, and cancer mortality by ALAD genotype, and by blood lead levels (<5 μg/dL vs. ≥5 μg/dL). We also tested whether the ALAD genotype modified the relationship between blood lead level and mortality.
The adjusted overall relative risk for participants with the variant ALADCG/CC genotype was decreased for all-cause mortality (hazards ratio = 0.68; [95% confidence interval = 0.50–0.93]) compared with persons having the common GG genotype. There was some suggestion that higher lead levels were associated with cancer mortality (1.48 [0.92–2.38]). We observed no convincing interaction effect between ALAD genotype and blood lead level on mortality risk.
The ALADCG/CC genotype may be associated with decreased mortality from all causes and from cancer. This association does not seem to be affected by lead exposure.
PMCID: PMC3932657  PMID: 21293208
10.  A role for XRCC2 gene polymorphisms in breast cancer risk and survival 
Journal of medical genetics  2011;48(7):477-484.
The XRCC2 gene is a key mediator in the homologous recombination repair of DNA double strand breaks. We hypothesised that inherited variants in the XRCC2 gene might also affect susceptibility to, and survival from, breast cancer.
We genotyped 12 XRCC2 tagging SNPs in 1,131 breast cancer cases and 1,148 controls from the Sheffield Breast Cancer Study (SBCS), and examined their associations with breast cancer risk and survival by estimating odds ratios (ORs) and hazard ratios (HRs), and their corresponding 95% confidence intervals (CIs). Positive findings were further investigated in 860 cases and 869 controls from the Utah Breast Cancer Study (UBCS) and jointly analysed together with available published data for breast cancer risk. The survival findings were further confirmed in studies (8,074 cases) from the Breast Cancer Association Consortium (BCAC).
The most significant association with breast cancer risk in the SBCS dataset was the XRCC2 rs3218408 SNP (recessive model p=2.3×10−4, MAF=0.23). This SNP yielded an ORrec (95% CI) of 1.64 (1.25–2.16) in a two-site analysis of SBCS and UBCS, and a meta-ORrec (95% CI) of 1.33 (1.12–1.57) when all published data were included. This SNP may mark a rare risk haplotype carried by 2 in 1000 of the control population. Furthermore, the XRCC2 coding R188H SNP (rs3218536, MAF=0.08) was significantly associated with poor survival, with an increased per-allele HR (95% CI) of 1.58 (1.01–2.49) in a multivariate analysis. This effect was still evident in a pooled meta-analysis of 8,781 breast cancer patients from the BCAC [HR (95% CI) of 1.19 (1.05–1.36), p=0.01].
Our findings suggest that XRCC2 SNPs may influence breast cancer risk and survival.
PMCID: PMC3932658  PMID: 21632523
Single nucleotide polymorphism; XRCC2; breast cancer risk; breast cancer survival
11.  Sunlight and Other Determinants of Circulating 25-Hydroxyvitamin D Levels in Black and White Participants in a Nationwide US Study 
American Journal of Epidemiology  2013;177(2):180-192.
Circulating 25-hydroxyvitamin D (25(OH)D), a marker for vitamin D status, is associated with bone health and possibly cancers and other diseases; yet, the determinants of 25(OH)D status, particularly ultraviolet radiation (UVR) exposure, are poorly understood. Determinants of 25(OH)D were analyzed in a subcohort of 1,500 participants of the US Radiologic Technologists (USRT) Study that included whites (n = 842), blacks (n = 646), and people of other races/ethnicities (n = 12). Participants were recruited monthly (2008–2009) across age, sex, race, and ambient UVR level groups. Questionnaires addressing UVR and other exposures were generally completed within 9 days of blood collection. The relation between potential determinants and 25(OH)D levels was examined through regression analysis in a random two-thirds sample and validated in the remaining one third. In the regression model for the full study population, age, race, body mass index, some seasons, hours outdoors being physically active, and vitamin D supplement use were associated with 25(OH)D levels. In whites, generally, the same factors were explanatory. In blacks, only age and vitamin D supplement use predicted 25(OH)D concentrations. In the full population, determinants accounted for 25% of circulating 25(OH)D variability, with similar correlations for subgroups. Despite detailed data on UVR and other factors near the time of blood collection, the ability to explain 25(OH)D was modest.
PMCID: PMC3590034  PMID: 23292956
dietary supplements; 25-hydroxyvitamin D; race; seasons; sex; sunlight; ultraviolet rays; vitamin D
12.  Basal cell carcinoma and anthropometric factors in the U.S. Radiologic Technologists Cohort Study 
Basal cell carcinoma (BCC) is the most common cancer in Caucasian populations. Although several risk factors are well-established, including ultraviolet radiation (UVR) sensitivity and exposure, few studies have examined anthropometric measures and BCC. Using Cox proportional hazards regression analysis, we prospectively investigated the relationship between height, weight, and body mass index (BMI) and BCC in 58,213 Caucasian participants (11,631 men and 46,582 women) from the United States Radiological Technologists cohort. This analysis was limited to participants who were cancer-free at baseline. The baseline questionnaire provided self-reported anthropometric factors and the subsequent questionnaire collected skin cancer susceptibility factors, lifetime UVR exposure derived from residential and personal UVR exposure (time outdoors), and health outcomes. During 509,465 person-years of follow-up, we identified 2,291 BCC cases (486 men; 1,805 women). BCC risk increased with increasing height, and decreased with increasing weight and BMI in both sexes, even after adjusting for UVR susceptibility factors and exposures. For BMI categories: <25 (reference); 25–<30; 30–<35; and ≥ 35 kg/m2, multivariate hazard ratios (HR) in women were: 1.00; 0.74 (95% CI=0.66–0.83); 0.67 (0.56–0.81); and 0.57 (0.44–0.74) respectively, p-trend ≤0.0001. Risks were similar in men. The inverse association between BMI and BCC was unaffected by controlling for sun-related exposures. Nevertheless, it may at least partly reflect residual UVR confounding. Further research with more detailed sun exposure data, including clothing patterns, would help clarify the relationship between BMI and BCC.
PMCID: PMC3873091  PMID: 21989791
Basal cell carcinoma; weight; height; body mass index
13.  Occupational exposure to chlorinated solvents and risks of glioma and meningioma in adults 
Occupational and environmental medicine  2012;69(11):10.1136/oemed-2012-100742.
Chlorinated solvents are classified as probable or possible carcinogens. It is unknown whether exposure to these agents increases the risk of malignant or benign brain tumors. Our objective was to evaluate associations of brain tumor risk with occupational exposure to six chlorinated solvents [i.e., dichloromethane, chloroform, carbon tetrachloride, 1,1,1-trichloroethane, trichloroethylene, and perchloroethylene].
489 glioma cases, 197 meningioma cases, and 799 controls were enrolled in a hospital-based case-control study conducted at three U.S. hospitals in Arizona, Massachusetts and Pennsylvania. Information about occupational history was obtained through a detailed in-person interview that included job-specific modules of questions such that the interview was tailored to each individual’s particular work history. An industrial hygienist assessed potential solvent exposure based on this information and an exhaustive review of the relevant industrial hygiene literature. Unconditional logistic regression models were used to calculate odds ratios (OR) and 95% confidence intervals (95%CI) for each solvent for ever/never, duration, cumulative, average weekly, and highest exposure.
Overall, we found no consistent evidence of an increased risk of glioma or meningioma related to occupational exposure to the six chlorinated solvents evaluated. There was some suggestion of an association between carbon tetrachloride and glioma in analyses restricted to exposed subjects, with average weekly exposure above the median associated with increased risk compared to below-median exposure (OR=7.1, 95%CI: 1.1, 45.2).
We found no consistent evidence for increased brain tumor risk related to chlorinated solvents.
PMCID: PMC3850418  PMID: 22864249
epidemiology; cancer; solvents
14.  Comparison of occupational exposure assessment methods in a case-control study of lead, genetic susceptibility and risk of adult brain tumors 
Occupational and environmental medicine  2010;68(1):10.1136/oem.2009.048132.
There is great interest in evaluating gene-environment interactions with chemical exposures, but exposure assessment poses a unique challenge in case-control studies. Expert assessment of detailed work history data is usually considered the best approach, but it is a laborious and time-consuming process. We set out to determine if a less intensive method of exposure assessment (a job exposure matrix [JEM]) would produce similar results to a previous analysis that found evidence of effect modification between expert assessed-lead exposure and risk of brain tumors by a single nucleotide polymorphism in the ALAD gene (rs1800435).
We used data from a study of 355 patients with glioma, 151 patients with meningioma and 505 controls. Logistic regression models were used to examine associations between brain tumor risk and lead exposure and effect modification by genotype. We evaluated Cohen’s kappa, sensitivity and specificity for the JEM compared to the expert-assessed exposure metrics.
Although effect estimates were imprecise and driven by a small number of cases, we found evidence of effect modification between lead exposure and ALAD genotype when using expert- but not JEM-derived lead exposure estimates. Kappa values indicated only modest agreement (< 0.5) for the exposure metrics, with the JEM indicating high specificity (~0.9) but poor sensitivity (~0.5). Disagreement between the two methods was generally due to having additional information in the detailed work history.
These results provide preliminary evidence suggesting that high quality exposure data are likely to improve the ability to detect genetic effect modification.
PMCID: PMC3828743  PMID: 20798009
15.  RadRAT: A Radiation Risk Assessment Tool for Lifetime Cancer Risk Projection 
Risk projection methods allow for timely assessment of the potential magnitude of radiation-related cancer risks following low-dose radiation exposures. To estimate such risks directly through observational studies would generally require infeasibly large studies and long-term follow-up to achieve reasonable statistical power. We developed an online radiation risk assessment tool (RadRAT) which can be used to estimate the lifetime risk of radiation-related cancer with uncertainty intervals following a user-specified exposure history ( The uncertainty intervals are a key component of the program because of the various assumptions that are involved in such calculations. The risk models used in RadRAT are broadly based on those developed by the BEIR VII committee for estimating lifetime risk following low-dose radiation exposure to the U.S. population for eleven site-specific cancers. We developed new risk models for seven additional cancer sites: oral, esophagus, gallbladder, pancreas, rectum, kidney and brain/central nervous system (CNS) cancers using data from the Japanese atomic bomb survivors. The lifetime risk estimates are slightly higher for RadRAT than for BEIR VII across all exposure ages mostly because the weighting of the excess relative risk and excess absolute risk models was conducted on an arithmetic rather than a logarithmic scale. The calculator can be used to estimate lifetime cancer risk from both uniform and non-uniform doses that are acute or chronic. It is most appropriate for low-LET radiation doses <1Gy, and for individuals with life-expectancy and cancer rates similar to the general population in the U.S.
PMCID: PMC3816370  PMID: 22810503
16.  Ionizing radiation and the risk of brain and central nervous system tumors: a systematic review 
Neuro-Oncology  2012;14(11):1316-1324.
Although exposure to moderate-to-high doses of ionizing radiation is the only established environmental risk factor for brain and CNS tumors, it is not clear whether this relationship differs across tumor subtypes, by sex or age at exposure, or at the low-to-moderate range of exposure. This systematic review summarizes the epidemiologic evidence on the association between ionizing radiation exposure and risk of brain/CNS tumors. Articles included in this review estimated radiation exposure doses to the brain and reported excess relative risk (ERR) estimates for brain/CNS tumors. Eight cohorts were eligible for inclusion in the analysis. Average age at exposure ranged from 8 months to 26 years. Mean dose to the brain ranged from 0.07 to 10 Gy. Elevated risks for brain/CNS tumors were consistently observed in relation to ionizing radiation exposure, but the strength of this association varied across cohorts. Generally, ionizing radiation was more strongly associated with risk for meningioma compared with glioma. The positive association between ionizing radiation exposure and risk for glioma was stronger for younger vs older ages at exposure. We did not observe an effect modification on the risk for meningioma by sex, age at exposure, time since exposure, or attained age. The etiologic role of ionizing radiation in the development of brain/CNS tumors needs to be clarified further through additional studies that quantify the association between ionizing radiation and risk for brain/CNS tumors at low-to-moderate doses, examine risks across tumor subtypes, and account for potential effect modifiers.
PMCID: PMC3480263  PMID: 22952197
brain cancer; brain tumors; glioma; ionizing radiation; meningioma
17.  Genome-wide Association Study of Glioma and Meta-Analysis 
Human genetics  2012;131(12):1877-1888.
Gliomas account for approximately 80% of all primary malignant brain tumors, and despite improvements in clinical care over the last 20 years remain among the most lethal tumors, underscoring the need for gaining new insights that could translate into clinical advances. Recent genome-wide association studies (GWAS) have identified seven new susceptibility regions. We conducted a new independent GWAS of glioma using 1,856 cases and 4,955 controls (from 14 cohort studies, 3 casecontrol studies, and 1 population-based case only study) and found evidence of strong replication for three of the seven previously reported associations at 20q13.33 (RTEL), 5p15.33 (TERT), and 9p21.3 (CDKN2BAS), and consistent association signals for the remaining four at 7p11.2 (EGFR both loci), 8q24.21 (CCDC26) and 11q23.3 (PHLDB1). The direction and magnitude of the signal were consistent for samples from cohort and case-control studies, but the strength of the association was more pronounced for loci rs6010620 (20q,13.33; RTEL) and rs2736100 (5p15.33, TERT) in cohort studies despite the smaller number of cases in this group, likely due to relatively more higher grade tumors being captured in the cohort studies. We further examined the 85 most promising single nucleotide polymorphism (SNP) markers identified in our study in three replication sets (5,015 cases and 11,601 controls), but no new markers reached genome-wide significance. Our findings suggest that larger studies focusing on novel approaches as well as specific tumor subtypes or subgroups will be required to identify additional common susceptibility loci for glioma risk.
PMCID: PMC3761216  PMID: 22886559
18.  The role of genetic breast cancer susceptibility variants as prognostic factors 
Fasching, Peter A. | Pharoah, Paul D.P. | Cox, Angela | Nevanlinna, Heli | Bojesen, Stig E. | Karn, Thomas | Broeks, Annegien | van Leeuwen, Flora E. | van 't Veer, Laura J. | Udo, Renate | Dunning, Alison M. | Greco, Dario | Aittomäki, Kristiina | Blomqvist, Carl | Shah, Mitul | Nordestgaard, Børge G. | Flyger, Henrik | Hopper, John L. | Southey, Melissa C. | Apicella, Carmel | Garcia-Closas, Montserrat | Sherman, Mark | Lissowska, Jolanta | Seynaeve, Caroline | Huijts, Petra E.A. | Tollenaar, Rob A.E.M. | Ziogas, Argyrios | Ekici, Arif B. | Rauh, Claudia | Mannermaa, Arto | Kataja, Vesa | Kosma, Veli-Matti | Hartikainen, Jaana M. | Andrulis, Irene L. | Ozcelik, Hilmi | Mulligan, Anna-Marie | Glendon, Gord | Hall, Per | Czene, Kamila | Liu, Jianjun | Chang-Claude, Jenny | Wang-Gohrke, Shan | Eilber, Ursula | Nickels, Stefan | Dörk, Thilo | Schiekel, Maria | Bremer, Michael | Park-Simon, Tjoung-Won | Giles, Graham G. | Severi, Gianluca | Baglietto, Laura | Hooning, Maartje J. | Martens, John W.M. | Jager, Agnes | Kriege, Mieke | Lindblom, Annika | Margolin, Sara | Couch, Fergus J. | Stevens, Kristen N. | Olson, Janet E. | Kosel, Matthew | Cross, Simon S. | Balasubramanian, Sabapathy P. | Reed, Malcolm W.R. | Miron, Alexander | John, Esther M. | Winqvist, Robert | Pylkäs, Katri | Jukkola-Vuorinen, Arja | Kauppila, Saila | Burwinkel, Barbara | Marme, Frederik | Schneeweiss, Andreas | Sohn, Christof | Chenevix-Trench, Georgia | Lambrechts, Diether | Dieudonne, Anne-Sophie | Hatse, Sigrid | van Limbergen, Erik | Benitez, Javier | Milne, Roger L. | Zamora, M. Pilar | Pérez, José Ignacio Arias | Bonanni, Bernardo | Peissel, Bernard | Loris, Bernard | Peterlongo, Paolo | Rajaraman, Preetha | Schonfeld, Sara J. | Anton-Culver, Hoda | Devilee, Peter | Beckmann, Matthias W. | Slamon, Dennis J. | Phillips, Kelly-Anne | Figueroa, Jonine D. | Humphreys, Manjeet K. | Easton, Douglas F. | Schmidt, Marjanka K.
Human Molecular Genetics  2012;21(17):3926-3939.
Recent genome-wide association studies identified 11 single nucleotide polymorphisms (SNPs) associated with breast cancer (BC) risk. We investigated these and 62 other SNPs for their prognostic relevance. Confirmed BC risk SNPs rs17468277 (CASP8), rs1982073 (TGFB1), rs2981582 (FGFR2), rs13281615 (8q24), rs3817198 (LSP1), rs889312 (MAP3K1), rs3803662 (TOX3), rs13387042 (2q35), rs4973768 (SLC4A7), rs6504950 (COX11) and rs10941679 (5p12) were genotyped for 25 853 BC patients with the available follow-up; 62 other SNPs, which have been suggested as BC risk SNPs by a GWAS or as candidate SNPs from individual studies, were genotyped for replication purposes in subsets of these patients. Cox proportional hazard models were used to test the association of these SNPs with overall survival (OS) and BC-specific survival (BCS). For the confirmed loci, we performed an accessory analysis of publicly available gene expression data and the prognosis in a different patient group. One of the 11 SNPs, rs3803662 (TOX3) and none of the 62 candidate/GWAS SNPs were associated with OS and/or BCS at P<0.01. The genotypic-specific survival for rs3803662 suggested a recessive mode of action [hazard ratio (HR) of rare homozygous carriers=1.21; 95% CI: 1.09–1.35, P=0.0002 and HR=1.29; 95% CI: 1.12–1.47, P=0.0003 for OS and BCS, respectively]. This association was seen similarly in all analyzed tumor subgroups defined by nodal status, tumor size, grade and estrogen receptor. Breast tumor expression of these genes was not associated with prognosis. With the exception of rs3803662 (TOX3), there was no evidence that any of the SNPs associated with BC susceptibility were associated with the BC survival. Survival may be influenced by a distinct set of germline variants from those influencing susceptibility.
PMCID: PMC3412377  PMID: 22532573
19.  Risk Factors Associated with Secondary Sarcomas in Childhood Cancer Survivors: A Report from the Childhood Cancer Survivor Study 
Childhood cancer survivors have an increased risk of secondary sarcomas. To better identify those at risk, the relationship between therapeutic dose of chemotherapy and radiation and secondary sarcoma should be quantified.
Methods and Materials
We conducted a nested case-control study of secondary sarcomas (105 cases, 422 matched controls) in a cohort of 14,372 childhood cancer survivors. Radiation dose at the second malignant neoplasm (SMN) site and use of chemotherapy were estimated from detailed review of medical records. Odds ratios (ORs) and 95% confidence intervals were estimated by conditional logistic regression. Excess odds ratio (EOR) was modeled as a function of radiation dose, chemotherapy, and host factors.
Sarcomas occurred a median of 11.8 years (range: 5.3-31.3 years) from original diagnosis. Any exposure to radiation was associated with increased risk of subsequent sarcoma (OR = 4.1, 95% CI = 1.8-9.5). A dose-response relation was observed, with elevated risks at doses between 10 - 29.9 Gy (OR = 15.6, 95% CI = 4.5-53.9), 30 - 49.9 Gy (OR = 16.0, 95% CI 3.8-67.8) and >50 Gy (OR = 114.1, 95% CI 13.5-964.8). Anthracycline exposure was associated with sarcoma risk (OR = 3.5, 95% CI = 1.6-7.7) adjusting for radiation dose, other chemotherapy, and primary cancer. Adjusting for treatment, survivors with a first diagnosis of Hodgkin lymphoma (HL; OR=10.7, 95% CI = 3.1-37.4) or primary sarcoma (OR=8.4, 95% CI = 3.2-22.3) were more likely to develop a sarcoma.
Of the risk factors evaluated, radiation exposure was the most important for secondary sarcoma development in childhood cancer survivors; anthracycline chemotherapy exposure was also associated with increased risk.
PMCID: PMC3423483  PMID: 22795729
Childhood cancer survivors; secondary sarcomas; radiation late effects
20.  Insight in glioma susceptibility through an analysis of 6p22.3, 12p13.33-12.1, 17q22-23.2 and 18q23 SNP genotypes in familial and non-familial glioma 
Human genetics  2012;131(9):1507-1517.
The risk of glioma has consistently been shown to be increased two-fold in relatives of patients with primary brain tumors (PBT). A recent genome-wide linkage study of glioma families provided evidence for a disease locus on 17q12-21.32, with the possibility of four additional risk loci at 6p22.3, 12p13.33-12.1, 17q22-23.2, and 18q23.
To identify the underlying genetic variants responsible for the linkage signals, we compared the genotype frequencies of 5,122 SNPs mapping to these five regions in 88 glioma cases with and 1,100 cases without a family history of PBT (discovery study). An additional series of 84 familial and 903 non-familial cases were used to replicate associations.
In the discovery study, 12 SNPs showed significant associations with family history of PBT (P < 0.001). In the replication study, two of the 12 SNPs were confirmed: 12p13.33-12.1 PRMT8 rs17780102 (P = 0.031) and 17q12-21.32 SPOP rs650461 (P = 0.025). In the combined analysis of discovery and replication studies, the strongest associations were attained at four SNPs: 12p13.33-12.1 PRMT8 rs17780102 (P = 0.0001), SOX5 rs7305773 (P = 0.0001) and STKY1 rs2418087 (P = 0.0003), and 17q12-21.32 SPOP rs6504618 (P = 0.0006). Further, a significant gene-dosage effect was found for increased risk of family history of PBT with these four SNPs in the combined data set (Ptrend < 1.0 ×10−8).
The results support the linkage finding that some loci in the 12p13.33-12.1 and 17q12-q21.32 may contribute to gliomagenesis and suggest potential target genes underscoring linkage signals.
PMCID: PMC3604903  PMID: 22688887
Association; Polymorphisms; Glioma; Family history of primary brain tumor; Linkage analysis
21.  Cancer Risks Associated with External Radiation From Diagnostic Imaging Procedures 
CA: a cancer journal for clinicians  2012;10.3322/caac.21132.
The 600% increase in medical radiation exposure to the US population since 1980 has provided immense benefit, but potential future cancer risks to patients. Most of the increase is from diagnostic radiologic procedures. The objectives of this review are to summarize epidemiologic data on cancer risks associated with diagnostic procedures, describe how exposures from recent diagnostic procedures relate to radiation levels linked with cancer occurrence, and propose a framework of strategies to reduce radiation from diagnostic imaging in patients. We briefly review radiation dose definitions, mechanisms of radiation carcinogenesis, key epidemiologic studies of medical and other radiation sources and cancer risks, and dose trends from diagnostic procedures. We describe cancer risks from experimental studies, future projected risks from current imaging procedures, and the potential for higher risks in genetically susceptible populations. To reduce future projected cancers from diagnostic procedures, we advocate widespread use of evidence-based appropriateness criteria for decisions about imaging procedures, oversight of equipment to deliver reliably the minimum radiation required to attain clinical objectives, development of electronic lifetime records of imaging procedures for patients and their physicians, and commitment by medical training programs, professional societies, and radiation protection organizations to educate all stakeholders in reducing radiation from diagnostic procedures.
PMCID: PMC3548988  PMID: 22307864
22.  Association between adult height, genetic susceptibility and risk of glioma 
Background Some, but not all, observational studies have suggested that taller stature is associated with a significant increased risk of glioma. In a pooled analysis of observational studies, we investigated the strength and consistency of this association, overall and for major sub-types, and investigated effect modification by genetic susceptibility to the disease.
Methods We standardized and combined individual-level data on 1354 cases and 4734 control subjects from 13 prospective and 2 case–control studies. Pooled odds ratios (ORs) and 95% confidence intervals (CIs) for glioma and glioma sub-types were estimated using logistic regression models stratified by sex and adjusted for birth cohort and study. Pooled ORs were additionally estimated after stratifying the models according to seven recently identified glioma-related genetic variants.
Results Among men, we found a positive association between height and glioma risk (≥190 vs 170–174 cm, pooled OR = 1.70, 95% CI: 1.11–2.61; P-trend = 0.01), which was slightly stronger after restricting to cases with glioblastoma (pooled OR = 1.99, 95% CI: 1.17–3.38; P-trend = 0.02). Among women, these associations were less clear (≥175 vs 160–164 cm, pooled OR for glioma = 1.06, 95% CI: 0.70–1.62; P-trend = 0.22; pooled OR for glioblastoma = 1.36, 95% CI: 0.77–2.39; P-trend = 0.04). In general, we did not observe evidence of effect modification by glioma-related genotypes on the association between height and glioma risk.
Conclusion An association of taller adult stature with glioma, particularly for men and stronger for glioblastoma, should be investigated further to clarify the role of environmental and genetic determinants of height in the etiology of this disease.
PMCID: PMC3429876  PMID: 22933650
Height; brain cancer; glioma; cancer; epidemiology
23.  Evidence of Gene–Environment Interactions between Common Breast Cancer Susceptibility Loci and Established Environmental Risk Factors 
Nickels, Stefan | Truong, Thérèse | Hein, Rebecca | Stevens, Kristen | Buck, Katharina | Behrens, Sabine | Eilber, Ursula | Schmidt, Martina | Häberle, Lothar | Vrieling, Alina | Gaudet, Mia | Figueroa, Jonine | Schoof, Nils | Spurdle, Amanda B. | Rudolph, Anja | Fasching, Peter A. | Hopper, John L. | Makalic, Enes | Schmidt, Daniel F. | Southey, Melissa C. | Beckmann, Matthias W. | Ekici, Arif B. | Fletcher, Olivia | Gibson, Lorna | dos Santos Silva, Isabel | Peto, Julian | Humphreys, Manjeet K. | Wang, Jean | Cordina-Duverger, Emilie | Menegaux, Florence | Nordestgaard, Børge G. | Bojesen, Stig E. | Lanng, Charlotte | Anton-Culver, Hoda | Ziogas, Argyrios | Bernstein, Leslie | Clarke, Christina A. | Brenner, Hermann | Müller, Heiko | Arndt, Volker | Stegmaier, Christa | Brauch, Hiltrud | Brüning, Thomas | Harth, Volker | The GENICA Network,  | Mannermaa, Arto | Kataja, Vesa | Kosma, Veli-Matti | Hartikainen, Jaana M. | kConFab,  | Group, AOCS Management | Lambrechts, Diether | Smeets, Dominiek | Neven, Patrick | Paridaens, Robert | Flesch-Janys, Dieter | Obi, Nadia | Wang-Gohrke, Shan | Couch, Fergus J. | Olson, Janet E. | Vachon, Celine M. | Giles, Graham G. | Severi, Gianluca | Baglietto, Laura | Offit, Kenneth | John, Esther M. | Miron, Alexander | Andrulis, Irene L. | Knight, Julia A. | Glendon, Gord | Mulligan, Anna Marie | Chanock, Stephen J. | Lissowska, Jolanta | Liu, Jianjun | Cox, Angela | Cramp, Helen | Connley, Dan | Balasubramanian, Sabapathy | Dunning, Alison M. | Shah, Mitul | Trentham-Dietz, Amy | Newcomb, Polly | Titus, Linda | Egan, Kathleen | Cahoon, Elizabeth K. | Rajaraman, Preetha | Sigurdson, Alice J. | Doody, Michele M. | Guénel, Pascal | Pharoah, Paul D. P. | Schmidt, Marjanka K. | Hall, Per | Easton, Doug F. | Garcia-Closas, Montserrat | Milne, Roger L. | Chang-Claude, Jenny
PLoS Genetics  2013;9(3):e1003284.
Various common genetic susceptibility loci have been identified for breast cancer; however, it is unclear how they combine with lifestyle/environmental risk factors to influence risk. We undertook an international collaborative study to assess gene-environment interaction for risk of breast cancer. Data from 24 studies of the Breast Cancer Association Consortium were pooled. Using up to 34,793 invasive breast cancers and 41,099 controls, we examined whether the relative risks associated with 23 single nucleotide polymorphisms were modified by 10 established environmental risk factors (age at menarche, parity, breastfeeding, body mass index, height, oral contraceptive use, menopausal hormone therapy use, alcohol consumption, cigarette smoking, physical activity) in women of European ancestry. We used logistic regression models stratified by study and adjusted for age and performed likelihood ratio tests to assess gene–environment interactions. All statistical tests were two-sided. We replicated previously reported potential interactions between LSP1-rs3817198 and parity (Pinteraction = 2.4×10−6) and between CASP8-rs17468277 and alcohol consumption (Pinteraction = 3.1×10−4). Overall, the per-allele odds ratio (95% confidence interval) for LSP1-rs3817198 was 1.08 (1.01–1.16) in nulliparous women and ranged from 1.03 (0.96–1.10) in parous women with one birth to 1.26 (1.16–1.37) in women with at least four births. For CASP8-rs17468277, the per-allele OR was 0.91 (0.85–0.98) in those with an alcohol intake of <20 g/day and 1.45 (1.14–1.85) in those who drank ≥20 g/day. Additionally, interaction was found between 1p11.2-rs11249433 and ever being parous (Pinteraction = 5.3×10−5), with a per-allele OR of 1.14 (1.11–1.17) in parous women and 0.98 (0.92–1.05) in nulliparous women. These data provide first strong evidence that the risk of breast cancer associated with some common genetic variants may vary with environmental risk factors.
Author Summary
Breast cancer involves combined effects of numerous genetic, environmental, and behavioral risk factors that are unique to each individual. High risk genes, such as BRCA1 and BRCA2, account for only a small proportion of disease occurrence. Recent genome-wide research has identified more than 20 common genetic variants, which individually alter breast cancer risk very moderately. We undertook an international collaborative study to determine whether the effect of these genetic variants vary with environmental factors, such as parity, body mass index (BMI), height, oral contraceptive use, menopausal hormone therapy use, alcohol consumption, cigarette smoking, and physical activity, which are known to affect risk of developing breast cancer. Using pooled data from 24 studies of the Breast Cancer Association Consortium (BCAC), we provide first convincing evidence that the breast cancer risk associated with a genetic variant in LSP1 differs with the number of births and that the risk associated with a CASP8 variant is altered by high alcohol consumption. The effect of an additional genetic variant might also be modified by reproductive factors. This knowledge will stimulate new research towards a better understanding of breast cancer development.
PMCID: PMC3609648  PMID: 23544014
24.  Common Genetic Variants in Sex Hormone Pathway Genes and Papillary Thyroid Cancer Risk 
Thyroid  2012;22(2):151-156.
Hormonal differences are hypothesized to contribute to the approximately ≥2-fold higher thyroid cancer incidence rates among women compared with men worldwide. Although thyroid cancer cells express estrogen receptors and estrogen has a proliferative effect on papillary thyroid cancer (PTC) cells in vitro, epidemiologic studies have not found clear associations between thyroid cancer and female hormonal factors. We hypothesized that polymorphic variation in hormone pathway genes is associated with the risk of developing papillary thyroid cancer.
We evaluated the association between PTC and 1151 tag single nucleotide polymorphisms (SNPs) in 58 candidate gene regions involved in sex hormone synthesis and metabolism, gonadotropins, and prolactin in a case-control study of 344 PTC cases and 452 controls, frequency matched on age and sex. Odds ratios and p-values for the linear trend for the association between each SNP genotype and PTC risk were estimated using unconditional logistic regression. SNPs in the same gene region or pathway were aggregated using adaptive rank-truncated product methods to obtain gene region-specific or pathway-specific p-values. To account for multiple comparisons, we applied the false discovery rate method.
Seven SNPs had p-values for linear trend <0.01, including four in the CYP19A1 gene, but none of the SNPs remained significant after correction for multiple comparisons. Results were similar when restricting the dataset to women. p-values for examined gene regions and for all genes combined were ≥0.09.
Based on these results, SNPs in selected hormone pathway genes do not appear to be strongly related to PTC risk. This observation is in accord with the lack of consistent associations between hormonal factors and PTC risk in epidemiologic studies.
PMCID: PMC3271376  PMID: 22224819
25.  Detectable clonal mosaicism and its relationship to aging and cancer 
Jacobs, Kevin B | Yeager, Meredith | Zhou, Weiyin | Wacholder, Sholom | Wang, Zhaoming | Rodriguez-Santiago, Benjamin | Hutchinson, Amy | Deng, Xiang | Liu, Chenwei | Horner, Marie-Josephe | Cullen, Michael | Epstein, Caroline G | Burdett, Laurie | Dean, Michael C | Chatterjee, Nilanjan | Sampson, Joshua | Chung, Charles C | Kovaks, Joseph | Gapstur, Susan M | Stevens, Victoria L | Teras, Lauren T | Gaudet, Mia M | Albanes, Demetrius | Weinstein, Stephanie J | Virtamo, Jarmo | Taylor, Philip R | Freedman, Neal D | Abnet, Christian C | Goldstein, Alisa M | Hu, Nan | Yu, Kai | Yuan, Jian-Min | Liao, Linda | Ding, Ti | Qiao, You-Lin | Gao, Yu-Tang | Koh, Woon-Puay | Xiang, Yong-Bing | Tang, Ze-Zhong | Fan, Jin-Hu | Aldrich, Melinda C | Amos, Christopher | Blot, William J | Bock, Cathryn H | Gillanders, Elizabeth M | Harris, Curtis C | Haiman, Christopher A | Henderson, Brian E | Kolonel, Laurence N | Le Marchand, Loic | McNeill, Lorna H | Rybicki, Benjamin A | Schwartz, Ann G | Signorello, Lisa B | Spitz, Margaret R | Wiencke, John K | Wrensch, Margaret | Wu, Xifeng | Zanetti, Krista A | Ziegler, Regina G | Figueroa, Jonine D | Garcia-Closas, Montserrat | Malats, Nuria | Marenne, Gaelle | Prokunina-Olsson, Ludmila | Baris, Dalsu | Schwenn, Molly | Johnson, Alison | Landi, Maria Teresa | Goldin, Lynn | Consonni, Dario | Bertazzi, Pier Alberto | Rotunno, Melissa | Rajaraman, Preetha | Andersson, Ulrika | Freeman, Laura E Beane | Berg, Christine D | Buring, Julie E | Butler, Mary A | Carreon, Tania | Feychting, Maria | Ahlbom, Anders | Gaziano, J Michael | Giles, Graham G | Hallmans, Goran | Hankinson, Susan E | Hartge, Patricia | Henriksson, Roger | Inskip, Peter D | Johansen, Christoffer | Landgren, Annelie | McKean-Cowdin, Roberta | Michaud, Dominique S | Melin, Beatrice S | Peters, Ulrike | Ruder, Avima M | Sesso, Howard D | Severi, Gianluca | Shu, Xiao-Ou | Visvanathan, Kala | White, Emily | Wolk, Alicja | Zeleniuch-Jacquotte, Anne | Zheng, Wei | Silverman, Debra T | Kogevinas, Manolis | Gonzalez, Juan R | Villa, Olaya | Li, Donghui | Duell, Eric J | Risch, Harvey A | Olson, Sara H | Kooperberg, Charles | Wolpin, Brian M | Jiao, Li | Hassan, Manal | Wheeler, William | Arslan, Alan A | Bas Bueno-de-Mesquita, H | Fuchs, Charles S | Gallinger, Steven | Gross, Myron D | Holly, Elizabeth A | Klein, Alison P | LaCroix, Andrea | Mandelson, Margaret T | Petersen, Gloria | Boutron-Ruault, Marie-Christine | Bracci, Paige M | Canzian, Federico | Chang, Kenneth | Cotterchio, Michelle | Giovannucci, Edward L | Goggins, Michael | Bolton, Judith A Hoffman | Jenab, Mazda | Khaw, Kay-Tee | Krogh, Vittorio | Kurtz, Robert C | McWilliams, Robert R | Mendelsohn, Julie B | Rabe, Kari G | Riboli, Elio | Tjønneland, Anne | Tobias, Geoffrey S | Trichopoulos, Dimitrios | Elena, Joanne W | Yu, Herbert | Amundadottir, Laufey | Stolzenberg-Solomon, Rachael Z | Kraft, Peter | Schumacher, Fredrick | Stram, Daniel | Savage, Sharon A | Mirabello, Lisa | Andrulis, Irene L | Wunder, Jay S | García, Ana Patiño | Sierrasesúmaga, Luis | Barkauskas, Donald A | Gorlick, Richard G | Purdue, Mark | Chow, Wong-Ho | Moore, Lee E | Schwartz, Kendra L | Davis, Faith G | Hsing, Ann W | Berndt, Sonja I | Black, Amanda | Wentzensen, Nicolas | Brinton, Louise A | Lissowska, Jolanta | Peplonska, Beata | McGlynn, Katherine A | Cook, Michael B | Graubard, Barry I | Kratz, Christian P | Greene, Mark H | Erickson, Ralph L | Hunter, David J | Thomas, Gilles | Hoover, Robert N | Real, Francisco X | Fraumeni, Joseph F | Caporaso, Neil E | Tucker, Margaret | Rothman, Nathaniel | Pérez-Jurado, Luis A | Chanock, Stephen J
Nature genetics  2012;44(6):651-658.
In an analysis of 31,717 cancer cases and 26,136 cancer-free controls drawn from 13 genome-wide association studies (GWAS), we observed large chromosomal abnormalities in a subset of clones from DNA obtained from blood or buccal samples. Mosaic chromosomal abnormalities, either aneuploidy or copy-neutral loss of heterozygosity, of size >2 Mb were observed in autosomes of 517 individuals (0.89%) with abnormal cell proportions between 7% and 95%. In cancer-free individuals, the frequency increased with age; 0.23% under 50 and 1.91% between 75 and 79 (p=4.8×10−8). Mosaic abnormalities were more frequent in individuals with solid-tumors (0.97% versus 0.74% in cancer-free individuals, OR=1.25, p=0.016), with a stronger association for cases who had DNA collected prior to diagnosis or treatment (OR=1.45, p=0.0005). Detectable clonal mosaicism was common in individuals for whom DNA was collected at least one year prior to diagnosis of leukemia compared to cancer-free individuals (OR=35.4, p=3.8×10−11). These findings underscore the importance of the role and time-dependent nature of somatic events in the etiology of cancer and other late-onset diseases.
PMCID: PMC3372921  PMID: 22561519

Results 1-25 (49)