PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-8 (8)
 

Clipboard (0)
None

Select a Filter Below

Journals
Year of Publication
Document Types
1.  Increased methylation of the MOR gene proximal promoter in primary sensory neurons plays a crucial role in the decreased analgesic effect of opioids in neuropathic pain 
Molecular Pain  2014;10:51.
Background
The analgesic potency of opioids is reduced in neuropathic pain. However, the molecular mechanism is not well understood.
Results
The present study demonstrated that increased methylation of the Mu opioid receptor (MOR) gene proximal promoter (PP) in dorsal root ganglion (DRG) plays a crucial role in the decreased morphine analgesia. Subcutaneous (s.c.), intrathecal (i.t.) and intraplantar (i.pl.), not intracerebroventricular (i.c.v.) injection of morphine, the potency of morphine analgesia was significantly reduced in nerve-injured mice compared with control sham-operated mice. After peripheral nerve injury, we observed a decreased expression of MOR protein and mRNA, accompanied by an increased methylation status of MOR gene PP, in DRG. However, peripheral nerve injury could not induce a decreased expression of MOR mRNA in the spinal cord. Treatment with 5-aza-2′-deoxycytidine (5-aza-dC), inhibited the increased methylation of MOR gene PP and prevented the decreased expression of MOR in DRG, thereby improved systemic, spinal and periphery morphine analgesia.
Conclusions
Altogether, our results demonstrate that increased methylation of the MOR gene PP in DRG is required for the decreased morphine analgesia in neuropathic pain.
doi:10.1186/1744-8069-10-51
PMCID: PMC4137045  PMID: 25118039
Neuropathic pain; Epigenetics; Opioids
2.  Tiam1 Transgenic Mice Display Increased Tumor Invasive and Metastatic Potential of Colorectal Cancer after 1,2-Dimethylhydrazine Treatment 
PLoS ONE  2013;8(9):e73077.
Background
T lymphoma invasion and metastasis 1 (Tiam1) is a potential modifier of tumor development and progression. Our previous study in vitro and in nude mice suggested a promotion role of Tiam1 on invasion and metastasis of colorectal cancer (CRC). In the present study, we generated Tiam1/C1199-CopGFP transgenic mice to investigate the tumorigenetic, invasive and metastatic alterations in the colon and rectum of wild-type and Tiam1 transgenic mice under 1,2-dimethylhydrazine (DMH) treatment.
Methods
Transgenic mice were produced by the method of pronuclear microinlectlon. Whole-body fluorescence imaging (Lighttools, Edmonton, Alberta, Canada), PCR, and immunohistochemical techniques (IHC) were applied sequentially to identify the transgenic mice. The carcinogen DMH (20 mg/kg) was used to induce colorectal tumors though intraperitoneal (i.p.) injections once a week for 24 weeks from the age of 4 weeks on Tiam1 transgenic or non-transgenic mice.
Results
We successfully generated Tiam1/C1199-CopGFP transgenic mice and induced primary tumors in the intestine of both wild type and Tiam1 transgenic mice by DMH treatment. In addition, Tiam1 transgenic mice developed larger and more aggressive neoplasm than wild-type mice. Moreover, immunohistochemical staining revealed that upregulation of Tiam1 was correlated with increased expression of β-Catenin and Vimentin, and downregulation of E-Cadherin in these mice.
Conclusions
Our study has provided in vivo evidence supporting that Tiam1 promotes invasion and metastasis of CRC, most probably through activation of Wnt/β-catenin signaling pathway, in a Tiam1 transgenic mouse model.
doi:10.1371/journal.pone.0073077
PMCID: PMC3771986  PMID: 24069171
3.  Activation of Akt and cardioprotection against reperfusion injury are maximal with only five minutes of sevoflurane postconditioning in isolated rat hearts*  
It had been proved that administration of sevoflurane for the first two minutes of reperfusion effectively protects the heart against reperfusion injury in rats in vivo. Our aim was to investigate the duration of effective sevoflurane administration and its underlying mechanism in isolated rat hearts exposed to global ischemia/reperfusion (I/R) injury. Adult male Sprague-Dawley rats were randomly divided into six groups (n=12): a sham-operation group, an I/R group, and four sevoflurane postconditioning groups (S2, S5, S10, and S15). In the S2, S5, S10, and S15 groups, the duration times of sevoflurane administration were 2, 5, 10, and 15 min after the onset of reperfusion, respectively. The isolated rat hearts were mounted on the Langendorff system, and after a period of equilibrium were subjected to 40 min global ischemia and 120 min reperfusion. Left ventricular (LV) hemodynamic parameters were monitored throughout each experiment and the data at 30 min of equilibrium and 30, 60, 90, and 120 min of reperfusion were analyzed. Myocardial infarct size at the end of reperfusion (n=7 in each group) and the expression of myocardial phosphorylated Akt (p-Akt) after 15-min reperfusion were determined in a duplicate set of six groups of rat hearts (n=5 in each group). Compared with the I/R group, the S5, S10, and S15 groups had significantly improved left ventricular end-diastolic pressure (LVEDP), left ventricular developed pressure (LVDP), and the maximal rate of rise or fall of the LV pressure (±dP/dt max), and decreased myocardial infarct size (P<0.05), but not the S2 group. After 15 min of reperfusion, the expression of p-Akt was markedly up-regulated in the S5, S10, and S15 groups compared with that in the I/R group (P<0.05), but not in the S2 group. Sevoflurane postconditioning for 5 min was sufficient to activate Akt and exert maximal cardioprotection against I/R injury in isolated rat hearts.
doi:10.1631/jzus.B1200195
PMCID: PMC3682167  PMID: 23733428
Sevoflurane postconditioning; Ischemia/reperfusion (I/R) injury; Cardioprotection; Duration of administration; Akt
4.  PI3K Contributed to Modulation of Spinal Nociceptive Information Related to ephrinBs/EphBs 
PLoS ONE  2012;7(8):e40930.
There is accumulating evidence to implicate the importance of EphBs receptors and ephrinBs ligands were involved in modulation of spinal nociceptive information. However, the downstream mechanisms that control this process are not well understood. In the present study, we investigated whether phosphatidylinositol 3-kinase (PI3K), as the downstream effectors, participates in modulation of spinal nociceptive information related to ephrinBs/EphBs. Intrathecal injection of ephrinB1-Fc produced a dose- and time-dependent thermal and mechanical hyperalgesia, accompanied by the increase of spinal PI3K-p110γ, phosphorylation of AKT (p-AKT) and c-Fos expression. Pre-treatment with PI3K inhibitor wortmannin or LY294002 prevented activation of spinal AKT induced by ephrinB1-Fc. Inhibition of spinal PI3K signaling dose-dependently prevented and reversed pain behaviors and spinal c-Fos protein expression induced by intrathecal injection of ephrinB1-Fc. Inhibition of EphBs receptors by intrathecal injection of EphB1-Fc reduced formalin-induced inflammation and chronic constrictive injury-induced neuropathic pain behaviors accompanied by decreased expression of spinal PI3K,p-AKT and c-Fos protein. Furthermore, pre-treatment with PI3K inhibitor wortmannin or LY294002 prevented ephrinB1-Fc-induced ERK activation in spinal. These data demonstrated that PI3K and PI3K crosstalk to ERK signaling contributed to modulation of spinal nociceptive information related to ephrinBs/EphBs.
doi:10.1371/journal.pone.0040930
PMCID: PMC3411731  PMID: 22879882
5.  Evaluation of Physicochemical and Antioxidant Properties of Peanut Protein Hydrolysate 
PLoS ONE  2012;7(5):e37863.
Peanut protein and its hydrolysate were compared with a view to their use as food additives. The effects of pH, temperature and protein concentration on some of their key physicochemical properties were investigated. Compared with peanut protein, peanut peptides exhibited a significantly higher solubility and significantly lower turbidity at pH values 2–12 and temperature between 30 and 80°C. Peanut peptide showed better emulsifying capacity, foam capacity and foam stability, but had lower water holding and fat adsorption capacities over a wide range of protein concentrations (2–5 g/100 ml) than peanut protein isolate. In addition, peanut peptide exhibited in vitro antioxidant properties measured in terms of reducing power, scavenging of hydroxyl radical, and scavenging of DPPH radical. These results suggest that peanut peptide appeared to have better functional and antioxidant properties and hence has a good potential as a food additive.
doi:10.1371/journal.pone.0037863
PMCID: PMC3365052  PMID: 22693580
6.  Chemical Composition and Antioxidant Activities of Broussonetia papyrifera Fruits 
PLoS ONE  2012;7(2):e32021.
Fruits of Broussonetia papyrifera from South China were analyzed for their total chemical composition, and antioxidant activities in ethanol and aqueous extracts. In the fruit of this plant, the crude protein, crude fat and carbohydrates was 7.08%, 3.72% and 64.73% of dry weight, respectively. The crude protein, crude fat and carbohydrates were 15.71%, 20.51% and 36.09% of dry weight, respectively. Fatty acid and amino acid composition of the fruit were analyzed. Unsaturated fatty acid concentration was 70.6% of the total fatty acids. The percentage of the essential amino acids (EAAs) was 40.60% of the total amino acids. Furthermore, B. papyrifera fruit are rich in many mineral elements and vitamins. Total phenolic content was assessed using the Folin-Ciocalteau assay, whereas antioxidant activities were assessed by measuring the ability of the two extracts to scavenge DPPH radicals, inhibit peroxidation, and chelate ferric ions. Their reducing power was also assessed. Results indicated that the aqueous extract of B. papyrifera was a more potent reducing agent and radical-scavenger than the ethanol extract. GC–MS analysis of the ethanol extract showed the presence of some acid-containing compounds. The changes in total phenolic content and antioxidant capacity in B. papyrifera from four different regions grown under normal conditions were assessed. The antioxidant activity of different extracts was positively associated with their total phenolic content. These results suggest that the fruit of B. papyrifera could be used in dietary supplement preparations, or as a food additive, for nutritional gain, or to prevent oxidation in food products.
doi:10.1371/journal.pone.0032021
PMCID: PMC3289642  PMID: 22389678
7.  Sevoflurane postconditioning reduces myocardial reperfusion injury in rat isolated hearts via activation of PI3K/Akt signaling and modulation of Bcl-2 family proteins*  
Sevoflurane postconditioning reduces myocardial infarct size. The objective of this study was to examine the role of the phosphatidylinositol-3-kinase (PI3K)/Akt pathway in anesthetic postconditioning and to determine whether PI3K/Akt signaling modulates the expression of pro- and antiapoptotic proteins in sevoflurane postconditioning. Isolated and perfused rat hearts were prepared first, and then randomly assigned to the following groups: Sham-operation (Sham), ischemia/reperfusion (Con), sevoflurane postconditioning (SPC), Sham plus 100 nmol/L wortmannin (Sham+Wort), Con+Wort, SPC+Wort, and Con+dimethylsulphoxide (DMSO). Sevoflurane postconditioning was induced by administration of sevoflurane (2.5%, v/v) for 10 min from the onset of reperfusion. Left ventricular developed pressure (LVDP), left ventricular end-diastolic pressure (LVEDP), maximum increase in rate of LVDP (+dP/dt), maximum decrease in rate of LVDP (−dP/dt), heart rate (HR), and coronary flow (CF) were measured at baseline, R30 min (30 min of reperfusion), R60 min, R90 min, and R120 min. Creatine kinase (CK) and lactate dehydrogenase (LDH) were measured after 5 min and 10 min reperfusion. Infarct size was determined by triphenyltetrazolium chloride staining at the end of reperfusion. Total Akt and phosphorylated Akt (phospho-Akt), Bax, Bcl-2, Bad, and phospho-Bad were determined by Western blot analysis. Analysis of variance (ANOVA) and Student-Newman-Keuls’ test were used to investigate the significance of differences between groups. The LVDP, ±dP/dt, and CF were higher and LVEDP was lower in the SPC group than in the Con group at all points of reperfusion (P<0.05). The SPC group had significantly reduced CK and LDH release and decreased infarct size compared with the Con group [(22.9±8)% vs. (42.4±9.4)%, respectively; P<0.05]. The SPC group also had increased the expression of phosphor-Akt, Bcl-2, and phospho-Bad, and decreased the expression of Bax. Wortmannin abolished the cardioprotection of sevoflurane postconditioning. Sevoflurane postconditioning may protect the isolated rat heart. Activation of PI3K and modulation of the expression of pro- and antiapoptotic proteins may play an important role in sevoflurane-induced myocardial protection.
doi:10.1631/jzus.B1000155
PMCID: PMC2932876  PMID: 20803770
Sevoflurane; Postconditioning; Cardioprotection; Akt; Bcl-2; Bad
8.  Effects of sevoflurane preconditioning and postconditioning on rat myocardial stunning in ischemic reperfusion injury*  
Ischemic preconditioning and postconditioning distinctly attenuate ventricular arrhythmia after ischemia without affecting the severity of myocardial stunning. Therefore, we report the effects of sevoflurane preconditioning and postconditioning on stunned myocardium in isolated rat hearts. Isolated rat hearts were underwent 20 min of global ischemia and 40 min of reperfusion. After an equilibration period (20 min), the hearts in the preconditioning group were exposed to sevoflurane for 5 min and next washout for 5 min before ischemia. Hearts in the sevoflurane postconditioning group underwent equilibration and ischemia, followed immediately by sevoflurane exposure for the first 5 min of reperfusion. The control group received no treatment before and after ischemia. Left ventricular pressure, heart rate, coronary flow, electrocardiogram, and tissue histology were measured as variables of ventricular function and cellular injury, respectively. There was no significant difference in the duration of reperfusion ventricular arrhythmias between control and sevoflurane preconditioning group (P=0.195). The duration of reperfusion ventricular arrhythmias in the sevoflurane postconditioning group was significantly shorter than that in the other two groups (P<0.05). ±(dP/dt)max in the sevoflurane preconditioning group at 5, 10, 15, 20, and 30 min after reperfusion was significantly higher than that in the control group (P<0.05), and there were no significant differences at 40 min after reperfusion among the three groups (P>0.05). As expected, for a 20-min general ischemia, infarct size in heart slices determined by 2,3,5-triphenyltetrazolium chloride staining among the groups was not obvious. Sevoflurane postconditioning reduces reperfusion arrhythmias without affecting the severity of myocardial stunning. In contrast, sevoflurane preconditioning has no beneficial effects on reperfusion arrhythmias, but it is in favor of improving ventricular function and recovering myocardial stunning. Sevoflurane preconditioning and postconditioning may be useful for correcting the stunned myocardium.
doi:10.1631/jzus.B0900390
PMCID: PMC2852543  PMID: 20349523
Inhalation anesthetics; Sevoflurane; Postconditioning; Preconditioning; Ischemia-reperfusion injury; Myocardial stunning

Results 1-8 (8)