PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (30)
 

Clipboard (0)
None

Select a Filter Below

Year of Publication
1.  An Antifungal Role of Hydrogen Sulfide on the Postharvest Pathogens Aspergillus niger and Penicillium italicum 
PLoS ONE  2014;9(8):e104206.
In this research, the antifungal role of hydrogen sulfide (H2S) on the postharvest pathogens Aspergillus niger and Penicillium italicum growing on fruits and under culture conditions on defined media was investigated. Our results show that H2S, released by sodium hydrosulfide (NaHS) effectively reduced the postharvest decay of fruits induced by A. niger and P. italicum. Furthermore, H2S inhibited spore germination, germ tube elongation, mycelial growth, and produced abnormal mycelial contractions when the fungi were grown on defined media in Petri plates. Further studies showed that H2S could cause an increase in intracellular reactive oxygen species (ROS) in A. niger. In accordance with this observation we show that enzyme activities and the expression of superoxide dismutase (SOD) and catalase (CAT) genes in A. niger treated with H2S were lower than those in control. Moreover, H2S also significantly inhibited the growth of Saccharomyces cerevisiae, Rhizopus oryzae, the human pathogen Candida albicans, and several food-borne bacteria. We also found that short time exposure of H2S showed a microbicidal role rather than just inhibiting the growth of microbes. Taken together, this study suggests the potential value of H2S in reducing postharvest loss and food spoilage caused by microbe propagation.
doi:10.1371/journal.pone.0104206
PMCID: PMC4125178  PMID: 25101960
2.  Stat3 Inhibits PTPN13 Expression in Squamous Cell Lung Carcinoma through Recruitment of HDAC5 
BioMed Research International  2013;2013:468963.
Proteins of the protein tyrosine phosphatase (PTP) family are known to be signaling molecules that regulate a variety of cellular processes including cell growth, differentiation, and apoptosis. PTPN13 (also known as FAP1, PTPL1, PTPLE, PTPBAS, and PTP1E), a putative tumor suppressor, is frequently inactivated in lung carcinoma through the loss of either mRNA or protein expression. However, the molecular mechanisms underlying its dysregulation have not been fully explored. Interleukin-6 (IL-6) mediated Stat3 activation is viewed as crucial for multiple tumor growth and progression. Here, we demonstrate that PTPN13 is a direct transcriptional target of Stat3 in the squamous cell lung carcinoma. Our data show that IL-6 administration or transfection of a constitutively activated Stat3 in HCC-1588 and SK-MES-1 cells inhibits PTPN13 mRNA transcription. Using luciferase reporter and ChIP assays, we show that Stat3 binds to the promoter region of PTPN13 and promotes its activity through recruiting HDAC5. Thus, our results suggest a previously unknown Stat3-PTPN13 molecular network controlling squamous cell lung carcinoma development.
doi:10.1155/2013/468963
PMCID: PMC3804148  PMID: 24191246
3.  Early B-cell factor 3 (EBF3) is a novel tumor suppressor gene with promoter hypermethylation in pediatric acute myeloid leukemia 
Background
Pediatric acute myeloid leukemia (AML) comprises up to 20% of all childhood leukemia. Recent research shows that aberrant DNA methylation patterning may play a role in leukemogenesis. The epigenetic silencing of the EBF3 locus is very frequent in glioblastoma. However, the expression profiles and molecular function of EBF3 in pediatric AML is still unclear.
Methods
Twelve human acute leukemia cell lines, 105 pediatric AML samples and 30 normal bone marrow/idiopathic thrombocytopenic purpura (NBM/ITP) control samples were analyzed. Transcriptional level of EBF3 was evaluated by semi-quantitative and real-time PCR. EBF3 methylation status was determined by methylation specific PCR (MSP) and bisulfite genomic sequencing (BGS). The molecular mechanism of EBF3 was investigated by apoptosis assays and PCR array analysis.
Results
EBF3 promoter was hypermethylated in 10/12 leukemia cell lines. Aberrant EBF3 methylation was observed in 42.9% (45/105) of the pediatric AML samples using MSP analysis, and the BGS results confirmed promoter methylation. EBF3 expression was decreased in the AML samples compared with control. Methylated samples revealed similar survival outcomes by Kaplan-Meier survival analysis. EBF3 overexpression significantly inhibited cell proliferation and increased apoptosis. Real-time PCR array analysis revealed 93 dysregulated genes possibly implicated in the apoptosis of EBF3-induced AML cells.
Conclusion
In this study, we firstly identified epigenetic inactivation of EBF3 in both AML cell lines and pediatric AML samples for the first time. Our findings also showed for the first time that transcriptional overexpression of EBF3 could inhibit proliferation and induce apoptosis in AML cells. We identified 93 dysregulated apoptosis-related genes in EBF3-overexpressing, including DCC, AIFM2 and DAPK1. Most of these genes have never been related with EBF3 over expression. These results may provide new insights into the molecular mechanism of EBF3-induced apoptosis; however, further research will be required to determine the underlying details.
Our findings suggest that EBF3 may act as a putative tumor suppressor gene in pediatric AML.
doi:10.1186/s13046-014-0118-1
PMCID: PMC4311429  PMID: 25609158
Early B-cell factor 3; Pediatric acute myeloid leukemia; Methylation; Tumor suppressor; Real-time PCR array
4.  Molecular Targeting of the Oncoprotein PLK1 in Pediatric Acute Myeloid Leukemia: RO3280, a Novel PLK1 Inhibitor, Induces Apoptosis in Leukemia Cells 
Polo-like kinase 1 (PLK1) is highly expressed in many cancers and therefore a biomarker of transformation and potential target for the development of cancer-specific small molecule drugs. RO3280 was recently identified as a novel PLK1 inhibitor; however its therapeutic effects in leukemia treatment are still unknown. We found that the PLK1 protein was highly expressed in leukemia cell lines as well as 73.3% (11/15) of pediatric acute myeloid leukemia (AML) samples. PLK1 mRNA expression was significantly higher in AML samples compared with control samples (82.95 ± 110.28 vs. 6.36 ± 6.35; p < 0.001). Kaplan-Meier survival analysis revealed that shorter survival time correlated with high tumor PLK1 expression (p = 0.002). The 50% inhibitory concentration (IC50) of RO3280 for acute leukemia cells was between 74 and 797 nM. The IC50 of RO3280 in primary acute lymphocytic leukemia (ALL) and AML cells was between 35.49 and 110.76 nM and 52.80 and 147.50 nM, respectively. RO3280 induced apoptosis and cell cycle disorder in leukemia cells. RO3280 treatment regulated several apoptosis-associated genes. The regulation of DCC, CDKN1A, BTK, and SOCS2 was verified by western blot. These results provide insights into the potential use of RO3280 for AML therapy; however, the underlying mechanisms remain to be determined.
doi:10.3390/ijms16011266
PMCID: PMC4307303  PMID: 25574601
RO3280; pediatric acute myeloid leukemia (AML); polo-like kinase 1 (PLK1); apoptosis; oncogene target
5.  Histone acetyltransferase inhibitor II induces apoptosis in glioma cell lines via the p53 signaling pathway 
Background
Histone acetyltransferase (HAT) inhibitors can inhibit proliferation and induce apoptosis in cancer cell lines. The novel cell-permeable p300/CREB-binding protein (CBP)-selective HAT inhibitor HATi II can reduce histone H3 acetylation and induce chromatin condensation in HeLa cells. Here, we examined the effects and mechanism of action of HATi II in glioma cell lines.
Methods
Cell viability was assessed using the CCK-8 assay. Cell cycle analysis was performed using flow cytometry. Apoptosis was evaluated using Annexin V staining and flow cytometry, Hoechst 33342 staining and the TUNEL assay. Expression and cleavage of caspase-3, caspase-9 and poly ADP-ribose polymerase (PARP) were assessed by Western blotting. Statistical analysis was performed using two-tailed Student’s t-tests. The gene expression profiles of U251 glioma cells treated with HATi II or DMSO were analyzed using the Arraystar Human 8 x 60 K LncRNA/mRNA expression array; data was analyzed using MEV (Multi Experiment View) cluster software. Datasets representing genes with altered expression profiles (≥2-fold) derived from the cluster analyses were subjected to gene ontology and pathway analysis.
Results
HATi II inhibited the proliferation of U251, U87, HS683 and SHG44 cells in a dose-dependent manner. HATi II induced cell cycle arrest at the G2/M phase, and induced significant levels of apoptosis, apoptotic body formation and DNA fragmentation in HATi II-treated U251 and SHG44 cells. HATi II induced cleavage of caspase-3, caspase-9 and PARP in U251 and SHG44 cells. In HATi II-treated U251 cells, 965 genes were upregulated, 984 genes were downregulated and 3492/33327 lncRNAs were differentially expressed. GO analysis showed the differentially expressed genes with known functions are involved in a variety of processes; alcoholism, p53 signaling pathway, cytokine-cytokine receptor interaction and transcriptional mis-regulation in cancer were the four most significant pathways. Upregulation of p53 signaling pathway-related genes in HATi II-treated cells was confirmed by quantitative RT-PCR and Western blotting.
Conclusions
HATi II inhibits proliferation and induces apoptosis via the caspase-dependent pathway in human glioma cell lines, possibly by activating the p53 signaling pathway. HATi II deserves further investigation as a novel treatment for glioma.
Electronic supplementary material
The online version of this article (doi:10.1186/s13046-014-0108-3) contains supplementary material, which is available to authorized users.
doi:10.1186/s13046-014-0108-3
PMCID: PMC4321714  PMID: 25523932
HATi II; Glioma; Apoptosis; LncRNA/mRNA; p53 signaling pathway
6.  Zinc finger protein 382 is downregulated by promoter hypermethylation in pediatric acute myeloid leukemia patients 
Acute myeloid leukemia (AML) is the second-most common form of leukemia in children. Aberrant DNA methylation patterns are characteristic of AML. Zinc finger protein 382 (ZNF382) has been suggested to be a tumor suppressor gene possibly regulated by promoter hypermethylation in various types of human cancer. However, ZNF382 expression and methylation status in pediatric AML is unknown. In the present study, ZNF382 transcription levels were evaluated by quantitative reverse-transcription PCR. Methylation status was investigated by methylation-specific (MSP) PCR and bisulfate genomic sequencing (BGS). The prognostic significance of ZNF382 expression and promoter methylation was assessed in 105 cases of pediatric AML. The array data suggested that the ZNF382 promoter was hypermethylated in the AML cases examined. MSP PCR and BGS analysis revealed that ZNF382 was hypermethylated in leukemia cell lines. Furthermore, treatment with 5-aza-2′-deoxycytidine (5-Aza) upregulated ZNF382 expression in the selected leukemia cell lines. The aberrant methylation of ZNF382 was observed in 10% (2/20) of the control samples compared with 26.7% (28/105) of the AML samples. ZNF382 expression was significantly decreased in the 105 AML patients compared with the controls. Patients with ZNF382 methylation showed lower ZNF382 transcript levels compared with patients exhibiting no methylation. There were no significant differences in clinical characteristics or cytogenetic analysis between the patients with or without ZNF382 methylation. ZNF382 methylation correlated with minimal residual disease (MRD). Kaplan-Meier survival analysis revealed similar survival times in the samples with ZNF382 methylation, and multivariate analysis revealed that ZNF382 methylation was not an independent prognostic factor in pediatric AML. The epigenetic inactivation of ZNF382 by promoter hypermethylation can be observed in AML cell lines and pediatric AML samples. Therefore, our study suggests that ZNF382 may be considered a putative tumor suppressor gene in pediatric AML. However, further studies focusing on the mechanisms responsible for ZNF382 downregulation in pediatric leukemia are required.
doi:10.3892/ijmm.2014.1966
PMCID: PMC4214337  PMID: 25319049
zinc finger protein 382; pediatric acute myeloid leukemia; methylation; tumor suppressor
7.  Primary malignant melanoma of the liver: A case report 
Primary malignant melanoma of the liver is an exceedingly rare tumor. Only 12 cases have been reported in the worldwide literature. We present a case of isolated malignant melanoma of the liver occurring in a 36-year-old Chinese male patient. Comprehensive dermatologic and ophthalmologic examinations revealed no evidence of a cutaneous or ocular primary lesion. Other lesions in brain, respiratory tract, lung, gastrointestinal tract and anus, were not demonstrated by serial position emission tomography (PET). Microscopic examination of the resected specimen revealed a malignant melanoma, which was confirmed by immunohistochemical staining for HMB-45, S-100 protein, melanoma-pan and vimentin. Moreover, electron microscopy demonstrated melanosomes in tumor cell cytoplasm. Our case shows that primary malignant melanoma may occur in the liver and should be considered when the histopathological appearance is not typical for other hepatic neoplasm.
doi:10.3748/wjg.14.4968
PMCID: PMC2739954  PMID: 18756609
Primary malignant melanoma; Liver; Diagnosis; Histopathology; Immunohistochemistry
8.  Apolipoprotein E synthesized by adipocyte and apolipoprotein E carried on lipoproteins modulate adipocyte triglyceride content 
Excessive energy storage of adipose tissue makes contribution to the occurrence and progression of obesity, which accompanies with multiple adverse complications, such as metabolic syndrome, cardiovascular diseases. It is well known that apolipoprotein E, as a component of lipoproteins, performs a key role in maintaining plasma lipoproteins homeostasis. Interestingly, apolipoprotein E is highly expressed in adipocyte and has positive relation with body fat mass. Apolipoprotein E knock-out mice show small fat mass compared to wild type mice. Moreover, adipocyte deficiency in apolipoprotein E shows impaired lipoproeteins internalization and triglyceride accumulation. Apolipopreotein E-deficient lipoproteins can not induce preadipocyte to form round full-lipid adipocyte, whereas apolipoprotein E-containing lipoproteins can. This article mainly reviews the modulation of apolipoprotein E synthesized by adipocyte and apolipoprotein E carried on lipoproteins in adipocyte triglyceride content.
doi:10.1186/1476-511X-13-136
PMCID: PMC4156606  PMID: 25148848
Apolipoprotein E; Adipocyte; Triglyceride; Receptor-mediated endocytosis
9.  Metallothionein III (MT3) is a putative tumor suppressor gene that is frequently inactivated in pediatric acute myeloid leukemia by promoter hypermethylation 
Background
Acute myeloid leukemia (AML) is the second most common form of leukemia in children. Aberrant DNA methylation patterns are a characteristic feature in various tumors, including AML. Metallothionein III (MT3) is a tumor suppresser reported to show promoter hypermethylated in various cancers. However, the expression and molecular function of MT3 in pediatric AML is unclear.
Methods
Eleven human leukemia cell lines and 41 pediatric AML samples and 20 NBM/ITP (Norma bone marrow/Idiopathic thrombocytopenic purpura) control samples were analyzed. Transcription levels of MT3 were evaluated by semi-quantitative and real-time PCR. MT3 methylation status was determined by methylation specific PCR (MSP) and bisulfite genomic sequencing (BSG). The molecular mechanism of MT3 was investigated by apoptosis assays and PCR array analysis.
Results
The MT3 promoter was hypermethylated in leukemia cell lines. More CpG’s methylated of MT3 was observed 39.0% pediatric AML samples compared to 10.0% NBM controls. Transcription of MT3 was also significantly decreased in AML samples compared to NBM/ITP controls (P < 0.001); patients with methylated MT3 exhibited lower levels of MT3 expression compared to those with unmethylated MT3 (P = 0.049). After transfection with MT3 lentivirus, proliferation was significantly inhibited in AML cells in a dose-dependent manner (P < 0.05). Annexin V assay showed that apoptosis was significantly upregulated MT3-overexpressing AML cells compared to controls. Real-time PCR array analysis revealed 34 dysregulated genes that may be implicated in MT3 overexpression and apoptosis in AML, including FOXO1.
Conclusion
MT3 may be a putative tumor suppressor gene in pediatric AML. Epigenetic inactivation of MT3 via promoter hypermethylation was observed in both AML cell lines and pediatric AML samples. Overexpression of MT3 may inhibit proliferation and induce apoptosis in AML cells. FOXO1 was dysregulated in MT3-overexpressing cells, offering an insight into the mechanism of MT3-induced apoptosis. However, further research is required to determine the underlying molecular details.
doi:10.1186/1479-5876-12-182
PMCID: PMC4082423  PMID: 24962166
Metallothionein III; Pediatric acute myeloid leukemia; Methylation; Tumor suppressor
10.  A primary assessment of the endophytic bacterial community in a xerophilous moss (Grimmia montana) using molecular method and cultivated isolates 
Brazilian Journal of Microbiology  2014;45(1):163-173.
Investigating the endophytic bacterial community in special moss species is fundamental to understanding the microbial-plant interactions and discovering the bacteria with stresses tolerance. Thus, the community structure of endophytic bacteria in the xerophilous moss Grimmia montana were estimated using a 16S rDNA library and traditional cultivation methods. In total, 212 sequences derived from the 16S rDNA library were used to assess the bacterial diversity. Sequence alignment showed that the endophytes were assigned to 54 genera in 4 phyla (Proteobacteria, Firmicutes, Actinobacteria and Cytophaga/Flexibacter/Bacteroids). Of them, the dominant phyla were Proteobacteria (45.9%) and Firmicutes (27.6%), the most abundant genera included Acinetobacter, Aeromonas, Enterobacter, Leclercia, Microvirga, Pseudomonas, Rhizobium, Planococcus, Paenisporosarcina and Planomicrobium. In addition, a total of 14 species belonging to 8 genera in 3 phyla (Proteobacteria, Firmicutes, Actinobacteria) were isolated, Curtobacterium, Massilia, Pseudomonas and Sphingomonas were the dominant genera. Although some of the genera isolated were inconsistent with those detected by molecular method, both of two methods proved that many different endophytic bacteria coexist in G. montana. According to the potential functional analyses of these bacteria, some species are known to have possible beneficial effects on hosts, but whether this is the case in G. montana needs to be confirmed.
PMCID: PMC4059291  PMID: 24948927
bacterial diversity; endophytes; moss; molecular method; cultivated isolates
11.  Dysplastic Nodules with Glypican-3 Positive Immunostaining: A Risk for Early Hepatocellular Carcinoma 
PLoS ONE  2014;9(1):e87120.
Glypican-3 (GPC3) has been reported to be a novel serum and histochemical marker for HCC. The positivity or negativity for GPC3 in hepatic precancerous lesions, such as dysplastic nodules (DN), has also been described. Moreover, our previous studies have demonstrated that some DN in liver cirrhosis represent monoclonal hyperplasia, and confirmed their neoplastic nature. However, additional studies must be performed to investigate further the relationship between DN with GPC3 positivity and HCC. Thus, we first investigated the expression of GPC3 in 136 HCC and 103 small DN (less than 1 cm in diameter) by immunohistochemical staining and determined the clonality of 81 DN from female patients using X-chromosome inactivation mosaicism and polymorphism of androgen receptor (AR) gene. Then we examined these samples for chromosomal loss of heterozygosity (LOH) at 11 microsatellite polymorphism sites. The results demonstrated that GPC3 immunoreactivity was detected in 103 of 136 HCC (75.7%) and 19 of 103 DN (18.4%), and the positive ratio correlated with HBsAg positivity. Clonality assays showed that 15 GPC3-positive DN from female patients, including 12 high-grade DN (HGDN), and 28 (42.4%) of 66 GPC3-negative DN, were monoclonal. In addition, among 19 GPC3-positive DN, chromosomal LOH was found at loci D6S1008 (100%, 19/19), D8S262 (52.6%, 10/19) and D11S1301 (57.9%, 11/19). However, the LOH frequency in GPC3-negative DN was 5.95% (5/84), 23.8% (20/84), and 4.76% (4/84) in three loci, respectively. Thus, we concluded that GPC3-positive DN, especially GPC3-positive HGDN, was really a late premalignant lesion of HCC.
doi:10.1371/journal.pone.0087120
PMCID: PMC3909016  PMID: 24498024
12.  Associations between Serum Apelin-12 Levels and Obesity-Related Markers in Chinese Children 
PLoS ONE  2014;9(1):e86577.
Objective
To investigate possible correlations between apelin-12 levels and obesity in children in China and associations between apelin-12 and obesity-related markers, including lipids, insulin sensitivity and insulin resistance index (HOMA-IR).
Methods
Forty-eight obese and forty non-obese age- and gender-matched Chinese children were enrolled between June 2008 and June 2009. Mean age was 10.42±2.03 and 10.86±2.23 years in obesity and control groups, respectively. Main outcome measures were apelin-12, BMI, lipids, glucose and insulin. HOMA-IR was calculated for all subjects.
Results
All obesity group subjects had significantly higher total cholesterol (TC), triglycerides (TG), low-density lipoprotein cholesterol (LDL-C), insulin levels and HOMA-IR (all P<0.05). In separate analyses, obese girls had significantly higher LDL-C, insulin and HOMA-IR than controls, and obese boys had significantly higher TC, TG, insulin and HOMA-IR than controls (all P<0.05). Apelin-12 levels were significantly higher in obese girls compared to controls (P = 0.024), and correlated positively with TG in all obese subjects. Among obese girls, apelin-12 levels correlated positively with TG, insulin and HOMA-IR after adjusting for age and BMI. In all boys (obese and controls) apelin-12 was positively associated with fasting plasma glucose (FPG). No significant correlations were found in either group between apelin-12 levels and other characteristics after adjusting for age, sex, and BMI.
Conclusions
Apelin-12 levels are significantly higher in obese vs. non-obese girls in China and correlate significantly with obesity-related markers insulin, HOMA-IR, and TG. Increased apelin-12 levels may be involved in the pathological mechanism of childhood obesity.
doi:10.1371/journal.pone.0086577
PMCID: PMC3903556  PMID: 24475149
13.  Embryonic Trophoblasts Induce Decidual Regulatory T Cell Differentiation and Maternal–Fetal Tolerance through Thymic Stromal Lymphopoietin Instructing Dendritic Cells 
Physiological pregnancy requires the maternal immune system to recognize and tolerate embryonic Ags. Although multiple mechanisms have been proposed, it is not yet clear how the fetus evades the maternal immune system. In this article, we demonstrate that trophoblast-derived thymic stromal lymphopoietin (TSLP) instructs decidual CD11c+ dendritic cells (dDCs)with increased costimulatory molecules; MHC class II; and Th2/3-type, but not Th1-type, cytokines. TSLP-activated dDCs induce proliferation and differentiation of decidual CD4+CD25− T cells into CD4+CD25+FOXP3+ regulatory T cells (Tregs) through TGF-β1. TSLP-activated dDC–induced Tregs display immunosuppressive features and express Th2-type cytokines. In addition, decidual CD4+CD25+FOXP3+ Tregs promote invasiveness and HLA-G expression of trophoblasts, resulting in preferential production of Th2 cytokines and reduced cytotoxicity in decidual CD56brightCD16− NK cells. Of interest, decreased TSLP expression and reduced numbers of Tregs were observed at the maternal–fetal interface during miscarriage. Our study identifies a novel feedback loop between embryo-derived trophoblasts and maternal decidual leukocytes, which induces a tolerogenic immune response to ensure a successful pregnancy.
doi:10.4049/jimmunol.1203425
PMCID: PMC3918863  PMID: 24453244
14.  Hydrogen Sulfide Prolongs Postharvest Storage of Fresh-Cut Pears (Pyrus pyrifolia) by Alleviation of Oxidative Damage and Inhibition of Fungal Growth 
PLoS ONE  2014;9(1):e85524.
Hydrogen sulfide (H2S) has proved to be a multifunctional signaling molecule in plants and animals. Here, we investigated the role of H2S in the decay of fresh-cut pears (Pyrus pyrifolia). H2S gas released by sodium hydrosulfide (NaHS) prolonged the shelf life of fresh-cut pear slices in a dose-dependent manner. Moreover, H2S maintained higher levels of reducing sugar and soluble protein in pear slices. H2S significantly reduced the accumulation of hydrogen peroxide (H2O2), superoxide radicals (•O2−) and malondialdehyde (MDA). Further investigation showed that H2S fumigation up-regulated the activities of antioxidant enzymes ascorbate peroxidase (APX), catalase (CAT), and guaiacol peroxidase (POD), while it down-regulated those of lipoxygenase (LOX), phenylalanine ammonia lyase (PAL) and polyphenol oxidase (PPO). Furthermore, H2S fumigation effectively inhibited the growth of two fungal pathogens of pear, Aspergillus niger and Penicillium expansum, suggesting that H2S can be developed as an effective fungicide for postharvest storage. The present study implies that H2S is involved in prolonging postharvest storage of pears by acting as an antioxidant and fungicide.
doi:10.1371/journal.pone.0085524
PMCID: PMC3893216  PMID: 24454881
15.  Obligate mutualism within a host drives the extreme specialization of a fig wasp genome 
Genome Biology  2013;14(12):R141.
Background
Fig pollinating wasps form obligate symbioses with their fig hosts. This mutualism arose approximately 75 million years ago. Unlike many other intimate symbioses, which involve vertical transmission of symbionts to host offspring, female fig wasps fly great distances to transfer horizontally between hosts. In contrast, male wasps are wingless and cannot disperse. Symbionts that keep intimate contact with their hosts often show genome reduction, but it is not clear if the wide dispersal of female fig wasps will counteract this general tendency. We sequenced the genome of the fig wasp Ceratosolen solmsi to address this question.
Results
The genome size of the fig wasp C. solmsi is typical of insects, but has undergone dramatic reductions of gene families involved in environmental sensing and detoxification. The streamlined chemosensory ability reflects the overwhelming importance of females finding trees of their only host species, Ficus hispida, during their fleeting adult lives. Despite long-distance dispersal, little need exists for detoxification or environmental protection because fig wasps spend nearly all of their lives inside a largely benign host. Analyses of transcriptomes in females and males at four key life stages reveal that the extreme anatomical sexual dimorphism of fig wasps may result from a strong bias in sex-differential gene expression.
Conclusions
Our comparison of the C. solmsi genome with other insects provides new insights into the evolution of obligate mutualism. The draft genome of the fig wasp, and transcriptomic comparisons between both sexes at four different life stages, provide insights into the molecular basis for the extreme anatomical sexual dimorphism of this species.
doi:10.1186/gb-2013-14-12-r141
PMCID: PMC4053974  PMID: 24359812
18.  Cyclosporin A promotes proliferating cell nuclear antigen expression and migration of human cytotrophoblast cells via the mitgen-activated protein kinase-3/1-mediated nuclear factor-κB signaling pathways 
Our previous studies have demonstrated that cyclosporin A (CsA) promotes the proliferation and migration of human trophoblasts via the mitgen-activated protein kinase-3/1 (MAPK3/1) pathway. In the present study, we further investigated the role of nuclear factor (NF)-κB in the CsA-induced trophoblast proliferating cell nuclear antigen (PCNA) expression and migration, and its relationship to MAPK3/1 signal. Flow cytometry was used to analyze the expression of PCNA in trophoblasts. The migration of human primary trophoblasts was determined by wound-healing assay and transwell migration assay. Western blot analysis was performed to evaluate the activation of NF-κB p65 and NF-κB inhibitory protein I-κB in human trophoblasts. We found that treatment with CsA promotes PCNA expression and migration of human trophoblast in a dose-associated manner. Blocking of the MAPK3/1 signal abrogated the enhanced PCNA expression and migration in trophoblasts by CsA. In addition, CsA increased the phosphorylation of NF-κB p65 and the inhibitor I-κB in human trophoblasts in a time-related manner. Pretreatment with MAPK3/1 inhibitor U0126 abrogated the phosphorylation of NF-κB p65 and I-κB. Accordingly, the CsA-induced enhancement of PCNA expression and migration in trophoblasts was also decreased. This CsA-induced enhancement in the expression and migration of trophoblasts was abolished by pretreatment with pyrrolidine dithiocarbamate, a specific NF-κB inhibitor. Thus, our results suggest that CsA promotes PCNA expression and migration of human trophoblasts via MAPK-mediated NF-κB activation.
PMCID: PMC3796221  PMID: 24133577
Cyclosporine A; trophoblast; PCNA; migration; signal transduction pathway
19.  Value of the frontal planar QRS-T angle on cardiac dysfunction in patients with old myocardial infarction 
Objectives: To explore a method of surface electrocardiogram for assessing cardiac dysfunction in patients with old myocardial infarction. Methods: 1000 patients with old myocardial infarction in Anzhen hospital were analyzed retrospectively. The planar QRS-T angle was calculated automatically according to QRS-wave and T-wave vectors by the electrocardiogram machine. Results: Among these 1000 patients, 822 (82.2%) were male and 178 (17.8%) were female, the mean age was 59.3±10.5 years (34~89 years). The average planar QRS-T angle was 88.5±50.6°. The planar QRS-T angle and LVEF was negative correlation (r=-0.406, p<0.01), the lower the LVEF, the better the relationship with planar QRS-T angle. QRS-T angle>90° had optimal sensitivity and specificity (76%, 74%) in diagnosis of cardiac dysfunction. Conclusion: The planar QRS-T angle and LVEF of patients with old myocardial infarction is negative correlation, the larger the planar QRS-T angle, the lower the LVEF. The planar QRS-T angle may be an easier and more feasible index for assessing cardiac dysfunction in patients with old myocardial infarction.
PMCID: PMC3762625  PMID: 24040478
Planar QRS-T angle; old myocardial infarction; cardiac dysfunction
20.  Aspirin and Age Related Macular Degeneration; the Possible Relationship 
Age-related macular degeneration (AMD) is becoming the leading cause of blindness in developed countries. The exact etiology and pathophysiology of AMD is still unclear. A number of risk factors of AMD have been recognized, such as cigarette smoking, a family history of AMD and being Caucasian. On the other hand, aspirin is a widespread medication, which is thought to be associated with the prevalence or the survival of myocardial infarction and cancers. However, the evidence from the epidemiological studies has been contradictory and no persuasive conclusions have been made. Several problems, such as the parameters of aspirin use, the inclusion and exclusion of the participants and the required long-term follow-up, made it hard to conclude a definite relationship between aspirin use and AMD. Aspirin, as an anti-inflammatory agent, could prevent the inflammation and decrease the inflammatory damage, and might act as a deterrent for the progression of AMD. However, aspirin is an anticoagulant which might increase the risk of ocular hemorrhage in AMD patients. Decades ago, the use of aspirin was reported associated with decreased rates of CNV among AMD patients nevertheless recently, the association between aspirin use and increased risk of neovascular AMD was identified. Therefore, these current results should be challenged and acknowledged by well-designed, large-scale and long term follow-up studies. A consultation might be needed when aspirin is used in the neovascular AMD patients.
PMCID: PMC3939755  PMID: 24600645
Aspirin; Age Related Macular Degeneration; Neovascularization
21.  Identification of genuine primary pulmonary NK cell lymphoma via clinicopathologic observation and clonality assay 
Diagnostic Pathology  2013;8:140.
Abstract
Extranodal natural killer (NK)/T-cell lymphoma, nasal type, is an uncommon lymphoma associated with the Epstein-Barr virus (EBV). It most commonly involves the nasal cavity and upper respiratory tract. Primary pulmonary NK/T cell lymphoma is extremely rare. If a patient with a NK or T-cell tumor has an unusual reaction to treatment or an unusual prognosis, it is wise to differentiate NK from T-cell tumors. The clinicopathologic characteristics, immunophenotype, EBV in situ hybridization, and T cell receptor (TCR) gene rearrangement of primary pulmonary NK cell lymphoma from a 73-year-old Chinese woman were investigated and the clonal status was determined using female X-chromosomal inactivation mosaicism and polymorphisms at the phosphoglycerate kinase (PGK) gene. The lesion showed the typical histopathologic characteristics and immunohistochemical features of NK/T cell lymphoma. However, the sample was negative for TCR gene rearrangement. A clonality assay demonstrated that the lesion was monoclonal. It is concluded that this is the first recorded case of genuine primary pulmonary NK cell lymphoma. The purpose of the present work is to recommend that pathologists carefully investigate the whole lesion to reduce the likelihood that primary pulmonary NK cell lymphoma will be misdiagnosed as an infectious lesion. In addition, TCR gene rearrangement and clonal analysis, which is based on female X-chromosomal inactivation mosaicism and polymorphisms at PGK and androgen receptor (AR) loci, were found to play important roles in differentiating NK cell lymphoma from T cell lymphoma.
Virtual slides
The virtual slide(s) for this article can be found here: http://www.diagnosticpathology.diagnomx.eu/vs/5205300349457729
doi:10.1186/1746-1596-8-140
PMCID: PMC3846405  PMID: 23958352
Extranodal NK/T cell lymphoma; Lung; Immunophenotype; TCR gene rearrangement; Clonality
22.  Correction: Aspirin Use and Risk of Age-Related Macular Degeneration: A Meta-Analysis 
PLoS ONE  2013;8(6):10.1371/annotation/bc36f952-ec0c-45d0-bedd-15429017791e.
doi:10.1371/annotation/bc36f952-ec0c-45d0-bedd-15429017791e
PMCID: PMC3692953
23.  Aspirin Use and Risk of Age-Related Macular Degeneration: A Meta-Analysis 
PLoS ONE  2013;8(3):e58821.
Background
Age-related macular degeneration (AMD) is the main cause of blindness and the curative options are limited. The objective of this meta-analysis was to determine the association between aspirin use and risk of AMD.
Methods
A comprehensive literature search was performed in PubMed, Embase, Web of Science, and reference lists. A meta-analysis was performed by STATA software.
Results
Ten studies involving 171729 individuals examining the association between aspirin use and risk of AMD were included. Among the included studies, 2 were randomized-controlled trials (RCTs), 4 were case-control studies and 4 were cohort studies. The relative risks (RRs) were pooled using a random-effects model. Relative risks with 95% confidence intervals (CIs) of aspirin use as a risk for AMD. The pooled RR of 10 included studies between the use of aspirin and risk of AMD was 1.09 (95% CI, 0.96–1.24). The same result was detected in early and late stage AMD subgroup analysis. In the subgroup analyses, the pooled RR of RCTs, case-control studies and cohort studies were 0.81 (95% CI, 0.64–1.02), 1.02 (95% CI, 0.92–1.14) and 1.08 (95% CI, 0.91–1.28), respectively.
Conclusions
The use of aspirin was not associated with the risk of AMD.
doi:10.1371/journal.pone.0058821
PMCID: PMC3597550  PMID: 23516561
24.  Survivin selective inhibitor YM155 induce apoptosis in SK-NEP-1 Wilms tumor cells 
BMC Cancer  2012;12:619.
Background
Survivin, a member of the family of inhibitor of apoptosis proteins, functions as a key regulator of mitosis and programmed cell death. YM155, a novel molecular targeted agent, suppresses survivin, which is overexpressed in many tumor types. The aim of this study was to determine the antitumor activity of YM155 in SK-NEP-1 cells.
Methods
SK-NEP-1 cell growth in vitro and in vivo was assessed by MTT and nude mice experiments. Annexin V/propidium iodide staining followed by flow cytometric analysis was used to detect apoptosis in cell culture. Then gene expression profile of tumor cells treated with YM155 was analyzed with real-time PCR arrays. We then analyzed the expression data with MEV (Multi Experiment View) cluster software. Datasets representing genes with altered expression profile derived from cluster analyses were imported into the Ingenuity Pathway Analysis tool.
Results
YM155 treatment resulted in inhibition of cell proliferation of SK-NEP-1cells in a dose-dependent manner. Annexin V assay, cell cycle, and activation of caspase-3 demonstrates that YM155 induced apoptosis in SK-NEP-1 cells. YM155 significantly inhibited growth of SK-NEP-1 xenografts (YM155 5 mg/kg: 1.45 ± 0.77 cm3; YM155 10 mg/kg: 0.95 ± 0.55 cm3) compared to DMSO group (DMSO: 3.70 ± 2.4 cm3) or PBS group cells (PBS: 3.78 ± 2.20 cm3, ANOVA P < 0.01). YM155 treatment decreased weight of tumors (YM155 5 mg/kg: 1.05 ± 0.24 g; YM155 10 mg/kg: 0.72 ± 0.17 g) compared to DMSO group (DMSO: 2.06 ± 0.38 g) or PBS group cells (PBS: 2.36 ± 0.43 g, ANOVA P < 0.01). Real-time PCR array analysis showed between Test group and control group there are 32 genes significantly up-regulated and 54 genes were significantly down-regulated after YM155 treatment. Ingenuity pathway analysis (IPA) showed cell death was the highest rated network with 65 focus molecules and the significance score of 44. The IPA analysis also groups the differentially expressed genes into biological mechanisms that are related to cell death, cellular function maintenance, cell morphology, carbohydrate metabolism and cellular growth and proliferation. Death receptor signaling (3.87E-19), TNFR1 signaling, induction of apoptosis by HIV1, apoptosis signaling and molecular mechanisms of cancer came out to be the top four most significant pathways. IPA analysis also showed top molecules up-regulated were BBC3, BIRC3, BIRC8, BNIP1, CASP7, CASP9, CD5, CDKN1A, CEBPG and COL4A3, top molecules down-regulated were ZNF443, UTP11L, TP73, TNFSF10, TNFRSF1B, TNFRSF25, TIAF1, STK17A, SST and SPP1, upstream regulator were NR3C1, TP53, dexamethasone , TNF and Akt.
Conclusions
The present study demonstrates that YM155 treatment resulted in apoptosis and inhibition of cell proliferation of SK-NEP-1cells. YM155 had significant role and little side effect in the treatment of SK-NEP-1 xenograft tumors. Real-time PCR array analysis firstly showed expression profile of genes dyes-regulated after YM155 treatment. IPA analysis also represents new molecule mechanism of YM155 treatment, such as NR3C1 and dexamethasone may be new target of YM155. And our results may provide new clues of molecular mechanism of apoptosis induced by YM155.
doi:10.1186/1471-2407-12-619
PMCID: PMC3543843  PMID: 23267699
YM155; SK-NEP-1; Survivin; Apoptosis; Real-time PCR array
25.  Insulin resistance and adiponectin levels are associated with height catch-up growth in pre-pubertal Chinese individuals born small for gestational age 
Abstracts
Background and objective
The study was performed to determine whether catch-up growth is associated with the development of insulin resistance and to explore serum endocrine markers associated with the metabolism of adipose tissue in a Chinese population born small for gestational age(SGA)
Subjects and methods
We recruited 56 children born SGA with catch-up growth and 55 born without catch-up growth, who were further grouped into groups I (with BMI catch-up) and II (without BMI catch-up) respectively, as well as 52 children born appropriate for gestational age (AGA) with normal height. Their serum fasting insulin, fasting glucose, insulin-like growth factor-1, adiponectin, IGFBP-1, triglyceride concentrations, and the homeostasis assessment model for insulin resistance (HOMA-IR) were evaluated.
Results
(1) The HOMA-IR values in SGA-I with catch-up growth group were significantly higher than those in SGA-II with catch-up growth, SGA-I without catch-up growth and AGA children respectively. (2) The serum adiponectin levels of individuals in the SGA-I without catch-up growth and SGA-II with catch-up growth groups were significantly lower than those from the SGA-II without catch-up growth group. There was no difference in triglyceride or IGFBP-1 levels among the groups. (3) The degree of HOMA-IR was positively correlated with age, current BMI and △height SDS in SGA children.
Conclusion
The development of insulin resistance and lower levels of adiponectin were closely correlated with higher BMI and the postnatal height catch-up growth in SGA children.
doi:10.1186/1743-7075-9-107
PMCID: PMC3574033  PMID: 23186039
Small for gestational age; Catch-up growth; Insulin resistance; Adiponectin

Results 1-25 (30)