Search tips
Search criteria

Results 1-25 (100)

Clipboard (0)

Select a Filter Below

Year of Publication
Document Types
1.  Mechanistic insights into the LsrK kinase required for autoinducer-2 quorum sensing activation 
In enteric bacteria, the kinase LsrK catalyzes the phosphorylation of the C5-hydroxyl group in the linear form of 4,5-dihydroxy-2,3-pentanedione (DPD), the precursor of the type II bacterial quorum sensing molecule (AI-2). This phosphorylation is required for AI-2 sequestration in the cytoplasm and subsequent derepression of AI-2 related genes necessary for quorum development. While LsrK is a critical enzyme within the DPD quorum sensing relay system, kinetic details of this kinase have yet to be reported. A continuous UV-vis spectrophotometric assay was developed, which allowed steady-state kinetic analysis of LsrK to be undertaken with the substrates ATP and DPD. The data was most consistent with a rapid equilibrium ordered mechanism with ATP binding first: kcat (7.4 ± 0.6 s−1), Km,ATP (150 ± 30 µM) and Km(app),DPD (1.0 ± 0.2 mM). The assay also allowed a DPD substrate profile to be conducted, which provided an unexpected biochemical disconnect between the previous agonist/antagonist cell based reporter assay and the LsrK assay presented herein. Together these findings raise the importance of LsrK and lay the foundation not only for further understanding of this enzyme and its critical biological role but also the rational design of regulatory molecules targeting AI-2 quorum sensing in pathogenic bacteria.
PMCID: PMC3736694  PMID: 23672516
2.  Towards implementation of Quorum Sensing Autoinducers as Biomarkers for Infectious Disease States 
Analytical chemistry  2013;85(6):3355-3362.
The opportunistic bacterial pathogen Pseudomonas aeruginosa causes chronic lung infections in cystic fibrosis (CF) patients. Importantly, virulence factor expression and biofilm formation in P. aeruginosa is coordinated by quorum sensing (QS) and one of the key QS signaling molecules is 3-oxo-C12-HSL. Remarkably, a tetramic acid, (C12-TA), with antibacterial properties is formed spontaneously from 3-oxo-C12-HSL under physiological conditions. Seeking to better understand this relationship we sought to investigate if 3-oxo-C12-HSL and C12-TA may be contributing factors to the overall pathogenicity of P. aeruginosa in CF individuals and their detection and quantitation in sputum samples might be used as an indicator to assess disease states and monitor therapy success in CF patients. To this end, 3-oxo-C12-HSL and C12-TA concentrations were initially analyzed in P. aeruginosa flow cell biofilms using liquid chromatography coupled with mass spectrometry (LC-MS). A liquid chromatography tandem mass spectrometry (LC-MS-MS)-based method was then developed and validated for their detection and quantification in sputa of CF patients. We highlight that this is the first report to show the presence of both the quorum sensing molecule (3-oxo-C12-HSL) and its rearranged product (C12-TA) in human clinical samples such as sputum. A total of 47 sputum samples from 20 CF and 2 non-CF individuals were analyzed: 3-oxo-C12-HSL was detected and quantified in 45 samples with concentrations ranging from 20 nM to >1000 nM; C12-TA was found in 14 samples (13 – 900 nM). Based on our findings, quorum sensing autoinducers merit further investigation as biomarkers for infectious disease states.
PMCID: PMC3604138  PMID: 23391272
cystic fibrosis; sputum; quorum sensing; Pseudomonas aeruginosa; 3-oxo-C12-HSL; C12-TA; mass spectrometry
3.  Immunomodulation and the quorum sensing molecule 3-oxo-C12-homoserine lactone: The importance of chemical scaffolding for probe development† 
As a guide for chemical probe design, focused analogue synthetic studies were undertaken upon the lactone ring of 3-oxo-C12-homoserine lactone. We have concluded that hydrolytic instability of the heterocyclic ring is pivotal for its ability to modulate immune signaling and probe preparation was aligned with these findings.
PMCID: PMC3566768  PMID: 23328974
4.  Transport of Nanoparticles and Tobramycin-loaded Liposomes in Burkholderia cepacia Complex Biofilms 
PLoS ONE  2013;8(11):e79220.
Due to the intrinsic resistance of Burkholderia cepacia complex (Bcc) to many antibiotics and the production of a broad range of virulence factors, lung infections by these bacteria, primarily occurring in cystic fibrosis (CF) patients, are very difficult to treat. In addition, the ability of Bcc organisms to form biofilms contributes to their persistence in the CF lung. As Bcc infections are associated with poor clinical outcome, there is an urgent need for new effective therapies to treat these infections. In the present study, we investigated whether liposomal tobramycin displayed an increased anti-biofilm effect against Bcc bacteria compared to free tobramycin. Single particle tracking (SPT) was used to study the transport of positively and negatively charged nanospheres in Bcc biofilms as a model for the transport of liposomes. Negatively charged nanospheres became immobilized in close proximity of biofilm cell clusters, while positively charged nanospheres interacted with fiber-like structures, probably eDNA. Based on these data, encapsulation of tobramycin in negatively charged liposomes appeared promising for targeted drug delivery. However, the anti-biofilm effect of tobramycin encapsulated into neutral or anionic liposomes did not increase compared to that of free tobramycin. Probably, the fusion of the anionic liposomes with the negatively charged bacterial surface of Bcc bacteria was limited by electrostatic repulsive forces. The lack of a substantial anti-biofilm effect of tobramycin encapsulated in neutral liposomes could be further investigated by increasing the liposomal tobramycin concentration. However, this was hampered by the low encapsulation efficiency of tobramycin in these liposomes.
PMCID: PMC3828301  PMID: 24244452
5.  Regulation of Staphylococcus aureus MntC Expression and Its Role in Response to Oxidative Stress 
PLoS ONE  2013;8(10):e77874.
Staphylococcus aureus is a successful human pathogen that has developed several approaches to evade the immune system, including resistance strategies to prevent oxidative killing by immune cells. One mechanism by which this evasion occurs is by production of superoxide dismutase enzymes, which require manganese as a cofactor. Manganese is acquired by the manganese transporter MntABC. One component of this operon, MntC, has been proposed as a potential vaccine candidate due to its early in vivo expression and its ability to provide protection in preclinical models of staphylococcal infection. In the current study, we interrogate the role of this protein in protecting S. aureus from oxidative stress. We demonstrate that mutation of mntC in a number of invasive S. aureus clinical isolates results in increased sensitivity to oxidative stress. In addition, we show that while downregulation of mntC transcription is triggered upon exposure to physiological concentrations of manganese, MntC protein is still present on the bacterial surface at these same concentrations. Taken together, these results provide insight into the role of this antigen for the pathogen.
PMCID: PMC3810276  PMID: 24205007
6.  C4-Alkoxy-HPD: a Potent Class of Synthetic Modulators Surpassing Nature in AI-2 Quorum Sensing 
Journal of the American Chemical Society  2012;134(33):13562-13564.
Bacteria have developed cell-to-cell communication mechanisms, termed quorum sensing (QS), which regulate bacterial gene expression in a cell population-dependent manner. Autoinducer-2 (AI-2), a class of QS signaling molecules derived from (4S)-4,5-dihydroxy-2,3-pentanedione (DPD), has been identified in both Gram-negative and Gram-positive bacteria. Despite considerable interest in the AI-2 QS system, the biomolecular communication used by distinct bacterial species still remains shrouded. Herein we report the synthesis and evaluation of a new class of DPD analogs, C4-alkoxy-5-hydroxy-2,3-pentanediones, termed C4-alkoxy-HPDs. Remarkably, two of the analogs were more potent QS agonists than the natural ligand, DPD, in Vibrio harveyi. The findings presented extend insights into ligand-receptor recognition/signaling in the AI-2 mediated QS system.
PMCID: PMC3438919  PMID: 22866957
7.  A Novel Naturally Occurring Tandem Promoter in Modified Vaccinia Virus Ankara Drives Very Early Gene Expression and Potent Immune Responses 
PLoS ONE  2013;8(8):e73511.
Modified vaccinia virus Ankara (MVA) has been shown to be suitable for the generation of experimental vaccines against cancer and infectious diseases, eliciting strong humoral and cellular immune responses. In viral vectored vaccines, strong recombinant antigen expression and timing of expression influence the quantity and quality of the immune response. Screening of synthetic and native poxvirus promoters for strong protein expression in vitro and potent immune responses in vivo led to the identification of the MVA13.5L promoter, a unique and novel naturally occurring tandem promoter in MVA composed of two 44 nucleotide long repeated motifs, each containing an early promoter element. The MVA13.5L gene is highly conserved across orthopoxviruses, yet its function is unknown. The unique structure of its promoter is not found for any other gene in the MVA genome and is also conserved in other orthopoxviruses. Comparison of the MVA13.5L promoter activity with synthetic poxviral promoters revealed that the MVA13.5L promoter produced higher levels of protein early during infection in HeLa cells and particularly in MDBK cells, a cell line in which MVA replication stops at an early stage before the expression of late genes. Finally, a recombinant antigen expressed under the control of this novel promoter induced high antibody titers and increased CD8 T cell responses in homologous prime-boost immunization compared to commonly used promoters. In particular, the recombinant antigen specific CD8 T cell responses dominated over the immunodominant B8R vector-specific responses after three vaccinations and even more during the memory phase. These results have identified the native MVA13.5L promoter as a new potent promoter for use in MVA vectored preventive and therapeutic vaccines.
PMCID: PMC3741161  PMID: 23951355
8.  Iron-Induced Changes in the Proteome of Trichomonas vaginalis Hydrogenosomes 
PLoS ONE  2013;8(5):e65148.
Iron plays a crucial role in metabolism as a key component of catalytic and redox cofactors, such as heme or iron-sulfur clusters in enzymes and electron-transporting or regulatory proteins. Limitation of iron availability by the host is also one of the mechanisms involved in immunity. Pathogens must regulate their protein expression according to the iron concentration in their environment and optimize their metabolic pathways in cases of limitation through the availability of respective cofactors. Trichomonas vaginalis, a sexually transmitted pathogen of humans, requires high iron levels for optimal growth. It is an anaerobe that possesses hydrogenosomes, mitochondrion-related organelles that harbor pathways of energy metabolism and iron-sulfur cluster assembly. We analyzed the proteomes of hydrogenosomes obtained from cells cultivated under iron-rich and iron-deficient conditions employing two-dimensional peptide separation combining IEF and nano-HPLC with quantitative MALDI-MS/MS. We identified 179 proteins, of which 58 were differentially expressed. Iron deficiency led to the upregulation of proteins involved in iron-sulfur cluster assembly and the downregulation of enzymes involved in carbohydrate metabolism. Interestingly, iron affected the expression of only some of multiple protein paralogues, whereas the expression of others was iron independent. This finding indicates a stringent regulation of differentially expressed multiple gene copies in response to changes in the availability of exogenous iron.
PMCID: PMC3669245  PMID: 23741475
9.  Retraction: Stereochemical Insignificance Discovered in Acinetobacter baumannii Quorum Sensing 
PLoS ONE  2013;8(5):10.1371/annotation/1345f9b0-016e-4123-9e72-6ccc4fa17ba2.
PMCID: PMC3655197  PMID: 23690906
10.  Retraction: Stereochemical Insignificance Discovered in Acinetobacter baumannii Quorum Sensing 
PLoS ONE  2013;8(4):10.1371/annotation/8f2ddf91-3499-4627-9a91-449b78465f9d.
PMCID: PMC3634625  PMID: 23853689
11.  The use of small molecule probes to study spatially separated stimulus-induced signaling pathways 
Simultaneous activation of signaling pathways requires dynamic assembly of higher-order protein complexes at the cytoplasmic domains of membrane-associated receptors in a stimulus-specific manner. Here, using the paradigm of cellular activation through cytokine and innate immune receptors, we demonstrate the proof-of-principle application of small molecule probes for the dissection of receptor-proximal signaling processes, such as activation of the transcription factor NF- B and the protein kinase p38.
PMCID: PMC3288742  PMID: 22300658
NF-kB pathway; Toll-like-receptor; Selective inhibitor; Innate immunity; Tumor Necrosis Factor
12.  A Multivalent Probe for AI-2 Quorum Sensing Receptors 
Journal of the American Chemical Society  2011;133(40):15934-15937.
Multivalency is a common principle in the recognition of cellular receptors, and multivalent agonists and antagonists have played a major role in understanding mammalian cell receptor biology. The study of bacterial cell receptors using similar approaches, however, has lagged behind. Herein we describe our efforts toward the development of a dendrimer-based multivalent probe for studying AI-2 quorum sensing receptors. From these studies, we have discovered a chemical probe specific for Lsr-type AI-2 quorum sensing receptors with the potential for enabling the identification of new bacterial species that utilize AI-2 as a quorum sensing signaling molecule.
PMCID: PMC3203215  PMID: 21913711
13.  Synthesis of “clickable” acylhomoserine lactone quorum sensing probes: unanticipated effects on mammalian cell activation 
Alkynyl- and azido-tagged 3-oxo-C12-acylhomoserine lactone probes have been synthesized to examine their potential utility as probes for discovering the mammalian protein target of the Pseudomonas aeruginosa autoinducer, 3-oxo-C12-acylhomoserine lactone. Although such substitutions are commonly believed to be quite conservative, from these studies, we have uncovered a drastic difference in activity between the alkynyl- and azido-modified compounds, and provide an example where such structural modification has proved to be much less than conservative.
PMCID: PMC3081916  PMID: 21190852
Acylhomoserine lactones; Click chemistry; Pseudomonas aeruginosa; Quorum sensing
15.  Inhibition of tumor metastasis: Functional immune modulation of the CUB Domain Containing Protein 1 
Molecular pharmaceutics  2010;7(1):245.
Despite significant progress and notable successes in tumor therapy, malignant disease remains an extremely difficult problem in today's health care setting. There is, however, an increasing application of new therapies targeting proteins specifically upregulated on tumor cells. These innovative therapeutic approaches are aimed at molecules that contribute to malignant development and progression but spare normal tissues. The CUB Domain Containing Protein 1 (CDCP1) is such a tumor-associated protein and thus, a potential candidate for targeted cancer immunotherapy. Herein, we describe the generation of function-blocking human antibodies against CDCP1 that were obtained from human scFv phage display libraries using subtractive panning protocols on CDCP1 expressing cancer cells and immunopurified CDCP1 protein. One of the isolated anti-CDCP1 antibodies, namely C20Fc, efficiently blocked experimental metastasis of human carcinoma cells, including HeLa cells stably transfected with CDCP1 and prostate carcinoma cells PC-hi/diss naturally expressing CDCP1, in both chick embryo and mouse model systems. The C20Fc antibody also reduced colony formation of CDCP1 expressing cells in a soft agar assay for anchorage-independent cell growth. Specific targeting of CDCP1 by C20Fc mediated the delivery of a toxin-conjugated antibody complex, thus, providing evidence for antibody internalization and specific killing of CDCP1-positive tumor cells. Our findings indicate a functional role for CDCP1 in human cancer and underscore the therapeutic potential of function-blocking anti-CDCP1 antibodies targeting both primary and metastatic carcinoma cells.
PMCID: PMC2815031  PMID: 19916495
Immunotherapy; CDCP-1; metastasis; human antibodies; carcinoma
16.  Revisiting AI-2 quorum sensing inhibitors: Direct comparison of alkyl-DPD analogs and a natural product fimbrolide 
Journal of the American Chemical Society  2009;131(43):15584-15585.
Quorum sensing (QS) systems have been proposed in a wide variety of bacteria. The AI-2-based QS system represents the most studied of these proposed interspecies systems, and has been shown to regulate diverse functions such as bioluminescence, expression of virulence factors, and biofilm formation. As such, the development of modulatory compounds, both agonists and antagonists, is of great interest for the study of unknown AI-2 based QS systems and the potential treatment of bacterial infections. The fimbrolide class of natural products has exhibited excellent inhibitory activity against AI-2-based QS, and as such may be considered the “gold-standard” of AI-2 inhibitors. Thus, we sought to include a fimbrolide as a control compound for our recently developed alkyl-DPD panel of AI-2 modulators. Herein, we present a revised synthesis of a commonly studied fimbrolide, as well as a direct comparison between the fimbrolide and alkyl-DPD analogs. We demonstrate that our alkyl-DPD analogs are more potent inhibitors of QS in both Vibrio harveyi and Salmonella typhimurium, the two organisms with defined AI-2 systems, and in doing so, call into question the widely accepted use of fimbrolide-derived compounds as the “gold standard” of AI-2 inhibition.
PMCID: PMC2784249  PMID: 19824634
17.  Defining the Mode of Action of Tetramic Acid Antibacterials Derived from Pseudomonas aeruginosa Quorum Sensing Signals 
Journal of the American Chemical Society  2009;131(40):14473-14479.
In Nature, bacteria rarely exist as single, isolated entities, but rather as communities comprised of many other species including higher host organisms. To survive in these competitive environments, microorganisms have developed elaborate tactics such as the formation of biofilms and the production of antimicrobial toxins. Recently, it was discovered that the Gram-negative bacterium Pseudomonas aeruginosa, an opportunistic human pathogen, produces an antibiotic, 3-(1-hydroxydecylidene)-5-(2-hydroxyethyl)pyrrolidine-2,4-dione (C12-TA), derived from one of its quorum sensing molecules. Here, we present a comprehensive study of the expanded spectrum of C12-TA antibacterial activity against microbial competitors encountered by P. aeruginosa in Nature as well as significant human pathogens. The mechanism of action of C12-TA was also elucidated and C12-TA was found to dissipate both the membrane potential and pH gradient of Gram-positive bacteria, correlating well with cell death. Notably, in stark contrast to its parent molecule 3-oxo-dodecanoyl homoserine lactone (3-oxo-C12-HSL), neither activation of cellular stress pathways nor cytotoxicity was observed in human cells treated with C12-TA. Our results suggest that the QS machinery of P. aeruginosa has evolved for a dual-function, both to signal others of the same species, and also to defend against both host immunity and competing bacteria. Because of the broad-spectrum antibacterial activity, established mode of action, lack of rapid resistance development, and tolerance by human cells, the C12-TA scaffold may also serve as a new lead compound for the development of antimicrobial therapeutics.
PMCID: PMC2760024  PMID: 19807189
18.  The quorum quenching antibody RS2-1G9 protects macrophages from the cytotoxic effects of the Pseudomonas aeruginosa quorum sensing signalling molecule N-3-oxo-dodecanoyl-homoserine lactone 
Molecular immunology  2008;45(9):2710-2714.
The Gram-negative bacterium Pseudomonas aeruginosa, an opportunistic human pathogen, uses acylhomoserine lactone-based quorum sensing systems to control its pathogenicity. One of its quorum sensing factors, N-3-oxo-dodecanoyl homoserine lactone, has been shown not only to mediate bacterial quorum sensing but also to exert cytotoxic effects on mammalian cells. The monoclonal antibody RS2-1G9 generated against a 3-oxo-dodecanoyl homoserine lactone analogue hapten was able to protect murine bone marrow-derived macrophages from the cytotoxic effects and also prevented the activation of the mitogen-activated protein kinase p38. These data demonstrate that an immunopharmacotherapeutic approach to combat P. aeruginosa infections might be a viable therapeutic option as the monoclonal antibody RS2-1G9 can readily sequester bacterial N-3-oxo-dodecanoyl homoserine lactone molecules, thus interfering with their biological effects in prokaryotic and eukaryotic systems.
PMCID: PMC2359578  PMID: 18304641
20.  A cell-penetrating peptidic GRP78 ligand for tumor cell-specific prodrug therapy 
Tumor targeting peptides are promising vehicles for site-directed cancer therapy. Pep42, a cyclic 13-mer oligopeptide that specifically binds to glucose-regulated protein 78 (GRP78) and internalized into cancer cells, represents an excellent vehicle for tumor cell-specific chemotherapy. Here, we report the synthesis and evaluation of Pep42-prodrug conjugates that contain a cathepsin B-cleavable linker, resulting in the traceless release of drug inside the cancer cells.
PMCID: PMC2288489  PMID: 18243696
21.  Infection control by antibody disruption of bacterial quorum sensing signaling 
Chemistry & biology  2007;14(10):1119-1127.
Quorum sensing (QS) is the process through which bacteria communicate utilizing small diffusible molecules termed autoinducers. It has been demonstrated that QS controls a plethora of microbial processes including the expression of virulence factors. Here, we report an immunopharmacotherapeutic approach for the attenuation of QS in the Gram-positive human pathogen Staphylococcus aureus. An anti-autoinducer monoclonal antibody, AP4-24 H11, was elicited against a rationally-designed hapten, and efficiently inhibited QS in vitro through the sequestration of the autoinducing peptide (AIP)-4 produced by S. aureus RN4850. Importantly, AP4-24H11 suppressed S. aureus pathogenicity in an abscess formation mouse model in vivo and provided complete protection against a lethal S. aureus challenge. These findings provide a strong foundation for further investigations of using immunopharmacotherapy for the treatment of bacterial infections in which QS controls the expression of virulence factors.
PMCID: PMC2088803  PMID: 17961824
Molecular pharmaceutics  2007;4(3):435-447.
Major obstacles in the development of new therapeutic anticancer drugs are the low bioavailability of hydrophilic substances as well as the nonspecific toxicity towards healthy tissues. As such cell-targeting oligopeptides have emerged as attractive drug delivery vehicles for a variety of different types of cargo. The recently identified peptide Pep42 binds to the glucose-regulated protein 78 (GRP78), which is overexpressed on the cell surface of human cancer cells and internalizes into these cells. Herein, we demonstrate how Pep42 can be utilized as a carrier for different types of cytotoxic drugs to specifically target human cancer cell lines in vitro in a strictly GRP78-dependent manner. Furthermore, the mechanism of internalization of Pep42 was elucidated and found to involve clathrin-mediated endocytosis. Pep42 subsequently co-localizes within the lysosomal compartment. Importantly, we also provide evidence that Pep42 conjugated quantum dots have the ability to selectively enrich in tumor tissue in a xenograft mouse model. Our results suggest that the highly specific GRP78-Pep42 interaction can be utilized for the generation of Pep42-drug conjugates as a powerful anticancer drug delivery system that could substantially enhance the efficacy of chemotherapy by increasing the drug-tumor specificity; thus, minimizing the adverse side effects associated with conventional cancer therapeutics.
PMCID: PMC2533281  PMID: 17373820
Drug delivery; tumor targeting; GRP78; heat shock protein; cyclic peptide
24.  Crystal Structures of a Quorum-Quenching Antibody 
Journal of molecular biology  2007;368(5):1392-1402.
A large number of Gram-negative bacteria employ N-acyl homoserine lactones (AHLs) as signaling molecules in quorum sensing, which is a population density-dependent mechanism to coordinate gene expression. Antibody RS2-1G9 was elicited against a lactam mimetic of the N-acyl homoserine lactone and represents the only reported monoclonal antibody that recognizes the naturally-occuring N-acyl homoserine lactone with high affinity. Due to its high cross-reactivity, RS2-1G9 showed remarkable inhibition of quorum sensing signaling in Pseudomonas aeruginosa, a common opportunistic pathogen in humans. The crystal structure of Fab RS2-1G9 in complex with a lactam analog revealed complete encapsulation of the polar lactam moiety in the antibody combining site. This mode of recognition provides an elegant immunological solution for tight binding to an aliphatic, lipid-like ligand with a small head group lacking typical haptenic features, such as aromaticity or charge, which are often incorporated into hapten design to generate high-affinity antibodies. The ability of RS2-1G9 to discriminate between closely-related AHLs is conferred by six hydrogen bonds to the ligand. Conversely, cross-reactivity of RS2-1G9 towards the lactone is likely to originate from conservation of these hydrogen bonds as well as an additional hydrogen bond to the oxygen of the lactone ring. A short and narrow tunnel exiting at the protein surface harbors a portion of the acyl chain and would not allow for entry of the head group. The crystal structure of the antibody without its cognate lactam or lactone ligands revealed a considerably altered antibody combining site with a closed binding pocket, suggestive of an induced fit mechanism for ligand binding. Curiously, a completely buried ethylene glycol molecule mimics the lactam ring and, thus, serves as a surrogate ligand. The detailed structural delineation of this quorum-quenching antibody will now aid in further development of an antibody-based therapy against bacterial pathogens by interference with quorum sensing.
PMCID: PMC1994716  PMID: 17400249
Crystal Structure; hapten complex; quorum sensing; quorum quenching; N-acyl homoserine lactone
25.  Identification and characterization of single chain anti-cocaine catalytic antibodies 
Journal of molecular biology  2006;365(3):722-731.
Cocaine is a powerful and addictive stimulant whose abuse remains a prevalent health and societal crisis. Unfortunately, no pharmacological therapies exist and therefore alternative protein-based therapies have been examined. One such approach is immunopharmacotherapy, wherein antibodies are utilized to either bind or hydrolyze cocaine thereby blocking it from exerting its euphoric effect. Towards this end, antibodies capable of binding and hydrolyzing cocaine were identified by phage display from a biased single chain antibody library generated from the spleens of mice previously immunized with a cocaine phosphonate transition state analog hapten. Two classes of antibodies emerged based on sequence homology and mode of action. Alanine scanning mutagenesis and kinetic analysis revealed that residues H97, H99, and L96 are crucial for antibodies 3F5 and 3H9 to accelerate the hydrolysis of cocaine. Antibodies 3F1 through 3F4, which are similar to our previously identified 3A6 class of antibodies, catalyze hydrolysis through transition state stabilization by tyrosine or histidine residues H50 and L94. Mutation of either one or both tyrosines to histidine conferred hydrolytic activity on previously inactive antibody 3F4. Mutational analysis of residue H50 of antibody 3F3 resulted in a glutamine mutant with a rate enhancement three times greater than wildtype. A double mutant, containing glutamineH50 and lysineH52, showed a ten-fold rate enhancement over wildtype. These results indicate the power of initial selection of catalytic antibodies from a biased antibody library in both rapid generation and screening of mutants for improved catalysis.
PMCID: PMC1828637  PMID: 17084858
cocaine; catalytic antibodies; phage display; immunopharmacotherapy; structure based design

Results 1-25 (100)