PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-3 (3)
 

Clipboard (0)
None

Select a Filter Below

Journals
Authors
Year of Publication
Document Types
author:("Dong, wendan")
1.  Complete Chloroplast Genome of Sedum sarmentosum and Chloroplast Genome Evolution in Saxifragales 
PLoS ONE  2013;8(10):e77965.
Comparative chloroplast genome analyses are mostly carried out at lower taxonomic levels, such as the family and genus levels. At higher taxonomic levels, chloroplast genomes are generally used to reconstruct phylogenies. However, little attention has been paid to chloroplast genome evolution within orders. Here, we present the chloroplast genome of Sedum sarmentosum and take advantage of several available (or elucidated) chloroplast genomes to examine the evolution of chloroplast genomes in Saxifragales. The chloroplast genome of S. sarmentosum is 150,448 bp long and includes 82,212 bp of a large single-copy (LSC) region, 16.670 bp of a small single-copy (SSC) region, and a pair of 25,783 bp sequences of inverted repeats (IRs).The genome contains 131 unique genes, 18 of which are duplicated within the IRs. Based on a comparative analysis of chloroplast genomes from four representative Saxifragales families, we observed two gene losses and two pseudogenes in Paeonia obovata, and the loss of an intron was detected in the rps16 gene of Penthorum chinense. Comparisons among the 72 common protein-coding genes confirmed that the chloroplast genomes of S. sarmentosum and Paeonia obovata exhibit accelerated sequence evolution. Furthermore, a strong correlation was observed between the rates of genome evolution and genome size. The detected genome size variations are predominantly caused by the length of intergenic spacers, rather than losses of genes and introns, gene pseudogenization or IR expansion or contraction. The genome sizes of these species are negatively correlated with nucleotide substitution rates. Species with shorter duration of the life cycle tend to exhibit shorter chloroplast genomes than those with longer life cycles.
doi:10.1371/journal.pone.0077965
PMCID: PMC3799696  PMID: 24205047
2.  Sequencing Angiosperm Plastid Genomes Made Easy: A Complete Set of Universal Primers and a Case Study on the Phylogeny of Saxifragales 
Genome Biology and Evolution  2013;5(5):989-997.
Plastid genomes are an invaluable resource for plant biological studies. However, the number of completely sequenced plant plastid genomes is still small compared with the vast number of species. To provide an alternative generalized approach, we designed a set of 138 pairs of universal primers for amplifying (termed “short-range PCR”) and sequencing the entire genomes of the angiosperm plastid genomes. The universality of the primers was tested by using species from the basal to asterid angiosperms. The polymerase chain reaction (PCR) success rate was higher than 96%. We sequenced the complete chloroplast genome of Liquidambar formosana as an example using this method and compared it to the genomes independently determined by long-range PCR (from 6.3 kb to 13.3 kb) and next-generation sequencing methods. The three genomes showed that they were completely identical. To test the phylogenetic efficiency of this method, we amplified and sequenced 18 chloroplast regions of 19 Saxifragales and Saxifragales-related taxa, as a case study, to reconstruct the phylogeny of all families of the order. Phylograms based on a combination of our data, together with those from GenBank, clearly indicate three family groups and three single families within the order. This set of universal primers is expected to accelerate the accumulation of angiosperm plastid genomes and to make faster mass data collection of plastid genomes for molecular systematics.
doi:10.1093/gbe/evt063
PMCID: PMC3673619  PMID: 23595020
plastid genome; universal primers; Saxifragales
3.  Highly Variable Chloroplast Markers for Evaluating Plant Phylogeny at Low Taxonomic Levels and for DNA Barcoding 
PLoS ONE  2012;7(4):e35071.
Background
At present, plant molecular systematics and DNA barcoding techniques rely heavily on the use of chloroplast gene sequences. Because of the relatively low evolutionary rates of chloroplast genes, there are very few choices suitable for molecular studies on angiosperms at low taxonomic levels, and for DNA barcoding of species.
Methodology/Principal Findings
We scanned the entire chloroplast genomes of 12 genera to search for highly variable regions. The sequence data of 9 genera were from GenBank and 3 genera were of our own. We identified nearly 5% of the most variable loci from all variable loci in the chloroplast genomes of each genus, and then selected 23 loci that were present in at least three genera. The 23 loci included 4 coding regions, 2 introns, and 17 intergenic spacers. Of the 23 loci, the most variable (in order from highest variability to lowest) were intergenic regions ycf1-a, trnK, rpl32-trnL, and trnH-psbA, followed by trnSUGA-trnGUCC, petA-psbJ, rps16-trnQ, ndhC-trnV, ycf1-b, ndhF, rpoB-trnC, psbE-petL, and rbcL-accD. Three loci, trnSUGA-trnGUCC, trnT-psbD, and trnW-psaJ, showed very high nucleotide diversity per site (π values) across three genera. Other loci may have strong potential for resolving phylogenetic and species identification problems at the species level. The loci accD-psaI, rbcL-accD, rpl32-trnL, rps16-trnQ, and ycf1 are absent from some genera. To amplify and sequence the highly variable loci identified in this study, we designed primers from their conserved flanking regions. We tested the applicability of the primers to amplify target sequences in eight species representing basal angiosperms, monocots, eudicots, rosids, and asterids, and confirmed that the primers amplified the desired sequences of these species.
Significance/Conclusions
Chloroplast genome sequences contain regions that are highly variable. Such regions are the first consideration when screening the suitable loci to resolve closely related species or genera in phylogenetic analyses, and for DNA barcoding.
doi:10.1371/journal.pone.0035071
PMCID: PMC3325284  PMID: 22511980

Results 1-3 (3)