Search tips
Search criteria

Results 1-8 (8)

Clipboard (0)

Select a Filter Below

Year of Publication
Document Types
1.  Physiological and Biochemical Changes in Brassica juncea Plants under Cd-Induced Stress 
BioMed Research International  2014;2014:726070.
Plants of Brassica juncea L. var. RLC-1 were exposed for 30 days to different concentrations (0, 0.2, 0.4, and 0.6 mM) of cadmium (Cd) to analyze the Cd uptake, H2O2 content, hormonal profiling, level of photosynthetic pigments (chlorophyll, carotenoid, and flavonoid), gaseous exchange parameters (photosynthetic rate, vapour pressure deficit, intercellular CO2 concentration, and intrinsic mesophyll rate), antioxidative enzymes (superoxide dismutase, polyphenol oxidase, glutathione-S transferase, and glutathione peroxidase), antioxidant assays (DPPH, ABTS, and total phenolic content), and polyphenols. Results of the present study revealed the increased H2O2 content and Cd uptake with increasing metal doses. UPLC analysis of plants showed the presence of various polyphenols. Gaseous exchange measurements were done by infrared gas analyzer (IRGA), which was negatively affected by metal treatment. In addition, LC/MS study showed the variation in the expression of plant hormones. Level of photosynthetic pigments and activities of antioxidative enzymes were altered significantly in response to metal treatment. In conclusion, the antioxidative defence system of plants got activated due to heavy metal stress, which protects the plants by scavenging free radicals.
PMCID: PMC4123575  PMID: 25133178
2.  28-Homobrassinolide Alters Protein Content and Activities of Glutathione-S-Transferase and Polyphenol Oxidase in Raphanus Sativus L. Plants Under Heavy Metal Stress 
Toxicology International  2014;21(1):44-50.
The application of brassinosteroids (BRs), the plant steroidal hormones, results in an increased tolerance toward stress and thus helps improving the yield of crop plants. The present study was carried out to investigate the effect of 28-homobrassinolide (28-HBL) on the protein content as well as activities of antioxidant enzymes viz., glutathione-s-transferase (GST) and polyphenol oxidase (PPO) in radish plants grown under Cadmium (Cd) and Mercury (Hg) metal stress.
Materials and Methods:
Shoots of 60 and 90 days old radish plants, grown under Cd and Hg metal stress (0, 0.5, 1.0, 1.5 mM) and given the presowing treatment of 28-HBL (0, 10-7, 10-9, 10-11 M) to seeds for 8 h, were analyzed for protein content and GST and PPO enzyme activities.
Protein content showed decrease in plants given Cd and Hg metal treatment alone, while treatment with 28-HBL enhanced the protein content, suggesting its stress protective role. An increase in the activity of antioxidative enzymes was also observed in plants stressed with heavy metals as well as in those supplemented with 28-HBL.
In the present investigation, the activity of antioxidative enzymes was found to increase due to metal stress and a further increase was noticed in plants given both metal and 28-HBL treatment, suggesting the stress protective role of 28-HBL via modulating the antioxidative enzymes.
PMCID: PMC3989914  PMID: 24748734
28-HBL; glutathione-s-transferase; polyphenol oxidase; Raphanus sativus L.
3.  Interaction of Brassinosteroids and Polyamines Enhances Copper Stress Tolerance in Raphanus Sativus  
Journal of Experimental Botany  2012;63(15):5659-5675.
Brassinosteroids (BRs) and polyamines (PAs) regulate various responses to abiotic stress, but their involvement in the regulation of copper (Cu) homeostasis in plants exposed to toxic levels of Cu is poorly understood. This study provides an analysis of the effects of exogenously applied BRs and PAs on radish (Raphanus sativus) plants exposed to toxic concentrations of Cu. The interaction of 24-epibrassinolide (EBR, an active BR) and spermidine (Spd, an active PA) on gene expression and the physiology of radish plants resulted in enhanced tolerance to Cu stress. Results indicated that the combined application of EBR and Spd modulated the expression of genes encoding PA enzymes and genes that impact the metabolism of indole-3-acetic acid (IAA) and abscisic acid (ABA) resulting in enhanced Cu stress tolerance. Altered expression of genes implicated in Cu homeostasis appeared to be the main effect of EBR and Spd leading to Cu stress alleviation in radish. Ion leakage, in vivo imaging of H2O2, comet assay, and improved tolerance of Cu-sensitive yeast strains provided further evidence for the ability of EBR and Spd to improve Cu tolerance significantly. The study indicates that co-application of EBR and Spd is an effective approach for Cu detoxification and the maintenance of Cu homeostasis in plants. Therefore, the use of these compounds in agricultural production systems should be explored.
PMCID: PMC3444278  PMID: 22915739
Abscisic acid; brassinosteroids; comet assay; copper transporters; Cu homeostasis; Cu-sensitive yeast; indole-3-acetic acid; oxidative stress; polyamines
4.  Chromium Stress Mitigation by Polyamine-Brassinosteroid Application Involves Phytohormonal and Physiological Strategies in Raphanus sativus L. 
PLoS ONE  2012;7(3):e33210.
Brassinosteroids (BRs) and polyamines (PAs) are well-established growth regulators playing key roles in stress management among plants. In the present study, we evaluated the effects of epibrassinolide (EBL, an active BR) and spermidine (Spd, an active PA) on the tolerance of radish to oxidative stress induced by Cr (VI) metal. Our investigation aimed to study the impacts of EBL (10−9 M) and/or Spd (1 mM) on the biochemical and physiological responses of radish (Raphanus sativus L.) under Cr-stress. Applications of EBL and/or Spd were found to improve growth of Cr-stressed seedlings in terms of root length, shoot length and fresh weight. Our data also indicated that applications of EBL and Spd have significant impacts, particularly when applied together, on the endogenous titers of PAs, free and bound forms of IAA and ABA in seedlings treated with Cr-stress. Additionally, co-applications of EBL and Spd modulated more remarkably the titers of antioxidants (glutathione, ascorbic acid, proline, glycine betaine and total phenol) and activities of antioxidant enzymes (guaicol peroxidase, catalase, superoxide dismutase and glutathione reductase) in Cr-stressed plants than their individual applications. Attenuation of Cr-stress by EBL and/or Spd (more efficient with EBL and Spd combination) was also supported by enhanced values of stress indices, such as phytochelatins, photosynthetic pigments and total soluble sugars, and reduction in malondialdehyde and H2O2 levels in Cr-treated seedlings. Diminution of ROS production and enhanced ROS scavenging capacities were also noted for EBL and/or Spd under Cr-stress. However, no significant reduction in Cr uptake was observed for co-application of EBL and Spd when compared to their individual treatments in Cr-stressed seedlings. Taken together, our results demonstrate that co-applications of EBL and Spd are more effective than their independent treatments in lowering the Cr-induced oxidative stress in radish, leading to improved growth of radish seedlings under Cr-stress.
PMCID: PMC3315560  PMID: 22479371
5.  Diversity in the Enteric Viruses Detected in Outbreaks of Gastroenteritis from Mumbai, Western India 
Faecal specimens collected from two outbreaks of acute gastroenteritis that occurred in southern Mumbai, India in March and October, 2006 were tested for seven different enteric viruses. Among the 218 specimens tested, 95 (43.6%) were positive, 73 (76.8%) for a single virus and 22 (23.2%) for multiple viruses. Single viral infections in both, March and October showed predominance of enterovirus (EV, 33.3% and 40%) and rotavirus A (RVA, 33.3% and 25%). The other viruses detected in these months were norovirus (NoV, 12.1% and 10%), rotavirus B (RVB, 12.1% and 10%), enteric adenovirus (AdV, 6.1% and 7.5%), Aichivirus (AiV, 3% and 7.5%) and human astrovirus (HAstV, 3% and 0%). Mixed viral infections were largely represented by two viruses (84.6% and 88.9%), a small proportion showed presence of three (7.7% and 11%) and four (7.7% and 0%) viruses in the two outbreaks. Genotyping of the viruses revealed predominance of RVA G2P[4], RVB G2 (Indian Bangladeshi lineage), NoV GII.4, AdV-40, HAstV-8 and AiV B types. VP1/2A junction region based genotyping showed presence of 11 different serotypes of EVs. Although no virus was detected in the tested water samples, examination of both water and sewage pipelines in gastroenteritis affected localities indicated leakages and possibility of contamination of drinking water with sewage water. Coexistence of multiple enteric viruses during the two outbreaks of gastroenteritis emphasizes the need to expand such investigations to other parts of India.
PMCID: PMC3367285  PMID: 22690171
adenovirus; Aichivirus; astrovirus; enterovirus; norovirus; rotavirus; gastroenteritis outbreak
6.  Mycobacterium avium-intracellulare brain abscess in HIV-positive patient 
Mycobacterial opportunistic infections are a major cause of morbidity and mortality among patients living with HIV (PLHIV) worldwide. Nontuberculous mycobacterial (NTM) infection is one of the leading causes of opportunistic infection in patients with advanced acquired immunodeficiency syndrome i.e., with CD4 count less than 50/ Mycobacterium avium complex (MAC) is among the most common opportunistic bacterial infections in those patients with advanced immunodeficiency apart from cryptococcal meningitis, progressive multifocal leukoencephalopathy, etc. Common presentations of mycobacterium avium complex are fever, lymphadenitis and respiratory disease. Immune reconstitution disease is also known to manifest with MAC infections in PLHIV on highly active antiretroviral therapy. Very few cases of central nervous system involvement due to NTM infection have been described. We are reporting a case of advanced acquired immunodeficiency who presented with brain abscess due to Mycobacterium avium intracellulare.
PMCID: PMC3299074  PMID: 22412276
Brain abscess; mycobacterium avium intracellulare; non tuberculous mycobacterium
7.  24-epibrassinolide induced antioxidative defense system of Brassica juncea L. under Zn metal stress 
The present study deals with the effects of 24-epibrassinolide on growth, lipid peroxidation, antioxidative enzyme activities, non-enzymatic antioxidants and protein content in 30 days old leaves of Brassica juncea (var. PBR 91) under zinc metal stress in field conditions. Surface sterilized seeds of B. juncea were given pre-soaking treatments of 24-EBL (10−10, 10−8 and 10−6 M) for 8 h. Different concentrations of zinc metal in the form of ZnSO4.7H2O (0, 0.5, 1.0, 1.5 and 2.0 mM) were added in the soil kept in experimental pots. Seeds soaked in 24-EBL for 8 h were sown in the earthern pots containing different concentrations of Zn metal. After 30 days of sowing, the plants were analyzed for growth parameters in terms of shoot length and number of leaves. Thereafter, leaves were excised and content of proteins, non-enzymatic antioxidants, malondialdehyde (MDA) and the activities of antioxidative enzymes (superoxide dismutase (SOD) (EC catalase (CAT) (EC, ascorbate peroxidase (APOX) (EC, guaiacol peroxidase (POD) (EC glutathione reductase (GR) (EC, monodehydroascorbate reductase (MDHAR) (EC and dehydroascorbate reductase (DHAR) (EC were analyzed. It was observed that the growth of plants was inhibited under Zn metal stress. However, 24-EBL seed-presoaking treatment improved the plant growth in terms of increase in shoot length. 24-EBL also mitigated the toxicity of Zn metal by increasing the number of leaves. The activities of antioxidative enzymes (SOD, CAT, POD, GR, APOX, MDHAR and DHAR) and contents of proteins and glutathione were also enhanced in leaves of plants treated with 24-EBL alone, 10−8 M concentration being the most effective. The activities of antioxidative enzymes also increased in leaves of B. juncea plants by the application 24-EBL supplemented Zn metal solutions. Similarly, the content of proteins and glutathione increased considerably in leaves of B. juncea plants treated with 24-EBL, whereas the level of MDA content decreased in 24-EBL treated plants as compared to untreated control plants thereby revealing stress-protective properties of the brassinolide.
PMCID: PMC3550670  PMID: 23572978
Antioxidative enzymes; Brassica juncea; 24-epibrassinolide; Zn toxicity
8.  Effects of 24-epibrassinolide and 28-homobrassinolide on the growth and antioxidant enzyme activities in the seedlings of Brassica juncea L. 
The present paper deals with the effects of two active forms of brassinosteroids (BRs) as epibrassinosteroid (24-EBL) and homobrassinosteroid (28-HBL) on percentage germination, growth in the form of shoot length, activities of auxinase (IAAO), polyphenol oxidase (PPO), superoxide dismutase (SOD), catalase (CAT) and ascorbate peroxidase (APOX) in 10 day old seedlings of Brassica juncea L. (RCM 619) under field conditions. Exogenous application of 240-EBL and 28-HBL significantly ameliorate the total protein content as compared to untreated control seedlings. 10−8 M 28-HBL helps in enhancing the PPO activity very significantly, as compared to all other concentrations of EBL and HBL and also to that of untreated control. Similar trend was observed in IAAO activity. It was observed that all the concentrations of EBL were unable to enhance the APOX activity as compared to untreated control seedlings but 10−8 M HBL significantly ameliorates APOX activity. CAT and SOD activities ameliorate significantly with exogenous application of EBL and HBL. Out of two active forms of BRs, 28-HBL was more effective at germination stage in scavenging the free radicals, which are produced in greater amount during germination from basic metabolic processes, whereas 28-EBL was effective in the initial growth of seedlings in the form of increase in shoot length.
PMCID: PMC3550350  PMID: 23572944
Brassinosteroids; Brassica juncea; Antioxidant enzymes; Polyphenol oxidase; Auxinase; Total Proteins

Results 1-8 (8)