Search tips
Search criteria

Results 1-25 (63)

Clipboard (0)

Select a Filter Below

more »
Year of Publication
more »
Document Types
author:("borek, Michal")
1.  Exercise protects against methamphetamine-induced aberrant neurogenesis 
Scientific Reports  2016;6:34111.
While no effective therapy is available for the treatment of methamphetamine (METH)-induced neurotoxicity, aerobic exercise is being proposed to improve depressive symptoms and substance abuse outcomes. The present study focuses on the effect of exercise on METH-induced aberrant neurogenesis in the hippocampal dentate gyrus in the context of the blood-brain barrier (BBB) pathology. Mice were administered with METH or saline by i.p. injections for 5 days with an escalating dose regimen. One set of mice was sacrificed 24 h post last injection of METH, and the remaining animals were either subjected to voluntary wheel running (exercised mice) or remained in sedentary housing (sedentary mice). METH administration decreased expression of tight junction (TJ) proteins and increased BBB permeability in the hippocampus. These changes were preserved post METH administration in sedentary mice and were associated with the development of significant aberrations of neural differentiation. Exercise protected against these effects by enhancing the protein expression of TJ proteins, stabilizing the BBB integrity, and enhancing the neural differentiation. In addition, exercise protected against METH-induced systemic increase in inflammatory cytokine levels. These results suggest that exercise can attenuate METH-induced neurotoxicity by protecting against the BBB disruption and related microenvironmental changes in the hippocampus.
PMCID: PMC5039713  PMID: 27677455
2.  Lipid rafts regulate PCB153-induced disruption of occludin and brain endothelial barrier function through protein phosphatase 2A and matrix metalloproteinase-2 
Toxicology and applied pharmacology  2015;287(3):258-266.
Occludin is an essential integral transmembrane protein regulating tight junction (TJ) integrity in brain endothelial cells. Phosphorylation of occludin is associated with its localization to TJ sites and incorporation into intact TJ assembly. The present study is focused on the role of lipid rafts in polychlorinated biphenyl (PCB)-induced disruption of occludin and endothelial barrier function. Exposure of human brain endothelial cells to 2,2′,4,4′,5,5′-hexachlorobiphenyl (PCB153) induced dephosphorylation of threonine residues of occludin and displacement of occludin from detergent-resistant membrane (DRM)/lipid raft fractions within 1 h. Moreover, lipid rafts modulated the reduction of occludin level through activation of matrix metalloproteinase 2 (MMP-2) after 24 h h PCB153 treatment. Inhibition of protein phosphatase 2A (PP2A) activity by okadaic acid or fostriecin markedly protected against PCB153-induced displacement of occludin and increased permeability of endothelial cells. The implication of lipid rafts and PP2A signaling in these processes was further defined by co-immunoprecipitation of occludin with PP2A and caveolin-1, a marker protein of lipid rafts. Indeed, a significant MMP-2 activity was observed in lipid rafts and was increased by exposure to PCB153. The pretreatment of MMP-2 inhibitors protected against PCB153-induced loss of occludin and disruption of lipid raft structure prevented the increase of endothelial permeability. Overall, these results indicate that lipid raft-associated processes, such as PP2A and MMP-2 activation, participate in PCB153-induced disruption of occludin function in brain endothelial barrier. This study contributes to a better understanding of the mechanisms leading to brain endothelial barrier dysfunction in response to exposure to environmental pollutants, such as ortho-substituted PCBs.
PMCID: PMC4574485  PMID: 26080028
2,2′,4,4′,5,5′-Hexachlorobiphenyl; Occludin; Lipid rafts; Protein phosphatase 2A; Matrix metalloproteinase-2; Brain endothelium
3.  Exercise maintains blood-brain barrier integrity during early stages of brain metastasis formation 
Tumor cell extravasation into the brain requires passage through the blood-brain barrier, which is a highly protected microvascular environment fortified with tight junction (TJ) proteins. TJ integrity can be regulated under physiological and pathophysiological conditions. There is evidence that exercise can modulate oxidation status within the brain microvasculature and protect against tumor cell extravasation and metastasis formation. In order to study these events, mature male mice were given access to voluntary exercise on a running wheel (exercise) or access to a locked wheel (sedentary) for five weeks. The average running distance was 9.0 ± 0.2 km/day. Highly metastatic tumor cells (murine Lewis lung carcinoma) were then infused into the brain microvasculature through the internal carotid artery. Analyses were performed at early stage (48 hours) and late stage (3 weeks) post tumor cell infusion. Immunohistochemical analysis revealed fewer isolated tumor cells extravasating into the brain at both 48 hours and 3 weeks post surgery in exercised mice. Occludin protein levels were reduced in the sedentary tumor group, but maintained in the exercised tumor group at 48 hours post tumor cell infusion. These results indicate that voluntary exercise may participate in modulating blood-brain barrier integrity thereby protecting the brain during metastatic progression.
PMCID: PMC4506929  PMID: 26056010
Exercise; metastasis; bioluminescence; blood-brain barrier; tight junction
Selenium-containing compounds and selenized yeast have anti-cancer properties. In order to address possible mechanisms involved in these effects, selenoglycoproteins (SGP) were extracted from selenium-enriched yeast at pH 4.0 and 6.5 (the fractions are called SGP40 and SGP65, respectively), followed by evaluation of their impact on the interactions of lung and breast tumor cells with human brain microvascular endothelial cells (HBMEC). Extracted SGPs, especially SGP40, significantly inhibited adhesion of tumor cells to HBMEC and their transendothelial migration. Because the active component(s) of SGPs are unknown, small selenium-containing compounds (leucyl-valyl-selenomethionyl-arginine [LVSe-MR] and methylseleno adenosine [M-Se-A]), which are normally present in selenized yeast, were introduced as additional treatment groups. Treatment of HBMEC with SGP40, LVSe-MR, and M-Se-A induced changes in gene signatures, which suggested a central involvement of NF-κB-dependent pathway. These observations were confirmed in the subsequent analysis of NF-κB DNA binding activity, quantitative measurements of the expression of selected genes and proteins, and tumor cell adhesion assay with a specific NF-κB inhibitor as the additional treatment factor. These findings indicate that specific organic selenium-containing compounds have the ability to inhibit tumor cell adhesion to brain endothelial cells via downregulation of NF-κB. SGPs appear to be more effective than small selenium-containing compounds, suggesting the role of not only selenium but also the glycoprotein component in the observed protective impact.
PMCID: PMC4301985  PMID: 25465156
selenium; brain; tumor cell motility; adhesion; transendothelial migration; NF-κB
5.  Dietary Selenium Supplementation Modulates Growth of Brain Metastatic Tumors and Changes the Expression of Adhesion Molecules in Brain Microvessels 
Various dietary agents can modulate tumor invasiveness. The current study explored whether selenoglycoproteins (SeGPs) extracted from selenium-enriched yeast affect tumor cell homing and growth in the brain. Mice were fed diets enriched with specific SeGPs (SeGP40 or SeGP65, 1 mg/kg Se each), glycoproteins (GP40 or GP65, 0.2–0.3 mg/kg Se each) or a control diet (0.2–0.3 mg/kg Se) for 12 weeks. Then, murine Lewis lung carcinoma cells were infused into the brain circulation. Analyses were performed at early (48 h) and late stages (3 weeks) post tumor cell infusion. Imaging of tumor progression in the brain revealed that mice fed SeGP65-enriched diet displayed diminished metastatic tumor growth, fewer extravasating tumor cells and smaller metastatic lesions. While administration of tumor cells resulted in a significant upregulation of adhesion molecules in the early stage of tumor progression, overexpression of VCAM-1 (vascular call adhesion molecule-1) and ALCAM (activated leukocyte cell adhesion molecule) messenger RNA (mRNA) was diminished in SeGP65 supplemented mice. Additionally, mice fed SeGP65 showed decreased expression of acetylated NF-κB p65, 48 h post tumor cell infusion. The results indicate that tumor progression in the brain can be modulated by specific SeGPs. Selenium-containing compounds were more effective than their glycoprotein controls, implicating selenium as a potential negative regulator of metastatic process.
PMCID: PMC4930949  PMID: 26706037
Selenium; Brain; Tumor progression; Adhesion; Cell adhesion molecules; NF-κB
6.  Extracellular vesicles of the blood-brain barrier 
Tissue Barriers  2015;4(1):e1131804.
Extracellular vesicles (ECV), like exosomes, gained recently a lot of attention as potentially playing a significant role in neurodegenerative diseases, particularly in Aβ pathology. While there are a lot of reports on ECV/exosomes derived from a variety of cell types, there is limited information on ECV/exosomes originated from brain microvascular endothelial cells forming the blood-brain barrier (BBB). In this review, we summarize the literature data on brain endothelial ECV/exosomes and present our own data on BBB-derived ECV and their possible involvement in the brain's Aβ pathology. We propose that ECV/exosome release from brain endothelial cells associated with Aβ affects different cells of the neurovascular unit and may be an important contributor to the Aβ deposition in the central nervous system.
PMCID: PMC4836554  PMID: 27141419
amyloid β; brain endothelial cells; blood-brain barrier; extracellular vesicles; exosomes
7.  Transcriptional Profile of HIV-induced Nuclear Translocation of Amyloid β in Brain Endothelial Cells 
Archives of medical research  2014;45(8):744-752.
Background and Aims
Increased amyloid deposition in HIV-infected brains may contribute to the pathogenesis of neurocognitive dysfunction in infected patients. We have previously shown that exposure to HIV results in enhanced amyloid β (Aβ) levels in human brain microvascular endothelial cells, suggesting that brain endothelial cells contribute to accumulation of Aβ in HIV-infected brains. Importantly, Aβ not only accumulates in the cytoplasm of HIV-exposed cells but also enters the nuclei of brain endothelial cells.
cDNA microarray analysis was performed in order to examine changes in the transcriptional profile associated with Aβ nuclear entry in the presence of HIV-1.
Gene network analysis indicated that inhibition of nuclear entry of Aβ resulted in enrichment in gene sets involved in apoptosis and survival, endoplasmic reticulum stress response, immune response, cell cycle, DNA damage, oxidative stress, cytoskeleton remodeling and transforming growth factor b (TGFβ) receptor signaling.
The obtained data indicate that HIV-induced Aβ nuclear uptake affects several cellular stress-related pathways relevant for HIV-induced Aβ pathology.
PMCID: PMC4324359  PMID: 25446617
DNA microarray; HIV; Blood-brain barrier; Amyloid beta
8.  Interactions of PCBs with human serum albumin: In vitro spectroscopic study 
Following absorption, polychlorinated biphenyls (PCBs) bind to albumin and are transported via blood into the target tissues. PCBs then accumulate in tissues and induce a variety of harmful chronic and developmental effects. The aim of the present study is to determine binding parameters, such as binding constant, quenching constant, and number of binding sites for three PCB congeners (PCB118, PCB126 and PCB153) in complex with human serum albumin (HSA). The binding parameters for the complexes of HSA-PCB118, HSA-PCB126, and HSA-PCB153 excited at 280 nm were compared with those excited at 295 nm. Quenching (static and dynamic) of HSA fluorescence was analyzed based on the Stern-Volmer method. Binding (Ka) constants were calculated according to the Scatchard method and analysis of non-linear regression was based on a two-component model with the Lavenberg–Marquardt algorithm. For all analyzed complexes, a single independent class of binding site for PCB congeners was found in HSA subdomain IIA. Tyrosine residues appear to play the most prominent role in binding of PCB126 to HSA, while tryptophan-214 played a dominant role in interactions of PCB153 with HSA. Among studied PCB congeners, PCB118 formed the most stable complexes with HSA. These results illustrate the importance of studies targeting the binding of PCBs to serum albumin as part of the strategy to understand and protect against toxicity of these environmental toxicants.
PMCID: PMC4033824  PMID: 24513710
PCB; albumin; fluorescence
Experimental cell research  2014;323(1):66-76.
Clinical evidence indicates increased amyloid deposition in HIV-1-infected brains, which contributes to neurocognitive dysfunction in infected patients. Here we show that HIV-1 exposure stimulates amyloid beta (Aβ) nuclear entry in human brain endothelial cells (HBMEC), the main component of the blood-brain barrier (BBB). Treatment with HIV-1 and/or Aβ resulted in concurrent increase in early endosomal antigen-1 (EEA1), Smad, and phosphorylated Smad (pSmad) in nuclear fraction of HBMEC. A series of inhibition and silencing studies indicated that Smad and EEA1 closely interact by influencing their own nuclear entry; the effect that was attenuated by dynasore, a blocker of GTP-ase activity of dynamin. Importantly, inhibition of dynamin, EEA1, or TGF-β/Smad effectively attenuated HIV-1-induced Aβ accumulation in the nuclei of HBMEC. The present study indicates that nuclear uptake of Aβ involves the dynamin-dependent EEA1 and TGF-β/Smad signaling pathways. These results identify potential novel targets to protect against HIV-1-associated dysregulation of amyloid processes at the BBB level.
PMCID: PMC4019515  PMID: 24491918
HIV-1; blood-brain barrier; amyloid beta
10.  PPAR agonist-mediated protection against HIV Tat-induced cerebrovascular toxicity is enhanced in MMP-9-deficient mice 
The strategies to protect against the disrupted blood–brain barrier (BBB) in HIV-1 infection are not well developed. Therefore, we investigated the potential of peroxisome proliferator-activated receptor (PPAR) agonists to prevent enhanced BBB permeability induced by HIV-1-specific protein Tat. Exposure to Tat via the internal carotid artery (ICA) disrupted permeability across the BBB; however, this effect was attenuated in mice treated with fenofibrate (PPARα agonist) or rosiglitazone (PPARγ agonist). In contrast, exposure to GW9662 (PPARγ antagonist) exacerbated Tat-induced disruption of the BBB integrity. Increased BBB permeability was associated with decreased tight junction (TJ) protein expression and activation of ERK1/2 and Akt in brain microvessels; these effects were attenuated by cotreatment with fenofibrate but not with rosiglitazone. Importantly, both PPAR agonists also protected against Tat-induced astrogliosis and neuronal loss. Because disruption of TJ integrity has been linked to matrix metalloproteinase (MMP) activity, we also evaluated Tat-induced effects in MMP-9-deficient mice. Tat-induced cerebrovascular toxicity, astrogliosis, and neuronal loss were less pronounced in MMP-9-deficient mice as compared with wild-type controls and were further attenuated by PPAR agonists. These results indicate that enhancing PPAR activity combined with targeting MMPs may provide effective therapeutic strategies in brain infection by HIV-1.
PMCID: PMC3982084  PMID: 24424383
blood–brain barrier; human immunodeficiency virus-1; matrix metalloproteinase; peroxisome proliferator-activated receptor; Tat protein; neurotoxicity
11.  EGCG stimulates Nrf2 and heme oxygenase-1 via caveolin-1 displacement 
Flavonoids, such as the tea catechin epigallocatechin-gallate (EGCG), can protect against atherosclerosis by decreasing vascular endothelial cell inflammation. Heme oxygenase (HO-1) is an enzyme that plays an important role in vascular physiology, and its induction may provide protection against atherosclerosis. HO-1 can be compartmentalized in caveolae in endothelial cells. Caveolae are plasma microdomains important in vesicular transport and the regulation of signaling pathways associated with the pathology of vascular diseases. We hypothesize that caveolae play a role in the uptake and transport of EGCG and mechanisms associated with the anti-inflammatory properties of this flavonoid. To test this hypothesis, we explored the effect of EGCG on the induction of Nrf2 and HO-1 in endothelial cells with or without functional caveolae. Treatment with EGCG activated Nrf2 and increased HO-1 expression and cellular production of bilirubin. In addition, EGCG rapidly accumulated in caveolae, which was associated with caveolin-1 displacement from the plasma membrane towards the cytosol. Similar to EGCG treatment, silencing of caveolin-1 by siRNA technique also resulted in upregulation of Nrf2, HO-1 and bilirubin production. These data suggest that EGCG-induced caveolin-1 displacement may reduce endothelial inflammation.
PMCID: PMC4309924  PMID: 21447442
EGCG; Nrf2; Caveolae; Endothelial Cells; Atherosclerosis
IUBMB life  2013;65(7):565-571.
The American Cancer Society estimated 1.5 million new cancer cases in the US in 2012. Although the exact number is not known, it is estimated that brain metastases occur in 20–40% of cancer patients (NCI). Due to the complexity of development and the variation in tumor etiology, therapy options have been limited for a number of cancers while progressive treatments have been successful for some malignancies. Combining treatment strategies has shown potential to increase positive outcomes, however cancer remains a formidable diagnosis with no true cure. Many researchers have focused on alternative forms of cancer prevention or treatment to slow cancer progression. Studies have shown that with moderate, regular exercise signaling pathways associated with increased antioxidant activity and cellular repair are upregulated in vascular tissue, however the physiological mechanisms are poorly understood. The purpose of this review is to examine the current literature in order to better understand the impact of exercise on cancer progression and tumor metastasis and discuss potential redox related signaling in the vasculature that may be involved.
PMCID: PMC3691305  PMID: 23757193
Cancer; exercise; reactive oxygen species; brain microvasculature; metastasis; tight junction
13.  Exercise Modulates Redox-Sensitive Small GTPase Activity in the Brain Microvasculature in a Model of Brain Metastasis Formation 
PLoS ONE  2014;9(5):e97033.
Tumor cell extravasation into the brain requires passage through the blood-brain barrier (BBB). There is evidence that exercise can alter the oxidation status of the brain microvasculature and protect against tumor cell invasion into the brain, although the mechanisms are not well understood. In the current study, we focused on the role of microenvironment generated by exercise and metastasizing tumor cells at the levels of brain microvessels, influencing oxidative stress-mediated responses and activation of redox-sensitive small GTPases. Mature male mice were exercised for four weeks using a running wheel with the average voluntary running distance 9.0±0.3 km/day. Mice were then infused with 1.0×106 D122 (murine Lewis lung carcinoma) cells into the brain microvasculature, and euthanized either 48 hours (in short-term studies) or 2–3 weeks (in long-term studies) post tumor cell administration. A significant increase in the level of reactive oxygen species was observed following 48 hours or 3 weeks of tumor cells growth, which was accompanied by a reduction in MnSOD expression in the exercised mice. Activation of the small GTPase Rho was negatively correlated with running distance in the tumor cell infused mice. Together, these data suggest that exercise may play a significant role during aggressive metastatic invasion, especially at higher intensities in pre-trained individuals.
PMCID: PMC4013134  PMID: 24804765
The current study focused on blood-brain barrier (BBB) disruption and neurovascular damage induced by engineered nanomaterials. Exposure to nanoalumina, but not to nanocarbon, induced a dose-dependent mitochondrial potential collapse, increased autophagy of brain endothelial cells, and decreased expression of tight junction proteins, occludin and claudin-5. Inhibition of autophagy by pretreatment with Wortmannin attenuated the effects of nanoalumina on decreased claudin-5 expression; however, it did not affect the disruption of occludin. These finding were confirmed in mice by administration of nanoalumina into the cerebral circulation. Systemic treatment with nanoalumina elevated autophagy-related genes and autophagic activity in the brain, decreased tight junction protein expression, and elevated BBB permeability. Finally, exposure to nanoalumina, but not to nanocarbon, increased brain infarct volume in mice subjected to a focal ischemic stroke model. Overall, our study reveals that autophagy constitutes an important mechanism involved in nanoalumina-induced neurovascular toxicity in the central nervous system.
PMCID: PMC3482418  PMID: 22687898
nanoalumina; autophagy; blood-brain barrier; central nervous system
15.  Correction: TLR4 Signaling Is Involved in Brain Vascular Toxicity of PCB153 Bound to Nanoparticles 
PLoS ONE  2014;9(1):10.1371/annotation/e34adc2a-f73a-4055-8519-fa2deb2e852f.
PMCID: PMC3887117
16.  Lipopolysaccharide Potentiates Polychlorinated Biphenyl-induced Disruption of the Blood–Brain Barrier via TLR4/IRF-3 Signaling 
Toxicology  2012;302(2-3):212-220.
Exposure to polychlorinated biphenyls (PCBs) is associated with numerous adverse health effects. Although the main route of exposure to PCBs is through the gastrointestinal tract, little is known about the contribution of the gut to the health effects of PCBs. We hypothesize that PCBs can disrupt intestinal integrity, causing lipopolysaccharide (LPS) translocation into the bloodstream and potentiation of the systemic toxicity of PCBs. C57BL/6 mice were exposed to individual PCB congeners by oral gavage, followed by the assessment of small intestine morphology and plasma levels of proinflammatory mediators. In addition, mice and human brain endothelial cells were exposed to PCB118 in the presence or absence of LPS to evaluate the contribution of LPS to PCB-induced toxicity at the blood–brain barrier (BBB) level. Oral administration of PCB153, PCB118, or PCB126 disrupted intestinal morphology and increased plasma levels of LPS and proinflammatory cytokines. Direct injection of LPS and PCB118 into the cerebral microvasculature resulted in synergistic disruption of BBB integrity and decreased expression of tight junction proteins in brain microvessels. In vitro experiments confirmed these effects and indicated that stimulation of the toll-like receptor 4 (TLR4) pathway can be responsible for these effects via activation of interferon regulatory factor-3 (IRF-3). These results indicate that LPS may be a contributing factor in PCB-induced dysfunction of the brain endothelium via stimulation of the TLR4/IRF-3 pathway.
PMCID: PMC3511608  PMID: 22906770
blood–brain barrier; inflammation; interferon regulatory factor-3; polychlorinated biphenyls; tight junctions; Toll-like receptor 4
Environmental polychlorinated biphenyls (PCBs) are frequently bound onto nanoparticles (NPs). However, the toxicity and health effects of PCBs assembled onto nanoparticles are unknown. The aim of this study was to study the hypothesis that binding PCBs to silica NPs potentiates PCB-induced cerebrovascular toxicity and brain damage in an experimental stroke model. Mice (C57BL/6, males, 12-week-old) were exposed to PCB153 bound to NPs (PCB153-NPs), PCB153, or vehicle. PCB153 was administered in the amount of 5 ng/g body weight. A group of treated animals was subjected to a 40 min ischemia, followed by a 24 h reperfusion. The blood-brain barrier (BBB) permeability, brain infarct volume, expression of tight junction (TJ) proteins, and inflammatory mediators were assessed. As compared to controls, a 24 h exposure to PCB153-NPs injected into cerebral vasculature resulted in significant elevation of the BBB permeability, disruption of TJ protein expression, increased proinflammatory responses, and enhanced monocyte transmigration in mouse brain capillaries. Importantly, exposure to PCB153-NPs increased stroke volume and potentiated brain damage in mice subjected to ischemia/reperfusion. A long-term (30 days) oral exposure to PCB153-NPs resulted in a higher PCB153 content in the abdominal adipose tissue and amplified adhesion of leukocytes to the brain endothelium as compared to treatment with PCB153 alone. This study provides the first evidence that binding to NPs increases cerebrovascular toxicity of environmental toxicants, such as PCB153.
PMCID: PMC3518694  PMID: 23081707
blood-brain barrier; polychlorinated biphenyls; silica nanoparticles; stroke; tight junctions
Human immunodeficiency virus type 1 (HIV-1) infection of the central nervous system (CNS) affects cross-talk between the individual cell types of the neurovascular unit, which then contributes to disruption of the blood–brain barrier (BBB) and the development of neurological dysfunctions. While the toxicity of HIV-1 on neurons, astrocytes, and brain endothelial cells has been widely studied, there are no reports addressing the influence of HIV-1 on pericytes. Therefore, the purpose of this study was to evaluate whether pericytes can be infected with HIV-1 and how such an infection affects the barrier function of brain endothelial cells. Our results indicate that human brain pericytes express the major HIV-1 receptor CD4 and coreceptors CXCR4 and CCR5. We also determined that HIV-1 can replicate, though at a low level, in human brain pericytes as detected by HIV-1 p24 ELISA. Pericytes were susceptible to infection with both the X4-tropic NL4-3 and R5-tropic JR-CSF HIV-1 strains. Moreover, HIV-1 infection of pericytes resulted in compromised integrity of an in vitro model of the BBB. These findings indicate that human brain pericytes can be infected with HIV-1 and suggest that infected pericytes are involved in the progression of HIV-1-induced CNS damage.
PMCID: PMC3524391  PMID: 22947176
HIV-1; pericytes; blood–brain barrier; neurovascular unit
IUBMB life  2012;65(1):43-49.
In recent years we face an increase in the aging of the HIV-1-infected population, which is not only due to effective antiretroviral therapy but also to new infections among older people. Even with the use of the antiretroviral therapy, HIV-associated neurocognitive disorders represent an increasing problem as the HIV-1-infected population ages. Increased amyloid beta (Aβ) deposition is characteristic of HIV-1-infected brains, and it has been hypothesized that brain vascular dysfunction contributes to this phenomenon, with a critical role suggested for the blood-brain barrier in brain Aβ homeostasis. This review will describe the mechanisms by which the BBB may contribute to brain Aβ accumulation, and our findings in the context of HIV-1 infection will be discussed.
PMCID: PMC3804005  PMID: 23225609
HIV-1; HIV-1-associated neurocognitive disorders; blood-brain barrier; brain endothelial cell; amyloid beta
20.  Methamphetamine-induced Occludin Endocytosis Is Mediated by the Arp2/3 Complex-regulated Actin Rearrangement*♦ 
The Journal of Biological Chemistry  2013;288(46):33324-33334.
Background: Methamphetamine is a drug of abuse that disrupts the blood-brain barrier.
Results: Blocking actin nucleation protects against methamphetamine-induced occludin internalization and disruption of blood-brain barrier integrity.
Conclusion: Methamphetamine-induced transendothelial breaches may result from actin-mediated redistribution of occludin.
Significance: Actin cytoskeletal dynamics modulates redistribution of occludin and blood-brain barrier integrity.
Methamphetamine (METH) is a drug of abuse with neurotoxic and neuroinflammatory effects, which include disruption of the blood-brain barrier (BBB) and alterations of tight junction protein expression. This study focused on the actin cytoskeletal rearrangement as a modulator of METH-induced redistribution of tight junction protein occludin in brain endothelial cells. Exposure to METH resulted in a shift of occludin localization from plasma membranes to endosomes. These changes were accompanied by activation of the actin-related protein 2/3 (Arp2/3) complex, which stimulates actin polymerization by promoting actin nucleation. In addition, METH-induced coronin-1b phosphorylation diminishes the inhibitory effect of nonphosphorylated coronin-1b on actin nucleation. Blocking actin nucleation with CK-666, a specific inhibitor of the Arp2/3 complex, protected against METH-induced occludin internalization and increased transendothelial monocyte migration. Importantly, treatment with CK-666 attenuated a decrease in occludin levels in brain microvessels and BBB permeability of METH-injected mice. These findings indicate that actin cytoskeletal dynamics is detrimental to METH-induced BBB dysfunction by increasing internalization of occludin.
PMCID: PMC3829179  PMID: 24081143
Actin; Brain; Cytoskeleton; Endocytosis; Endothelium; Tight Junctions; Methamphetamine; Arp2/3 Complex; Actin; Nucleation; Blood-Brain Barrier; Occludin; Endocytosis; Endo
21.  HIV-1 Tat-induced cerebrovascular toxicity is enhanced in mice with amyloid deposits 
Neurobiology of Aging  2011;33(8):1579-1590.
HIV-1-infected brains are characterized by elevated depositions of amyloid beta (Aβ); however, the interactions between Aβ and HIV-1 are poorly understood. In the present study, we administered specific HIV-1 protein Tat into the cerebral vasculature of 50–52 week old double transgenic (B6C3-Tg) mice that express a chimeric mouse/human amyloid precursor protein (Mo/HuAPP695swe) and a mutant human presenilin 1 (PS1-dE9) and are characterized by increased Aβ depositions in the brain. Exposure to Tat increased permeability across cerebral capillaries, enhanced disruption of zonula occludens (ZO)-1 tight junction protein, and elevated brain expression of matrix metalloproteinase-9 (MMP-9) in B6C3-Tg mice as compared to age-matched littermate controls. These changes were associated with increased leukocyte attachment and their transcapillary migration. The majority of Tat-induced effects were attenuated by treatment with a specific Rho inhibitor, hydroxyfasudil. The results of animal experiments were reproduced in cultured brain endothelial cells exposed to Aβ and/or Tat. The present data indicate that increased brain levels of Aβ can enhance vascular toxicity and proinflammatory responses induced by HIV-1 protein Tat.
PMCID: PMC3206197  PMID: 21764480
HIV-1 infection; amyloid; HIV-1; aging; blood-brain barrier; tight junction proteins; inflammation
22.  Voluntary exercise protects against methamphetamine-induced oxidative stress in brain microvasculature and disruption of the blood–brain barrier 
There is no effective therapeutic intervention developed targeting cerebrovascular toxicity of drugs of abuse, including methamphetamine (METH). We hypothesize that exercise protects against METH-induced disruption of the blood–brain barrier (BBB) by enhancing the antioxidant capacity of cerebral microvessels and modulating caveolae-associated signaling. Mice were subjected to voluntary wheel running for 5 weeks resembling the voluntary pattern of human exercise, followed by injection with METH (10 mg/kg). The frequency, duration, and intensity of each running session were monitored for each mouse via a direct data link to a computer and the running data are analyzed by Clock lab™ Analysis software. Controls included mice sedentary that did not have access to running wheels and/or injections with saline.
METH induced oxidative stress in brain microvessels, resulting in up regulation of caveolae-associated NAD(P)H oxidase subunits, and phosphorylation of mitochondrial protein 66Shc. Treatment with METH disrupted also the expression and colocalization of tight junction proteins. Importantly, exercise markedly attenuated these effects and protected against METH-induced disruption of the BBB integrity.
The obtained results indicate that exercise is an important modifiable behavioral factor that can protect against METH-induced cerebrovascular toxicity. These findings may provide new strategies in preventing the toxicity of drug of abuse.
PMCID: PMC3698182  PMID: 23799892
Methamphetamine; Drug abuse; Exercise; Blood-brain; Oxidative stress; Tight junctions
23.  EGCG protects endothelial cells against PCB 126-induced inflammation through inhibition of AhR and induction of Nrf2-regulated genes 
Toxicology and Applied Pharmacology  2012;261(2):181-188.
Tea flavonoids such as epigallocatechin gallate (EGCG) protect against vascular diseases such as atherosclerosis via their antioxidant and anti-inflammatory functions. Persistent and widespread environmental pollutants, including polychlorinated biphenyls (PCB), can induce oxidative stress and inflammation in vascular endothelial cells. Even though PCBs are no longer produced, they are still detected in human blood and tissues and thus considered a risk for vascular dysfunction. We hypothesized that EGCG can protect endothelial cells against PCB-induced cell damage via its antioxidant and anti-inflammatory properties. To test this hypothesis, primary vascular endothelial cells were pretreated with EGCG, followed by exposure to the coplanar PCB 126. Exposure to PCB 126 significantly increased cytochrome P450 1A1 (Cyp1A1) mRNA and protein expression and superoxide production, events which were significantly attenuated following pretreatment with EGCG. Similarly, EGCG also reduced DNA binding of NF-κB and downstream expression of inflammatory markers such as monocyte chemotactic protein-1 (MCP-1) and vascular cell adhesion protein-1 (VCAM-1) after PCB exposure. Furthermore, EGCG decreased endogenous or base-line levels of Cyp1A1, MCP-1 and VCAM-1 in endothelial cells. Most of all, treatment of EGCG upregulated expression of NF-E2-related factor 2 (Nrf2)-controlled antioxidant genes, including glutathione S transferase (GST) and NAD(P)H:quinone oxidoreductase 1 (NQO1), in a dose-dependent manner. In contrast, silencing of Nrf2 increased Cyp1A1, MCP-1 and VCAM-1 and decreased of GST and NQO1 expression, respectively. These data suggest that EGCG can inhibit AhR regulated genes and induce Nrf2-regulated antioxidant enzymes, thus providing protection against PCB-induced inflammatory responses in endothelial cells.
PMCID: PMC3358429  PMID: 22521609
PCB; EGCG; polyphenol; endothelial cell; inflammation; atherosclerosis
24.  Exercise Attenuates PCB-Induced Changes in the Mouse Gut Microbiome 
Environmental Health Perspectives  2013;121(6):725-730.
Background: The gut microbiome, a dynamic bacterial community that interacts with the host, is integral to human health because it regulates energy metabolism and immune functions. The gut microbiome may also play a role in risks from environmental toxicants.
Objectives: We investigated the effects of polychlorinated biphenyls (PCBs) and exercise on the composition and structure of the gut microbiome in mice.
Methods: After mice exercised voluntarily for 5 weeks, they were treated by oral gavage with a mixture of environmentally relevant PCB congeners (PCB153, PCB138, and PCB180; total PCB dose, 150 µmol/kg) for 2 days. We then assessed the microbiome by determination of 16S rRNA using microarray analysis.
Results: Oral exposure to PCBs significantly altered the abundance of the gut microbiome in mice primarily by decreasing the levels of Proteobacteria. The activity level of the mice correlated with a substantial shift in abundance, biodiversity, and composition of the microbiome. Importantly, exercise attenuated PCB-induced changes in the gut microbiome.
Conclusions: Our results show that oral exposure to PCBs can induce substantial changes in the gut microbiome, which may then influence their systemic toxicity. These changes can be attenuated by behavioral factors, such as voluntary exercise.
PMCID: PMC3672930  PMID: 23632211
environmental toxicants; exercise; gut microbiome; polychlorinated biphenyls; PhyloChip
25.  TLR4 Signaling Is Involved in Brain Vascular Toxicity of PCB153 Bound to Nanoparticles 
PLoS ONE  2013;8(5):e63159.
PCBs bind to environmental particles; however, potential toxicity exhibited by such complexes is not well understood. The aim of the present study is to study the hypothesis that assembling onto nanoparticles can influence the PCB153-induced brain endothelial toxicity via interaction with the toll-like receptor 4 (TLR4). To address this hypothesis, TLR4-deficient and wild type control mice (males, 10 week old) were exposed to PCB153 (5 ng/g body weight) bound to chemically inert silica nanoparticles (PCB153-NPs), PCB153 alone, silica nanoparticles (NPs; diameter, 20 nm), or vehicle. Selected animals were also subjected to 40 min ischemia, followed by a 24 h reperfusion. As compared to exposure to PCB153 alone, treatment with PCB153-NP potentiated the brain infarct volume in control mice. Importantly, this effect was attenuated in TLR4-deficient mice. Similarly, PCB153-NP-induced proinflammatory responses and disruption of tight junction integrity were less pronounced in TLR4-deficient mice as compared to control animals. Additional in vitro experiments revealed that TLR4 mediates toxicity of PCB153-NP via recruitment of tumor necrosis factor-associated factor 6 (TRAF6). The results of current study indicate that binding to seemingly inert nanoparticles increase cerebrovascular toxicity of PCBs and suggest that targeting the TLR4/TRAF6 signaling may protect against these effects.
PMCID: PMC3653967  PMID: 23690990

Results 1-25 (63)