Search tips
Search criteria

Results 1-12 (12)

Clipboard (0)

Select a Filter Below

Year of Publication
Document Types
1.  Characterization of nonmelanoma skin cancer for light therapy using spatial frequency domain imaging 
Biomedical Optics Express  2015;6(5):1761-1766.
The dosimetry of light-based therapies critically depends on both optical and vascular parameters. We utilized spatial frequency domain imaging to quantify optical and vascular parameters, as well as estimated light penetration depth from 17 nonmelanoma skin cancer patients. Our data indicates that there exist substantial spatial variations in these parameters. Characterization of these parameters may inform understanding and optimization of the clinical response of light-based therapies.
PMCID: PMC4467704  PMID: 26137378
(170.0110) Imaging systems; (170.1870) Dermatology; (170.6935) Tissue characterization; (110.4234) Multispectral and hyperspectral imaging
2.  Photodynamic Therapy with 3-(1’-hexyloxyethyl) pyropheophorbide a (HPPH) for Cancer of the Oral Cavity 
The primary objective was to evaluate safety of 3-(1’-hexyloxyethyl)pyropheophorbide-a (HPPH) photodynamic therapy (HPPH-PDT) for dysplasia and early squamous cell carcinoma of the head and neck (HNSCC). Secondary objectives were the assessment of treatment response and reporters for an effective PDT reaction.
Experimental Design
Patients with histologically proven oral dysplasia, carcinoma in situ (CiS ) or early stage HNSCC were enrolled in two sequentially conducted dose escalation studies with an expanded cohort at the highest dose level. These studies employed an HPPH dose of 4 mg/m2 and light doses from 50 to 140 J/cm2. Pathologic tumor responses were assessed at 3 months. Clinical follow up range was 5 to 40 months. PDT induced cross-linking of signal transducer and activator of transcription 3 (STAT3) were assessed as potential indicators of PDT effective reaction.
Forty patients received HPPH-PDT. Common adverse events were pain and treatment site edema. Biopsy proven complete response rates were 46% for dysplasia and CiS, and 82% for SCCs lesions at 140 J/cm2. The responses in the CiS/dysplasia cohort are not durable. The PDT induced STAT3 cross-links is significantly higher (P=0.0033) in SCC than in CiS/dysplasia for all light-doses.
HPPH-PDT is safe for the treatment of CiS/dysplasia and early stage cancer of the oral cavity. Early stage oral HNSCC appears to respond better to HPPH-PDT in comparison to premalignant lesions. The degree of STAT3 cross-linking is a significant reporter to evaluate HPPH-PDT mediated photoreaction.
PMCID: PMC3911775  PMID: 24088736
3.  Preoperative Mapping of Nonmelanoma Skin Cancer Using Spatial Frequency Domain and Ultrasound Imaging 
Academic radiology  2014;21(2):263-270.
Rationale and Objectives
The treatment of nonmelanoma skin cancer (NMSC) is usually by surgical excision or Mohs micrographic surgery and alternatively may include photodynamic therapy (PDT). To guide surgery and to optimize PDT, information about the tumor structure, optical parameters, and vasculature is desired.
Materials and Methods
Spatial frequency domain imaging (SFDI) can map optical absorption, scattering, and fluorescence parameters that can enhance tumor contrast and quantify light and photosensitizer dose. High frequency ultrasound (HFUS) imaging can provide high-resolution tumor structure and depth, which is useful for both surgery and PDT planning.
Here, we present preliminary results from our recently developed clinical instrument for patients with NMSC. We quantified optical absorption and scattering, blood oxygen saturation (StO2), and total hemoglobin concentration (THC) with SFDI and lesion thickness with ultrasound. These results were compared to histological thickness of excised tumor sections.
SFDI quantified optical parameters with high precision, and multiwavelength analysis enabled 2D mappings of tissue StO2 and THC. HFUS quantified tumor thickness that correlated well with histology. The results demonstrate the feasibility of the instrument for noninvasive mapping of optical, physiological, and ultrasound contrasts in human skin tumors for surgery guidance and therapy planning.
PMCID: PMC3960981  PMID: 24439339
Skin cancer; optical imaging; ultrasound; optical and blood parameters; surgery; PDT
4.  Monitoring photodynamic therapy of head and neck malignancies with optical spectroscopies 
In recent years there has been significant developments in photosensitizers (PSs), light sources and light delivery systems that have allowed decreasing the treatment time and skin phototoxicity resulting in more frequent use of photodynamic therapy (PDT) in the clinical settings. Compared to standard treatment approaches such as chemo-radiation and surgery, PDT has much reduced morbidity for head and neck malignancies and is becoming an alternative treatment option. It can be used as an adjunct therapy to other treatment modalities without any additive cumulative side effects. Surface illumination can be an option for pre-malignant and early-stage malignancies while interstitial treatment is for debulking of thick tumors in the head and neck region. PDT can achieve equivalent or greater efficacy in treating head and neck malignancies, suggesting that it may be considered as a first line therapy in the future. Despite progressive development, clinical PDT needs improvement in several topics for wider acceptance including standardization of protocols that involve the same administrated light and PS doses and establishing quantitative tools for PDT dosimetry planning and response monitoring. Quantitative measures such as optical parameters, PS concentration, tissue oxygenation and blood flow are essential for accurate PDT dosimetry as well as PDT response monitoring and assessing therapy outcome. Unlike conventional imaging modalities like magnetic resonance imaging, novel optical imaging techniques can quantify PDT-related parameters without any contrast agent administration and enable real-time assessment during PDT for providing fast feedback to clinicians. Ongoing developments in optical imaging offer the promise of optimization of PDT protocols with improved outcomes.
PMCID: PMC3845916  PMID: 24303476
Head and neck cancer; Photodynamic therapy; Monitoring and predicting response; Blood flow; Oxygenation; Oxygen metabolism; Diffuse optical imaging
5.  Quantification of PpIX concentration in basal cell carcinoma and squamous cell carcinoma models using spatial frequency domain imaging 
Biomedical Optics Express  2013;4(4):531-537.
5-aminolaevulinic acid photodynamic therapy (ALA-PDT) is an attractive treatment option for nonmelanoma skin tumors, especially for multiple lesions and large areas. The efficacy of ALA-PDT is highly dependent on the photosensitizer (PS) concentration present in the tumor. Thus it is desirable to quantify PS concentration and distribution, preferably noninvasively to determine potential outcome. Here we quantified protoporphyrin IX (PpIX) distribution induced by topical and intra-tumoral (it) administration of the prodrug ALA in basal and squamous cell carcinoma murine models by using spatial frequency domain imaging (SFDI). The in vivo measurements were validated by analysis of the ex vivo extraction of PpIX. The study demonstrates the feasibility of non-invasive quantification of PpIX distributions in skin tumors.
PMCID: PMC3617715  PMID: 23577288
(170.0170) Medical optics and biotechnology; (170.5180) Photodynamic therapy; (170.3880) Medical and biological imaging; (170.1610) Clinical applications
6.  Interlesion differences in the local photodynamic therapy response of oral cavity lesions assessed by diffuse optical spectroscopies 
Biomedical Optics Express  2012;3(9):2142-2153.
Photodynamic therapy (PDT) efficacy depends on the local dose deposited in the lesion as well as oxygen availability in the lesion. We report significant interlesion differences between two patients with oral lesions treated with the same drug dose and similar light dose of 2-1[hexyloxyethyl]-2-devinylpyropheophorbide-a (HPPH)-mediated photodynamic therapy (PDT). Pre-PDT and PDT-induced changes in hemodynamic parameters and HPPH photosensitizer content, quantified by diffuse optical methods, demonstrated substantial differences between the two lesions. The differences in PDT action determined by the oxidative cross-linking of signal transducer and activator of transcription 3 (STAT3), a molecular measure of accumulated local PDT photoreaction, also showed >100-fold difference between the lesions, greatly exceeding what would be expected from the slight difference in light dose. Our results suggest diffuse optical spectroscopies can provide in vivo metrics that are indicative of local PDT dose in oral lesions.
PMCID: PMC3447556  PMID: 23024908
(170.0170) Medical optics and biotechnology; (170.3660) Light propagation in tissues; (170.6480) Spectroscopy, speckle; (170.3880) Medical and biological imaging
7.  Aminolevulinic Acid-Photodynamic Therapy Combined with Topically Applied Vascular Disrupting Agent Vadimezan Led to Enhanced Antitumor Responses 
Photochemistry and photobiology  2011;87(4):910-919.
The tumor-vascular disrupting agent (VDA) vadimezan (5,6-dimethylxanthenone-4-acetic acid, DMXAA) has been shown to potentiate the antitumor activity of photodynamic therapy (PDT) using systemically administered photosensitizers. Here, we characterized the response of subcutaneous syngeneic Colon26 murine colon adenocarcinoma tumors to PDT using the locally applied photosensitizer precursor aminolevulinic acid (ALA) in combination with a topical formulation of vadimezan. Diffuse correlation spectroscopy (DCS), a non-invasive method for monitoring blood flow, was utilized to determine tumor vascular response to treatment. Additionally, correlative CD31-immunohistochemistry to visualize endothelial damage, ELISA assays to measure induction of tumor necrosis factor-alpha (TNF-α) and tumor weight measurements were also examined in separate animals. In our previous work, DCS revealed a selective decrease in tumor blood flow over time following topical vadimezan. ALA-PDT treatment also induced a decrease in tumor blood flow. The onset of blood flow reduction was rapid in tumors treated with both ALA-PDT and vadimezan. CD31-immunostaining of tumor sections confirmed vascular damage following topical application of vadimezan. Tumor weight measurements revealed enhanced tumor growth inhibition with combination treatment compared to ALA-PDT or vadimezan treatment alone. In conclusion, vadimezan as a topical agent enhances treatment efficacy when combined with ALA-PDT. This combination could be useful in clinical applications.
PMCID: PMC3139765  PMID: 21575001
8.  Direct measurement of tissue blood flow and metabolism with diffuse optics 
Diffuse optics has proven useful for quantitative assessment of tissue oxy- and deoxyhaemoglobin concentrations and, more recently, for measurement of microvascular blood flow. In this paper, we focus on the flow monitoring technique: diffuse correlation spectroscopy (DCS). Representative clinical and pre-clinical studies from our laboratory illustrate the potential of DCS. Validation of DCS blood flow indices in human brain and muscle is presented. Comparison of DCS with arterial spin-labelled MRI, xenon-CT and Doppler ultrasound shows good agreement (0.50
PMCID: PMC3263785  PMID: 22006897
diffuse correlation spectroscopy; blood flow; cerebral blood flow; oxygen metabolism; brain; cancer
Biomedical Optics Express  2010;2(1):123-130.
Photodynamic therapy (PDT) using topical 5-aminolevulinic acid (ALA) is currently used as a clinical treatment for nonmelanoma skin cancers. In order to optimize PDT treatment, vascular disruption early in treatment must be identified and prevented. We present blood flow responses to topical ALA-PDT in a preclinical model and basal cell carcinoma patients assessed by diffuse correlation spectroscopy (DCS). Our results show that ALA-PDT induced early blood flow changes and these changes were irradiance dependent. It is clear that there exists considerable variation in the blood flow responses in patients from lesion to lesion. Monitoring blood flow parameter may be useful for assessing ALA-PDT response and planning.
PMCID: PMC3028487  PMID: 21326642
(170.0170) Medical optics and biotechnology; (170.3660) Light propagation in tissues; (170.6480) Spectroscopy, speckle; (170.3880) Medical and biological imaging
Optics express  2010;18(14):14969-14978.
We present initial results obtained during the course of a Phase I clinical trial of 2-1[hexyloxyethyl]-2-devinylpyropheophorbide-a (HPPH)-mediated photo-dynamic therapy (PDT) in a head and neck cancer patient. We quantified blood flow, oxygenation and HPPH drug photobleaching before and after therapeutic light treatment by utilizing fast, non-invasive diffuse optical methods. Our results showed that HPPH-PDT induced significant drug photobleaching, and reduction in blood flow and oxygenation suggesting significant vascular and cellular reaction. These changes were accompanied by cross-linking of the signal transducer and activator of transcription 3 (STAT3), a molecular measure for the oxidative photoreaction. These preliminary results suggest diffuse optical spectroscopies permit non-invasive monitoring of PDT in clinical settings of head and neck cancer patients.
PMCID: PMC2964147  PMID: 20639983
Low density lipoproteins (LDLs) are naturally occurring nanoparticles that are biocompatible, biodegradable and non-immunogenic. Moreover, the size of LDL particle is precisely controlled (~22 nm) by its apoB-100 component, setting them apart from liposomes and lipid micelles. LDL particles have long been proposed as a nanocarrier for targeted delivery of diagnostics and therapeutics to LDL receptor (LDLR)-positive cancers. Here, we report the design and synthesis of a novel naphthalocyanine (Nc)-based photodynamic therapy (PDT) agent, SiNcBOA, and describe its efficient reconstitution into LDL core (100:1 payload). Possessing a near-infrared (NIR) absorption wavelength (>800 nm) and extremely high extinction coefficient (>105 M–1cm–1), SiNcBOA holds the promise of treating deeply seated tumors. Reconstituted LDL particles (r-Nc-LDL) maintain the size and shape of native LDL as determined by transmission electron microscopy, and also retain their LDLR-mediated uptake by cancer cells as demonstrated by confocal microscopy. Its preferential uptake by tumor vs normal tissue was confirmed in vivo by noninvasive optical imaging technique, demonstrating the feasibility of using this nanoparticle for NIR imaging-guided PDT of cancer.
PMCID: PMC2676824  PMID: 18203443
naphthalocyanine; lipoproteins; photodynamic therapy; near-infrared optical imaging; nanoparticle; drug delivery
Dynamic Medicine  2006;5:5.
This article introduces a novel method to continuously monitor regional muscle blood flow by using Near Infrared Spectroscopy (NIRS). We demonstrate the feasibility of the new method in two ways: (1) by applying this new method of determining blood flow to experimental NIRS data during exercise and ischemia; and, (2) by simulating muscle oxygenation and blood flow values using these newly developed equations during recovery from exercise and ischemia.
Deoxy (Hb) and oxyhemoglobin (HbO2), located in the blood ofthe skeletal muscle, carry two internal relationships between blood flow and oxygen consumption. One is a mass transfer principle and the other describes a relationship between oxygen consumption and Hb kinetics in a two-compartment model. To monitor blood flow continuously, we transfer these two relationships into two equations and calculate the blood flow with the differential information of HbO2 and Hb. In addition, these equations are used to simulate the relationship between blood flow and reoxygenation kinetics after cuff ischemia and a light exercise. Nine healthy subjects volunteered for the cuff ischemia, light arm exercise and arm exercise with cuff ischemia for the experimental study.
Analysis of experimental data of both cuff ischemia and light exercise using the new equations show greater blood flow (four to six times more than resting values) during recovery, agreeing with previous findings. Further, the simulation and experimental studies of cuff ischemia and light exercise agree with each other.
We demonstrate the accuracy of this new method by showing that the blood flow obtained from the method agrees with previous data as well as with simulated data. We conclude that this novel continuous blood flow monitoring method can provide blood flow information non-invasively with NIRS.
PMCID: PMC1540409  PMID: 16704736

Results 1-12 (12)