PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-2 (2)
 

Clipboard (0)
None

Select a Filter Below

Journals
Authors
more »
Year of Publication
Document Types
1.  Pilot data on telmisartan short-term effects on glucose metabolism in the olfactory tract in Alzheimer's disease 
Brain and Behavior  2011;1(2):63-69.
The possible effect of antihypertensive therapy on Alzheimer's disease (AD) has been studied, and angiotensin II receptor blockers (ARBs) have been suggested to exert an effect on cognitive decline. The purpose of this study is to clarify the functional effects of telmisartan, a long-acting ARB, on AD brain using prospective longitudinal 18F-fluorodeoxyglucose positron emission tomography (FDG-PET) studies. For this purpose, brain glucose metabolism of four hypertensive patients with AD was examined with FDG-PET before and after administration of telmisartan. Studied subjects underwent three FDG-PET studies at intervals of 12 weeks. Antihypertensive treatment except for telmisartan was started after the first FDG-PET and continued for 24 weeks. Then 40–80 mg of telmisartan was added after the second FDG-PET and continued for 12 weeks.Glucose metabolism was significantly decreased during the first 12 weeks without telmisartan use at an area (−10, 21, −22, x, y, z; Z = 3.56) caudal to the left rectal gyrus and the olfactory sulcus corresponding to the left olfactory tract. In contrast, the introduction of telmisartan during the following 12 weeks preserved glucose metabolism at areas (5, 19, −20, x, y, z; Z = 3.09; 6, 19, −22, x, y, z; Z = 2.88) caudal to the bilateral rectal gyri and olfactory sulci corresponding to the bilateral olfactory tracts. No areas showed decreased glucose metabolism after the introduction of telmisartan. In AD, amyloid-β deposition is observed in the anterior olfactory nucleus (AON) of the olfactory tract. Glucose metabolism in AON may be progressively decreased and preserved by telmisartan.
doi:10.1002/brb3.13
PMCID: PMC3236542  PMID: 22399085
Alzheimer's disease (AD); angiotensin II receptor blocker (ARB); telmisartan; 18F-fluorodeoxyglucose positron emission tomography (FDG-PET); anterior olfactory nucleus
2.  Acute functional recovery of cerebral blood flow after forebrain ischemia in rat 
After complete cerebral ischemia, the postischemic blood flow response to functional activation is severely attenuated for several hours. However, little is known about the spatial and temporal extent of the blood flow response in the acute postischemic period after incomplete cerebral ischemia. To investigate the relative cerebral blood flow (rCBF) response in the somatosensory cortex of rat to controlled vibrissae stimulation after transient incomplete ischemia (15-min bilateral common carotid artery occlusion + hypotension), we employed laser speckle imaging combined with statistical parametric mapping. We found that the ischemic insult had a significant impact on the baseline blood flow (P < 0.005) and the activation area in response to functional stimulation was significantly reduced after ischemia (P < 0.005). The maximum rCBF response in the activation area determined from the statistical analysis did not change significantly up to 3 h after ischemia (P > 0.1). However, the time when rCBF response reached its maximum was significantly delayed (P < 0.0001) from 2.4 ± 0.2 secs before ischemia to 3.6 ± 0.1 secs at 20 mins into reperfusion (P < 0.001); the delay was reduced gradually to 2.9 ± 0.2 secs after 3 h, which was still significantly greater than that observed before the insult (P = 0.04).
doi:10.1038/jcbfm.2008.21
PMCID: PMC2771551  PMID: 18382471
cerebral blood flow; cerebral ischemia; functional activation; functional recovery; laser speckle imaging; statistical parametric map

Results 1-2 (2)