Search tips
Search criteria

Results 1-25 (117)

Clipboard (0)

Select a Filter Below

more »
Year of Publication
more »
1.  MicroRNA-720 promotes in vitro cell migration by targeting Rab35 expression in cervical cancer cells 
Cell & Bioscience  2015;5:56.
MicroRNA-720 (miR-720), a nonclassical miRNA, is involved in the initiation and progression of several tumors. In our previous studies, miR-720 was shown to be significantly upregulated in cervical cancer tissues compared with normal cervical tissues. However, the precise biological functions of miR-720, and its molecular mechanisms of action, are still unknown.
Microarray expression profiles, luciferase reporter assays, and western blot assays were used to validate Rab35 as a target gene of miR-720 in HEK293T and HeLa cells. The regulation of Rab35 expression by miR-720 was assessed using qRT-PCR and western blot assays, and the effects of exogenous miR-720 and Rab35 on cell migration were evaluated in vitro using Transwell® assay, wound healing assay, and real-time analyses in HeLa cells. The influences of exogenous miR-720 on cell proliferation were evaluated in vitro by the MTT assay in HeLa cells. In addition, expression of E-cadherin and vimentin associated with epithelial-mesenchymal transition were also assessed using western blot analyses after transfection of miR-720 mimics and Rab35 expression vectors. The results showed that the small GTPase, Rab35, is a direct functional target of miR-720 in cervical cancer HeLa cells. By targeting Rab35, overexpression of miR-720 resulted in a decrease in E-cadherin expression and an increase in vimentin expression and finally led to promotion of HeLa cell migration. Furthermore, reintroduction of Rab35 3′-UTR(−) markedly reversed the induction of cell migration in miR-720-expressing HeLa cells.
The miR-720 promotes cell migration of HeLa cells by downregulating Rab35. The results show that miR-720 is a novel cell migration-associated gene in cervical cancer cells.
Electronic supplementary material
The online version of this article (doi:10.1186/s13578-015-0047-5) contains supplementary material, which is available to authorized users.
PMCID: PMC4583841  PMID: 26413265
miR-720; Cervical cancer cells; Rab35; Cell migration
2.  Beneficial Effect of Acetic Acid on the Xylose Utilization and Bacterial Cellulose Production by Gluconacetobacter xylinus 
Indian Journal of Microbiology  2014;54(3):268-273.
In this work, acetic acid was found as one promising substrate to improve xylose utilization by Gluconacetobacter xylinus CH001. Also, with the help of adding acetic acid into medium, the bacterial cellulose (BC) production by G. xylinus was increased significantly. In the medium containing 3 g l−1 acetic acid, the optimal xylose concentration for BC production was 20 g l−1. In the medium containing 20 g l−1 xylose, the xylose utilization and BC production by G. xylinus were stimulated by acetic acid within certain concentration. The highest BC yield (1.35 ± 0.06 g l−1) was obtained in the medium containing 20 g l−1 xylose and 3 g l−1 acetic acid after 14 days. This value was 6.17-fold higher than the yield (0.21 ± 0.01 g l−1) in the medium only containing 20 g l−1 xylose. The results analyzed by FE-SEM, FTIR, and XRD showed that acetic acid affected little on the microscopic morphology and physicochemical characteristics of BC. Base on the phenomenon observed, lignocellulosic acid hydrolysates (xylose and acetic acid are main carbon sources present in it) could be considered as one potential substrate for BC production.
PMCID: PMC4039725  PMID: 24891733
Acetic acid; Bacterial cellulose; Gluconacetobacter xylinus; Lignocellulosic acid hydrolysates; Xylose utilization
3.  Effect of bipolar androgen therapy for asymptomatic men with castration-resistant prostate cancer: Results from a pilot clinical study 
Science translational medicine  2015;7(269):269ra2.
Targeting androgen receptor (AR) axis signaling by disrupting androgen-AR interactions remains the primary treatment for metastatic prostate cancer. Unfortunately, all men develop resistance to primary castrating therapy and secondary androgen deprivation therapies (ADTs). Resistance develops in part because castration-resistant prostate cancer (CRPC) cells adaptively up-regulate AR levels through overexpression, amplification, and expression of ligand-independent variants in response to chronic exposure to a low-testosterone environment. However, preclinical models suggest that AR overexpression represents a therapeutic liability that can be exploited via exposure to supraphysiologic testosterone to promote CRPC cell death. Preclinical data supported a pilot study in which 16 asymptomatic CRPC patients with low to moderate metastatic burden were treated with testosterone cypionate (400 mg intramuscular; day 1 of 28) and etoposide (100 mg oral daily; days 1 to 14 of 28). After three cycles, those with a declining prostate-specific antigen (PSA) continued on intermittent testosterone therapy monotherapy. Castrating therapy was continued to suppress endogenous testosterone production, allowing for rapid cycling from supraphysiologic to near-castrate serum testosterone levels, a strategy termed bipolar androgen therapy (BAT). BAT was well tolerated and resulted in high rates of PSA (7 of 14 evaluable patients) and radiographic responses (5 of 10 evaluable patients). Although all men showed eventual PSA progression, four men remained on BAT for ≥1 year. All patients (10 of 10) demonstrated PSA reductions upon receiving androgen-ablative therapies after BAT, suggesting that BAT may also restore sensitivity to ADTs. BAT shows promise as treatment for CRPC and should be further evaluated in larger trials.
PMCID: PMC4507510  PMID: 25568070
4.  Hyperhomocysteinemia as a metabolic disorder parameter is independently associated with the severity of coronary heart disease 
Saudi Medical Journal  2015;36(7):839-846.
To study the associations between hyperhomocysteinemia (HHcy) and the severity of coronary heart disease (CHD).
We retrospectively analyzed metabolic parameters, anthropometric variables, and life style habits in 292 CHD patients of different categories, and 100 controlled non-CHD patients with chest pain symptoms who were hospitalized in the Department of Cardiovascular Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, Chengdu, China between October 2013 and September 2014.
The prevalence of HHcy in CHD patients was 79.1%, while only 5% of non-CHD patients had elevated serum homocysteine (Hcy) concentrations. The prevalence of HHcy significantly increased from 5% in non-CHD controls to 66% in the stable angina pectoris (SAP) group, to 81.9% in the unstable angina pectoris group, and to 93.15% in the acute myocardial infarction (AMI) group (p<0.001). After adjusting for confounding factors, multivariate logistic regression analysis showed that HHcy was independently associated with CHD category (AMI versus SAP, odds ratio [6.38], 95% confidence interval; 1.18-34.46). The Hcy was negatively correlated with folic acid (r=-0.67, p<0.001) and vitamin B12 (r=-0.56, p<0.001). Of the CHD patients with HHcy, 51.1% had low folic acid and 42% had low vitamin B12, 7 or 5 times higher than that of CHD patients with normal-low Hcy concentrations (p<0.001).
Hyperhomocysteinemia is independently associated with the severity of CHD, and significantly correlated with low status of folic acid and vitamin B12 in CHD patients.
PMCID: PMC4503904  PMID: 26108589
5.  Crystal structures of (1,4,7,10-tetra­aza­cyclo­dodecane-κ4 N)bis­(tri­cyano­methanido-κN)nickel and (1,4,7,10-tetra­aza­cyclo­dodecane-κ4 N)(tri­cyano­methanido-κN)copper tri­cyano­methanide 
Two new nickel and copper tri­cyano­methanide (tcm−) complexes with 1,4,7,10-tetra­aza­cyclo­dodecane (cyclen) as a co-ligand have been synthesized and structurally characterized.
The structures of two mononuclear transition-metal complexes with tri­cyano­methanide (tcm−) and 1,4,7,10-tetra­aza­cyclo­dodecane (cyclen) ligands, [Ni(C4N3)2(C8H20N4)], (I), and [Cu(C4N3)(C8H20N4)](C4N3), (II), are reported. In the neutral complex (I), the nickel cation is coordinated by one cyclen ligand and two monodentate N-bound tcm− anions in a distorted octa­hedral geometry. The tcm− ligands are mutually cis. The CuII atom in (II) displays a distorted tetra­gonal–pyramidal geometry, with the four N-donor atoms of the cyclen ligand in the equatorial plane, and one tcm− anion bound through a single N atom in an axial site, forming a monocation. The second tcm− molecule acts as a counter-ion not directly coordinating to the copper cation. In both (I) and (II), extensive series of N—H⋯N and C—H⋯N hydrogen bonds generate three-dimensional network structures.
PMCID: PMC4459349  PMID: 26090153
crystal structures; tri­cyano­methanide; 1,4,7,10-tetra­aza­cyclo­dodeca­ne; nickel complex; copper complex
6.  Up-regulated isocitrate dehydrogenase 1 suppresses proliferation, migration and invasion in osteosarcoma: In vitro and in vivo 
Cancer letters  2013;346(1):114-121.
Very few studies have been reported the function of wild type IDH1 in tumor progress. Previously, we reported that IDH1 correlated with pathological grade and metastatic potential inversely in human osteosarcoma. Here, IDH1 was found lower expressed in osteosarcoma tissues than that of adjacent normal bone tissues. In addition, we observed in vitro anti-proliferation and pro-apoptosis effects of up-regulated IDH1 on osteosarcoma cell lines. The migration and invasion activity was also markedly reduced by IDH1 up-regulation. Unexpectedly, IDH1 up-regulation also suppressed tumor growth and metastasis in vivo. Therefore, IDH1 may represent a potential novel treatment and preventive strategy for osteosarcoma.
PMCID: PMC4363565  PMID: 24368190
Isocitrate dehydrogenase 1; Proliferation; Migration; Invasion; Osteosarcoma
7.  Expression of Cancer/Testis Antigens in Prostate Cancer is Associated With Disease Progression 
The Prostate  2010;70(16):1778-1787.
The cancer/testis antigens (CTAs) are a unique group of proteins normally expressed in germ cells but aberrantly expressed in several types of cancers including prostate cancer (PCa). However, their role in PCa has not been fully explored.
CTA expression profiling in PCa samples and cell lines was done utilizing a custom microarray that contained probes for two-thirds of all CTAs. The data were validated by quantitative PCR (Q-PCR). Functional studies were carried out by silencing gene expression with siRNA. DNA methylation was determined by methylation-specific PCR.
A majority of CTAs expressed in PCa are located on the X chromosome (CT-X antigens). Several CT-X antigens from the MAGEA/CSAG subfamilies are coordinately upregulated in castrate-resistant prostate cancer (CRPC) but not in primary PCa. In contrast, PAGE4 is highly upregulated in primary PCa but is virtually silent in CRPC. Further, there was good correlation between the extent of promoter DNA methylation and CTA expression. Finally, silencing the expression of MAGEA2 the most highly upregulated member, significantly impaired proliferation of prostate cancer cells while increasing their chemosensitivity.
Considered together, the remarkable stage-specific expression patterns of the CT-X antigens strongly suggests that these CTAs may serve as unique biomarkers that could potentially be used to distinguish men with aggressive disease who need treatment from men with indolent disease not requiring immediate intervention. The data also suggest that the CT-X antigens may be novel therapeutic targets for CRPC for which there are currently no effective therapeutics.
PMCID: PMC4403006  PMID: 20583133
cancer/testis antigens; prostate cancer; castrate-resistant prostate cancer; biomarker
8.  Selective TBK1/IKKi dual inhibitors with anti-cancer potency 
Increasing evidence suggests that the non-canonical IKKs play critical roles in tumor genesis and development, leading to the notion that non-canonical IKKs may be good targets for cancer therapy. Here, we demonstrate that although TBK1 is not over-expressed or constitutively activated in some tumor cells, targeting IKKi induces the activation of TBK1. Therefore, simultaneously targeting both kinases is necessary to efficiently suppress tumor cell proliferation. We show that three TBK1/IKKi dual inhibitors, which are based on a structurally rigid 2-amino-4-(3′-cyano-4′-pyrrolidine)phenyl-pyrimidine scaffold, potently inhibit cell viability in human breast, prostate, and oral cancer cell lines. Treatment with these TBK1/IKKi dual inhibitors significantly impairs tumor development in xenograft and allograft mouse models. The anti-cancer function of these inhibitors may be due partially to their suppression of TBK1/IKKi-mediated AKT phosphorylation and VEGF expression. Most importantly, these TBK1/IKKi dual inhibitors have drug-like properties including low molecular weight, low Cytochrome P450 inhibition, and high metabolic stability. Therefore, our studies provide proof of concept for further drug discovery efforts that may lead to novel strategies and new therapeutics for the treatment of human cancer.
PMCID: PMC3947486  PMID: 24150799
TBK1; IKKi; TBK1/IKKi inhibitor; cancer; therapy
9.  Life quality changes within 26 month after the non-surgical treatment in patients with deep vein thrombosis 
Objective: The objective of this study is to investigate the life quality of lower-extremity deep vein thrombosis (DVT) patients 26 m after progressive decompression elasticity socks therapy. Methods: SF-36 scale was used to record the life quality scores in 74 patients with acute and subacute deep venous thrombosis, all the patients received the non-surgical treatment. The eight dimensions of life quality variation were documented and analyzed. Results: The baseline data were comparable (P = 1.000 for age, P = 0.655 for sex). At the time of admission and at different time points after discharge, there were significant differences for eight dimensions in patients with deep vein thrombosis (Ps < 0.001). In addition that eight dimensions scores were significantly different between the score at 2 months, 4 months after discharge and the score at certain individual stages (Ps < 0.05), there were no significant difference for eight dimensions scores at different stages (Ps > 0.05). Conclusions: Showed slow improvement within six months of deep vein thrombosis in patients with non-surgical treatment, the life quality scores entered the plateau stage, the life quality of the RP and the PF dimension were slightly impaired, the VT dimension showed relatively obvious damage, the remaining dimensions can recover to healthy levels. The blood circulation activation drugs may help maintain the stability of life quality and delay the occurrence of PTS. The turning point of life quality did not show and required extended follow-up period.
PMCID: PMC4483832  PMID: 26131196
Deep vein thrombosis; life quality; brief health examination survey
10.  Novel hollow α-Fe2O3 nanofibers via electrospinning for dye adsorption 
Nanomaterials such as iron oxides and ferrites have been intensively investigated for water treatment and environmental remediation applications. In this work, hollow α-Fe2O3 nanofibers made of rice-like nanorods were successfully synthesized via a simple hydrothermal reaction on polyvinyl alcohol (PVA) nanofiber template followed by calcination. The crystallographic structure and the morphology of the as-prepared α-Fe2O3 nanofibers were characterized by X-ray diffraction, energy dispersive X-ray spectrometer, and scanning electron microscope. Batch adsorption experiments were conducted, and ultraviolet-visible spectra were recorded before and after the adsorption to investigate the dye adsorption performance. The results showed that hollow α-Fe2O3 fiber assembles exhibited good magnetic responsive performance, as well as efficient adsorption for methyl orange in water. This work provided a versatile strategy for further design and development of functional nanofiber-nanoparticle composites towards various applications.
PMCID: PMC4401480  PMID: 25918495
Hollow nanofiber; Electrospinning; α-Fe2O3; Magnetic
11.  The oncogenic role of JC virus T antigen in lens tumors without cell specificity of alternative splicing of its intron 
Oncotarget  2015;6(10):8036-8045.
JC virus (JCV), a ubiquitous polyoma virus that commonly infects the human, is identified as the etiologic agent for progressive multifocal leukoencephalopathy and some malignancies. To clarify the oncogenic role of JCV T antigen, we established two transgenic mice of T antigen using either α-crystallin A (αAT) or cytokeratin 19(KT) promoter. Lens tumors were found in high-copy αAT mice with the immunopositivity of T antigen, p53, β-catenin and N-cadherin. Enlarged eyeballs were observed and tumor invaded into the brain by magnetic resonance imaging and hematoxylin-and-eosin staining. The overall survival time of homozygous mice was shorter than that of hemizygous mice (p<0.01), the latter than wild-type mice (p<0.01). The spontaneous salivary tumor and hepatocellular carcinoma were seen in αAT5 transgenic mice with no positivity of T antigen. KT7 mice suffered from lung tumor although JCV T antigen was strongly expressed in gastric epithelial cells. The alternative splicing of T antigen intron was detectable in the lens tumor of αAT mice, gastric mucosa of KT mice, and various cells transfected with pEGFP-N1-T antigen. It was suggested that JCV T antigen might induce carcinogenesis at a manner of cell specificity, which is not linked to alternative splicing of its intron. Both spontaneous lens and lung tumor models provide good tools to investigate the oncogenic role of JCV T antigen.
PMCID: PMC4480733  PMID: 25868857
JC virus; T antigen; oncogenesis; transgenic mouse; lens tumor
12.  Scalable Synthesis of Freestanding Sandwich-structured Graphene/Polyaniline/Graphene Nanocomposite Paper for Flexible All-Solid-State Supercapacitor 
Scientific Reports  2015;5:9359.
We reported a scalable and modular method to prepare a new type of sandwich-structured graphene-based nanohybrid paper and explore its practical application as high-performance electrode in flexible supercapacitor. The freestanding and flexible graphene paper was firstly fabricated by highly reproducible printing technique and bubbling delamination method, by which the area and thickness of the graphene paper can be freely adjusted in a wide range. The as-prepared graphene paper possesses a collection of unique properties of highly electrical conductivity (340 S cm−1), light weight (1 mg cm−2) and excellent mechanical properties. In order to improve its supercapacitive properties, we have prepared a unique sandwich-structured graphene/polyaniline/graphene paper by in situ electropolymerization of porous polyaniline nanomaterials on graphene paper, followed by wrapping an ultrathin graphene layer on its surface. This unique design strategy not only circumvents the low energy storage capacity resulting from the double-layer capacitor of graphene paper, but also enhances the rate performance and cycling stability of porous polyaniline. The as-obtained all-solid-state symmetric supercapacitor exhibits high energy density, high power density, excellent cycling stability and exceptional mechanical flexibility, demonstrative of its extensive potential applications for flexible energy-related devices and wearable electronics.
PMCID: PMC4369721  PMID: 25797022
13.  Transcriptome comparison of the sex pheromone glands from two sibling Helicoverpa species with opposite sex pheromone components 
Scientific Reports  2015;5:9324.
Differences in sex pheromone component can lead to reproductive isolation. The sibling noctuid species, Helicoverpa armigera and Helicoverpa assulta, share the same two sex pheromone components, Z9-16:Ald and Z11-16:Ald, but in opposite ratios, providing an typical example of such reproductive isolation. To investigate how the ratios of the pheromone components are differently regulated in the two species, we sequenced cDNA libraries from the pheromone glands of H. armigera and H. assulta. After assembly and annotation, we identified 108 and 93 transcripts putatively involved in pheromone biosynthesis, transport, and degradation in H. armigera and H. assulta, respectively. Semi-quantitative RT-PCR, qRT-PCR, phylogenetic, and mRNA abundance analyses suggested that some of these transcripts involved in the sex pheromone biosynthesis pathways perform. Based on these results, we postulate that the regulation of desaturases, KPSE and LPAQ, might be key factor regulating the opposite component ratios in the two sibling moths. In addition, our study has yielded large-scale sequence information for further studies and can be used to identify potential targets for the bio-control of these species by disrupting their sexual communication.
PMCID: PMC4366804  PMID: 25792497
14.  AR-V7 and Resistance to Enzalutamide and Abiraterone in Prostate Cancer 
The New England journal of medicine  2014;371(11):1028-1038.
The androgen-receptor isoform encoded by splice variant 7 lacks the ligand-binding domain, which is the target of enzalutamide and abiraterone, but remains constitutively active as a transcription factor. We hypothesized that detection of androgen-receptor splice variant 7 messenger RNA (AR-V7) in circulating tumor cells from men with advanced prostate cancer would be associated with resistance to enzalutamide and abiraterone.
We used a quantitative reverse-transcriptase–polymerase-chain-reaction assay to evaluate AR-V7 in circulating tumor cells from prospectively enrolled patients with metastatic castration-resistant prostate cancer who were initiating treatment with either enzalutamide or abiraterone. We examined associations between AR-V7 status (positive vs. negative) and prostate-specific antigen (PSA) response rates (the primary end point), freedom from PSA progression (PSA progression–free survival), clinical or radiographic progression–free survival, and overall survival.
A total of 31 enzalutamide-treated patients and 31 abiraterone-treated patients were enrolled, of whom 39% and 19%, respectively, had detectable AR-V7 in circulating tumor cells. Among men receiving enzalutamide, AR-V7–positive patients had lower PSA response rates than AR-V7–negative patients (0% vs. 53%, P = 0.004) and shorter PSA progression–free survival (median, 1.4 months vs. 6.0 months; P<0.001), clinical or radiographic progression–free survival (median, 2.1 months vs. 6.1 months; P<0.001), and overall survival (median, 5.5 months vs. not reached; P = 0.002). Similarly, among men receiving abiraterone, AR-V7–positive patients had lower PSA response rates than AR-V7–negative patients (0% vs. 68%, P = 0.004) and shorter PSA progression–free survival (median, 1.3 months vs. not reached; P<0.001), clinical or radiographic progression–free survival (median, 2.3 months vs. not reached; P<0.001), and overall survival (median, 10.6 months vs. not reached, P = 0.006). The association between AR-V7 detection and therapeutic resistance was maintained after adjustment for expression of full-length androgen receptor messenger RNA.
Detection of AR-V7 in circulating tumor cells from patients with castration-resistant prostate cancer may be associated with resistance to enzalutamide and abiraterone. These findings require large-scale prospective validation. (Funded by the Prostate Cancer Foundation and others.)
PMCID: PMC4201502  PMID: 25184630
15.  Discrete Li-occupation versus pseudo-continuous Na-occupation and their relationship with structural change behaviors in Fe2(MoO4)3 
Scientific Reports  2015;5:8810.
The key factors governing the single-phase or multi-phase structural change behaviors during the intercalation/deintercalation of guest ions have not been well studied and understood yet. Through systematic studies of orthorhombic Fe2(MoO4)3 electrode, two distinct guest ion occupation paths, namely discrete one for Li and pseudo-continuous one for Na, as well as their relationship with single-phase and two-phase modes for Na+ and Li+, respectively during the intercalation/deintercalation process have been demonstrated. For the first time, the direct atomic-scale observation of biphasic domains (discrete occupation) in partially lithiated Fe2(MoO4)3 and the one by one Na occupation (pseudo-continuous occupation) at 8d sites in partially sodiated Fe2(MoO4)3 are obtained during the discharge processes of Li/Fe2(MoO4)3 and Na/Fe2(MoO4)3 cells respectively. Our combined experimental and theoretical studies bring the new insights for the research and development of intercalation compounds as electrode materials for secondary batteries.
PMCID: PMC4351542  PMID: 25744589
16.  The Mutational Landscape of Prostate Cancer 
European urology  2013;64(4):567-576.
Prostate cancer is a clinically heterogeneous disease with marked variability in patient outcomes. Molecular characterization has revealed striking mutational heterogeneity that may underlie the variable clinical course of the disease.
In this review, we discuss the common genomic alterations that form the molecular basis of prostate cancer, their functional significance, and potential to translate this knowledge toward patient care.
Evidence Acquisition
We reviewed the relevant literature, with a particular focus on recent studies on somatic alterations in prostate cancer.
Evidence Synthesis
Advances in sequencing technology have resulted in an explosion of data regarding the mutational events underlying the development and progression of prostate cancer. Heterogeneity is the norm; few abnormalities in specific genes are highly recurrent, but alterations in certain signaling pathways do predominate. These include pathways known to affect tumorigenesis in a wide spectrum of tissues, such as PI3K/PTEN/AKT, cell cycle regulation, and chromatin regulation. Alterations more specific to prostate cancer are also observed, particularly gene fusions of ETS transcription factors and alterations in androgen signaling. Mounting data suggests that prostate cancer can be subdivided based on a molecular profile of genetic alterations.
Major advances have been made in cataloguing the genomic alterations in prostate cancer and understanding the molecular mechanisms underlying the disease. These findings raise the possibility that prostate cancer could soon transition from a poorly understood, heterogeneous disease with a variable clinical course to a collection of homogenous subtypes, identifiable by molecular criteria, associated with distinct risk profiles, and perhaps amenable to specific management strategies or targeted therapies.
PMCID: PMC4342117  PMID: 23759327
17.  Correlation of Sprouty1 and Jagged1 With Aggressive Prostate Cancer Cells With Different Sensitivities to Androgen Deprivation 
Journal of cellular biochemistry  2014;115(9):1505-1515.
Prostate cancer is a heterogeneous disease and thus, it is important to understand whether among the heterogeneous collection of cell types, androgen-deprivation insensitive cells exist prior to hormonal manipulation. We established several LNCaP subclones with distinct insensitivities to androgen deprivation from a parental LNCaP cell line. In the resulting clones, the sensitivity to androgen-deprivation negatively correlated with their PSA expression levels. In two of these clones, an androgen insensitive clone, LNCaP-cl1, and an androgen sensitive clone, LNCaP-cl5, the DNA copy number differed significantly, indicating that these clones contain genetically distinct cells. LNCaP-cl1 had higher PSA expression but lower invasiveness and tumor growth potential than LNCaP-cl5. The expression levels of two genes that are known to be regulated by miR-21, an androgen-regulated microRNA, Sprouty1 (SPRY1) and Jagged1 (JAG1) were significantly lower in LNCaP-cl1 than in LNCaP-cl5. Knocking down SPRY1 in LNCaP cells enhanced PSA expression and cell proliferation. JAG1 administration in LNCaP cells enhanced cell invasion and JAG1 knockdown in PC3 cells suppressed cell invasion and tumor formation. These results indicated that the expression differences in SPRY1 and JAG1 may contribute to the phenotypic differences between the LNCaP-cl1 and LNCaP-cl5 clones. In tissue samples, SPRY1 expression levels were significantly lower in prostate cancer patients with PSA recurrence after surgical treatment (P = 0.0076) and JAG1 expression levels were significantly higher in Gleason sum (GS) 8–9 disease than in GS 5–6 (P = 0.0121). In summary a random population of LNCaP cells comprises a heterogeneous group of cells with different androgen-deprivation sensitivities and potential for invasiveness.
PMCID: PMC4337863  PMID: 24604720
18.  In vivo expression patterns of microRNAs of Gallid herpesvirus 2 (GaHV-2) during the virus life cycle and development of Marek’s disease lymphomas 
Virus Genes  2015;50(2):245-252.
In the past decade, a large number of microRNAs (miRNAs) have been identified in the viral genome of Gallid herpesvirus 2 (GaHV-2), which is historically known as Marek’s disease virus type 1. The biological role of most GaHV-2 miRNAs remains unclear. In the present study, we have performed an overall gene expression profile of GaHV-2 miRNAs during the virus life cycle at each phase of the developing disease, a highly contagious, lymphoproliferative disorder, and neoplastic immunosuppressive disease of poultry known as the Marek’s disease. According to their distinct in vivo expression patterns, the GaHV-2 miRNAs can be divided into three groups: 12 miRNAs in group I, including miR-M4-5p, displayed a typical expression pattern potentially correlated to the latent, late cytolytic, and/or the proliferative phases in the cycle of GaHV-2 pathogenesis; group II consisting of another 12 miRNAs with expression correlated to the early cytolytic and/or latent phases in GaHV-2’s life cycle; while the other two miRNAs in group III showed no identical expression features. Our findings may provide meaningful clues in the search for further potential functions of viral miRNAs in GaHV-2 biology.
PMCID: PMC4381040  PMID: 25666057
MicroRNA; GaHV-2; MDV-1; Expression profile; Virus life cycle; Oncogenesis
19.  Specificity Protein 1 Regulates Gene Expression Related to Fatty Acid Metabolism in Goat Mammary Epithelial Cells 
Specificity protein 1 (SP1) is a ubiquitous transcription factor that plays an important role in controlling gene expression. Although important in mediating the function of various hormones, the role of SP1 in regulating milk fat formation remains unknown. To investigate the sequence and expression information, as well as its role in modulating lipid metabolism, we cloned SP1 gene from mammary gland of Xinong Saanen dairy goat. The full-length cDNA of the SP1 gene is 4376 bp including 103 bp of 5'UTR, 2358 bp of ORF (HM_236311) and 1915 bp of 3'UTR, which is predicted to encode a 786 amino acids polypeptide. Phylogenetic tree analysis showed that goat SP1 has the closest relationship with sheep, followed by bovines (bos taurus, odobenus and ceratotherium), pig, primates (pongo, gorilla, macaca and papio) and murine (rattus and mus), while the furthest relationship was with canis and otolemur. Expression was predominant in the lungs, small intestine, muscle, spleen, mammary gland and subcutaneous fat. There were no significant expression level differences between the mammary gland tissues collected at lactation and dry-off period. Overexpression of SP1 in goat mammary epithelial cells (GMECs) led to higher mRNA expression level of peroxisome proliferator-activated receptor-γ (PPARγ) and lower liver X receptor α (LXRα) mRNA level, both of which were crucial in regulating fatty acid metabolism, and correspondingly altered the expression of their downstream genes in GMECs. These results were further enhanced by the silencing of SP1. These findings suggest that SP1 may play an important role in fatty acid metabolism.
PMCID: PMC4307335  PMID: 25594872
dairy goat; mammary epithelial cells; specificity protein 1; fatty acid metabolism
20.  Cobalt Protoporphyrin Pretreatment Protects Human Embryonic Stem Cell-Derived Cardiomyocytes From Hypoxia/Reoxygenation Injury In Vitro and Increases Graft Size and Vascularization In Vivo 
These experiments demonstrate that ex vivo pretreatment of human embryonic stem cell-derived cardiomyocytes with a single dose of cobalt protoporphyrin before intramyocardial implantation more than doubled resulting graft size and improved early graft vascularization in acutely infarcted hearts. These findings open the door for delivery of these, or other, stem cells during acute interventional therapy following myocardial infarction or ischemia.
Human embryonic stem cell-derived cardiomyocytes (hESC-CMs) can regenerate infarcted myocardium. However, when implanted into acutely infarcted hearts, few cells survive the first week postimplant. To improve early graft survival, hESC-CMs were pretreated with cobalt protoporphyrin (CoPP), a transcriptional activator of cytoprotective heme oxygenase-1 (HO-1). When hESC-CMs were challenged with an in vitro hypoxia/reoxygenation injury, mimicking cell transplantation into an ischemic site, survival was significantly greater among cells pretreated with CoPP versus phosphate-buffered saline (PBS)-pretreated controls. Compared with PBS-pretreated cells, CoPP-pretreated hESC-CM preparations exhibited higher levels of HO-1 expression, Akt phosphorylation, and vascular endothelial growth factor production, with reduced apoptosis, and a 30% decrease in intracellular reactive oxygen species. For in vivo translation, 1 × 107 hESC-CMs were pretreated ex vivo with CoPP or PBS and then injected intramyocardially into rat hearts immediately following acute infarction (permanent coronary ligation). At 1 week, hESC-CM content, assessed by quantitative polymerase chain reaction for human Alu sequences, was 17-fold higher in hearts receiving CoPP- than PBS-pretreated cells. On histomorphometry, cardiomyocyte graft size was 2.6-fold larger in hearts receiving CoPP- than PBS-pretreated cells, occupying up to 12% of the ventricular area. Vascular density of host-perfused human-derived capillaries was significantly greater in grafts composed of CoPP- than PBS-pretreated cells. Taken together, these experiments demonstrate that ex vivo pretreatment of hESC-CMs with a single dose of CoPP before intramyocardial implantation more than doubled resulting graft size and improved early graft vascularization in acutely infarcted hearts. These findings open the door for delivery of these, or other, stem cells during acute interventional therapy following myocardial infarction or ischemia.
PMCID: PMC4039456  PMID: 24736402
Cell therapy; Infarct repair; Human embryonic stem cell; Heme oxygenase-1; Preconditioning; Acute myocardial infarction
21.  Lipoprotein Lipase, Tissue Expression and Effects on Genes Related to Fatty Acid Synthesis in Goat Mammary Epithelial Cells 
Lipoprotein lipase (LPL) serves as a central factor in hydrolysis of triacylglycerol and uptake of free fatty acids from the plasma. However, there are limited data concerning the action of LPL on the regulation of milk fat synthesis in goat mammary gland. In this investigation, we describe the cloning and sequencing of the LPL gene from Xinong Saanen dairy goat mammary gland, along with a study of its phylogenetic relationships. Sequence analysis showed that goat LPL shares similarities with other species including sheep, bovine, human and mouse. LPL mRNA expression in various tissues determined by RT-qPCR revealed the highest expression in white adipose tissue, with lower expression in heart, lung, spleen, rumen, small intestine, mammary gland, and kidney. Expression was almost undetectable in liver and muscle. The expression profiles of LPL gene in mammary gland at early, peak, mid, late lactation, and the dry period were also measured. Compared with the dry period, LPL mRNA expression was markedly greater at early lactation. However, compared with early lactation, the expression was lower at peak lactation and mid lactation. Despite those differences, LPL mRNA expression was still greater at peak, mid, and late lactation compared with the dry period. Using goat mammary epithelial cells (GMEC), the in vitro knockdown of LPL via shRNA or with Orlistat resulted in a similar degree of down-regulation of LPL (respectively). Furthermore, knockdown of LPL was associated with reduced mRNA expression of SREBF1, FASN, LIPE and PPARG but greater expression of FFAR3. There was no effect on ACACA expression. Orlistat decreased expression of LIPE, FASN, ACACA, and PPARG, and increased FFAR3 and SREBF1 expression. The pattern of LPL expression was similar to the changes in milk fat percentage in lactating goats. Taken together, results suggest that LPL may play a crucial role in fatty acid synthesis.
PMCID: PMC4284735  PMID: 25501331
LPL gene; lactation; goat mammary epithelial cells; Orlistat
22.  Decoding the androgen receptor splice variants 
In the past five years, multiple structurally and functionally distinct androgen receptor (AR) splice variants have been decoded and characterized. The mature transcripts for the majority of the fully decoded AR splice variants contain a transcribed “intronic” sequence, capable of encoding a short variant-specific peptide to replace the AR ligand-binding domain (LBD). Functionally, AR splice variants represent a diverse group of molecules often demonstrating cell context-specific genomic functions that may or may not be coupled with the functions of the canonical full-length AR (AR-FL). However, the full spectrum of their functional diversity and the underlying mechanistic basis remains very poorly characterized. In clinical specimens derived from men treated with a variety of hormone therapy regimens, AR splice variants are almost always expressed at detectable, yet lower levels when compared to that of AR-FL. In spite of the collective in vitro data supporting the putative role of AR splice variants in therapeutic resistance to hormone therapies, the extent to which AR splice variants mediate resistance to each individual regimen is not known and awaits thorough investigations in a clinically relevant setting using specimens from men undergoing treatments. Among the AR splice variants, AR-V7 is more abundantly and frequently expressed in castration-resistant prostate cancer (CRPC) and remains the most important variant identified so far. The relative importance of different AR molecules, including AR-FL, should be functionally dissected in the setting of castration-resistant prostate cancer, particularly in tumors resistant to more potent inhibitors of AR-FL recently approved by the FDA. In this review, we will focus on the discovery and characterization of AR splice variants, their putative functions and roles in mediating constitutively active AR signaling, and key areas of investigation that are necessary to establish their clinical relevance.
PMCID: PMC4209743  PMID: 25356377
Androgen receptor (AR); AR Splice Variants; AR signaling; full-length AR (AR-FL); prostate cancer; castration-resistant prostate cancer (CRPC)
23.  A direct real-time polymerase chain reaction assay for rapid high-throughput detection of highly pathogenic North American porcine reproductive and respiratory syndrome virus in China without RNA purification 
Porcine reproductive and respiratory syndrome virus (PRRSV), and particularly its highly pathogenic genotype (HP-PRRSV), have caused massive economic losses to the global swine industry.
To rapidly identify HP-PRRSV, we developed a direct real-time reverse transcription polymerase chain reaction method (dRT-PCR) that could detect the virus from serum specimen without the need of RNA purification. Our dRT-PCR assay can be completed in 1.5 h from when a sample is received to obtaining a result. Additionally, the sensitivity of dRT-PCR matched that of conventional reverse transcription PCR (cRT-PCR) that used purified RNA. The lowest detection limit of HP-PRRSV was 6.3 TCID50 using dRT-PCR. We applied dRT-PCR assay to 144 field samples and the results showed strong consistency with those obtained by cRT-PCR. Moreover, the dRT-PCR method was able to tolerate 5-20% (v/v) serum.
Our dRT-PCR assay allows for easier, faster, more cost-effective and higher throughput detection of HP-PRRSV compared with cRT-PCR methods. To the best of our knowledge, this is the first report to describe a real-time RT-PCR assay capable of detecting PRRSV in crude serum samples without the requirement for purifying RNA. We believe our approach has a great potential for application to other RNA viruses.
Electronic supplementary material
The online version of this article (doi:10.1186/2049-1891-5-45) contains supplementary material, which is available to authorized users.
PMCID: PMC4198619  PMID: 25324970
Highly pathogenic; Porcine reproductive and respiratory syndrome virus; Real-time RT-PCR
24.  GOLPH2 and MYO6:Putative Prostate Cancer Markers Localizedtothe Golgi Apparatus 
The Prostate  2008;68(13):1387-1395.
Malignant transformation is often accompanied by morphological and functional alterations in subcellular organelles. The Golgi apparatus is a subcellular structure primarily involved in modification and sorting of macromolecules for secretion and transport to other cellular destinations. Molecular alterations associated with the Golgi apparatus may take place during prostate carcinogenesis but such alterations have not been documented.
To demonstrate that the Golgi apparatus undergoes alterations during prostate carcinogenesis, we examined the expression and localization of two candidate molecules, Golgi phosphoprotein 2 (GOLPH2) and myosin VI (MYO6), both overexpressed in prostate cancer as initially identified by expression microarray analysis.
Elevated GOLPH2 expression in prostate cancers was validated through real-time RT-PCR, Western blot, and tissue microarray analysis, and its Golgi localization in surgical prostate cancer tissues confirmed using two-color immunofluorescence. In addition, distinctive juxtanuclear MYO6 staining pattern consistent with Golgi localization was observed in surgical prostate cancer tissues. Two-color immunofluorescence revealed intensive Golgi-specific staining for both GOLPH2 and myosin VI in prostate cancer cells but not in the adjacent normal prostate epithelium.
We show that the Golgi apparatus in prostate cancer cells differs from the normal Golgi by elevated levels of two molecules, GOLPH2 and MYO6. These results for the first time demonstrated consistent cancer cell-specific alterations in the molecular composition of the Golgi apparatus. Such alterations can be explored for discovery of novel prostate cancer biomarkers through targeted organellar approaches.
PMCID: PMC4124602  PMID: 18543251
prostate cancer; GOLPH2; myosin VI; Golgi
25.  Relaxor-PbTiO3 Single Crystals for Various Applications 
Piezoelectric materials lie at the heart of electromechanical devices. Applications include actuators, ultrasonic imaging, high intensity focused ultrasound, underwater ultrasound, nondestructive evaluation transducer, pressure sensors, and accelerometers, to name a few. In this work, the advantages and disadvantages of relaxor-PbTiO3-based single crystals are discussed, based on the requirements (figure of merit) of various applications, with emphasis on recent developments of the shear properties of single crystals as a function of temperature and applied fields.
PMCID: PMC4105699  PMID: 25004527

Results 1-25 (117)