Search tips
Search criteria

Results 1-7 (7)

Clipboard (0)

Select a Filter Below

Year of Publication
1.  Myasthenic Crisis 
The Neurohospitalist  2011;1(1):16-22.
Myasthenic crisis is a complication of myasthenia gravis characterized by worsening of muscle weakness, resulting in respiratory failure that requires intubation and mechanical ventilation. Advances in critical care have improved the mortality rate associated with myasthenic crisis. This article reviews the epidemiology of myasthenic crisis and discusses patient evaluation. Therapeutic options including mechanical ventilation and pharmacological and surgical treatments are also discussed.
PMCID: PMC3726100  PMID: 23983833
myasthenia gravis; autoimmune diseases of the nervous system; neurocritical care clinical specialty; neuromuscular disease clinical specialty
2.  EEG Monitoring during Therapeutic Hypothermia in Neonates, Children, and Adults 
Therapeutic hypothermia is being utilized as a neuro-protective strategy in neonates, children, and adults. The most common indications are hypoxic ischemic encephalopathy in neonates and post cardiac arrest in adults. Electroencephalographic monitoring use is increasing in critical care units, and is sometimes a component of therapeutic hypothermia clinical pathways. Monitoring may detect non-convulsive seizures or non-convulsive status epilepticus, and it may provide prognostic information. We review data regarding indications for therapeutic hypothermia and electroencephalographic monitoring in neonatal, pediatric, and adult critical care units, and discuss technical aspects related to such monitoring.
PMCID: PMC3422126  PMID: 21988034
Cardiac arrest; EEG; neonatal hypoxic ischemic encephalopathy; non-convulsive seizures; seizures; therapeutic hypothermia; traumatic brain injury
3.  Timing of neuroprognostication in postcardiac arrest therapeutic hypothermia* 
Critical care medicine  2012;40(3):719-724.
Early assessment of neurologic recovery is often challenging in survivors of cardiac arrest. Further, little is known about when to assess neurologic status in comatose, postarrest patients receiving therapeutic hypothermia. We sought to evaluate timing of prognostication in cardiac arrest survivors who received therapeutic hypothermia.
A retrospective chart review of consecutive postarrest patients receiving therapeutic hypothermia (protocol: 24-hr maintenance at target temperature followed by rewarming over 8 hrs). Data were abstracted from the medical chart, including documentation during the first 96 hrs post arrest of “poor” prognosis, diagnostic tests for neuroprognostication, consultations used for determination of prognosis, and outcome at discharge.
Two academic urban emergency departments.
A total of 55 consecutive patients who underwent therapeutic hypothermia were reviewed between September 2005 and April 2009.
Of our cohort of comatose postarrest patients, 59% (29 of 49) were male, and the mean age was 56 ± 16 yrs. Chart documentation of “poor” or “grave” prognosis occurred “early”: during induction, maintenance of cooling, rewarming, or within 15 hrs after normothermia in 57% (28 of 49) of cases. Of patients with early documentation of poor prognosis, 25% (seven of 28) had care withdrawn within 72 hrs post arrest, and 21% (six of 28) survived to discharge with favorable neurologic recovery. In the first 96 hrs post arrest: 88% (43 of 49) of patients received a head computed tomography, 90% (44 of 49) received electroencephalography, 2% (one of 49) received somatosensory evoked potential testing, and 71% (35 of 49) received neurology consultation.
Documentation of “poor prognosis” occurred during therapeutic hypothermia in more than half of patients in our cohort. Premature documentation of poor prognosis may contribute to early decisions to withdraw care. Future guidelines should address when to best prognosticate in postarrest patients receiving therapeutic hypothermia.
PMCID: PMC3712858  PMID: 22080630
cardiac arrest; cardiopulmonary resuscitation; do not resuscitate; mild therapeutic hypothermia; prognosis; resuscitation
4.  Treatment Options for Cerebral Vasospasm in Aneurysmal Subarachnoid Hemorrhage 
Neurotherapeutics  2012;9(1):37-43.
Cerebral vasospasm occurs frequently after aneurysmal subarachnoid and contributes to delayed cerebral ischemia. In this article we address systematic problems with the literature on vasospasm and then review both established and experimental treatment options.
Electronic supplementary material
The online version of this article (doi:10.1007/s13311-011-0098-1) contains supplementary material, which is available to authorized users.
PMCID: PMC3271157  PMID: 22215324
Subarachnoid hemorrhage; Cerebral vasospasm; Delayed cerebral ischemia
5.  Evidence that a Panel of Neurodegeneration Biomarkers Predicts Vasospasm, Infarction, and Outcome in Aneurysmal Subarachnoid Hemorrhage 
PLoS ONE  2011;6(12):e28938.
Biomarkers for neurodegeneration could be early prognostic measures of brain damage and dysfunction in aneurysmal subarachnoid hemorrhage (aSAH) with clinical and medical applications. Recently, we developed a new panel of neurodegeneration biomarkers, and report here on their relationships with pathophysiological complications and outcomes following severe aSAH. Fourteen patients provided serial cerebrospinal fluid samples for up to 10 days and were evaluated by ultrasonography, angiography, magnetic resonance imaging, and clinical examination. Functional outcomes were assessed at hospital discharge and 6–9 months thereafter. Eight biomarkers for acute brain damage were quantified: calpain-derived α-spectrin N- and C-terminal fragments (CCSntf and CCSctf), hypophosphorylated neurofilament H,
14-3-3 β and ζ, ubiquitin C-terminal hydrolase L1, neuron-specific enolase, and S100β. All 8 biomarkers rose up to 100-fold in a subset of patients. Better than any single biomarker, a set of 6 correlated significantly with cerebral vasospasm, brain infarction, and poor outcome. Furthermore, CSF levels of 14-3-3β, CCSntf, and NSE were early predictors of subsequent moderate-to-severe vasospasm. These data provide evidence that a panel of neurodegeneration biomarkers may predict lasting brain dysfunction and the pathophysiological processes that lead to it following aSAH. The panel may be valuable as surrogate endpoints for controlled clinical evaluation of treatment interventions and for guiding aSAH patient care.
PMCID: PMC3235169  PMID: 22174930
6.  Noninvasive Measurement of Cerebral Blood Flow and Blood Oxygenation Using Near-Infrared and Diffuse Correlation Spectroscopies in Critically Brain-Injured Adults 
Neurocritical care  2010;12(2):173-180.
This study assesses the utility of a hybrid optical instrument for noninvasive transcranial monitoring in the neurointensive care unit. The instrument is based on diffuse correlation spectroscopy (DCS) for measurement of cerebral blood flow (CBF), and near-infrared spectroscopy (NIRS) for measurement of oxy- and deoxy-hemoglobin concentration. DCS/NIRS measurements of CBF and oxygenation from frontal lobes are compared with concurrent xenon-enhanced computed tomography (XeCT) in patients during induced blood pressure changes and carbon dioxide arterial partial pressure variation.
Seven neurocritical care patients were included in the study. Relative CBF measured by DCS (rCBFDCS), and changes in oxy-hemoglobin (ΔHbO2), deoxy-hemoglobin (ΔHb), and total hemoglobin concentration (ΔTHC), measured by NIRS, were continuously monitored throughout XeCT during a baseline scan and a scan after intervention. CBF from XeCT regions-of-interest (ROIs) under the optical probes were used to calculate relative XeCT CBF (rCBFXeCT) and were then compared to rCBFDCS. Spearman’s rank coefficients were employed to test for associations between rCBFDCS and rCBFXeCT, as well as between rCBF from both modalities and NIRS parameters.
rCBFDCS and rCBFXeCT showed good correlation (rs = 0.73, P = 0.010) across the patient cohort. Moderate correlations between rCBFDCS and ΔHbO2/ΔTHC were also observed. Both NIRS and DCS distinguished the effects of xenon inhalation on CBF, which varied among the patients.
DCS measurements of CBF and NIRS measurements of tissue blood oxygenation were successfully obtained in neurocritical care patients. The potential for DCS to provide continuous, noninvasive bedside monitoring for the purpose of CBF management and individualized care is demonstrated.
PMCID: PMC2844468  PMID: 19908166
Near-infrared spectroscopy; Diffuse correlation spectroscopy; Cerebral blood flow; Xenon CT; Neurocritical care
7.  Intracranial Vertebrobasilar Artery Dissection Associated with Postpartum Angiopathy 
Stroke Research and Treatment  2009;2010:320627.
Background. Cervicocephalic arterial dissection (CCAD) is rare in the postpartum period. To our knowledge this is the first reported case of postpartum angiopathy (PPA) presenting with ischemic stroke due to intracranial arterial dissection. Case. A 41-year-old woman presented with blurred vision, headache, and generalized seizures 5 days after delivering twins. She was treated with magnesium for eclampsia. MRI identified multiple posterior circulation infarcts. Angiography identified a complex dissection extending from both intradural vertebral arteries, through the basilar artery, and into both posterior cerebral arteries. Multiple segments of arterial dilatation and narrowing consistent with PPA were present. Xenon enhanced CT (Xe-CT) showed reduced regional cerebral blood flow that is improved with elevation in blood pressure. Conclusion. Intracranial vertebrobasilar dissection causing stroke is a rare complication of pregnancy. Eclampsia and PPA may play a role in its pathogenesis. Blood pressure management may be tailored using quantitative blood flow studies, such as Xe-CT.
PMCID: PMC2911601  PMID: 20700423

Results 1-7 (7)